Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
ACR Open Rheumatol ; 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38952015

ABSTRACT

OBJECTIVE: Interstitial lung diseases (ILDs) are a heterogeneous group of disorders that can develop in patients with connective tissue diseases. Establishing autoimmunity in ILD impacts prognosis and treatment. Patients with ILD are screened for autoimmunity by measuring antinuclear autoantibodies, rheumatoid factors, and other nonspecific tests. However, this approach may miss autoimmunity that manifests as autoantibodies to tissue antigens not previously defined in ILD. METHODS: We use Phage Immunoprecipitation-Sequencing (PhIP-Seq) to conduct an autoantibody discovery screen of patients with ILD and controls. We screened for novel autoantigen candidates using PhIP-Seq. We next developed a radio-labeled binding assay and validated the leading candidate in 398 patients with ILD recruited from two academic medical centers and 138 blood bank individuals that formed our reference cohort. RESULTS: PhIP-Seq identified 17 novel autoreactive targets, and machine learning classifiers derived from these targets discriminated ILD serum from controls. Among the 17 candidates, we validated CDHR5 and found CDHR5 autoantibodies in patients with rheumatologic disorders and importantly, patients not previously diagnosed with autoimmunity. Using survival and transplant free-survival data available from one of the two centers, patients with CDHR5 autoantibodies showed worse survival compared with other patients with connective tissue disease ILD. CONCLUSION: We used PhIP-Seq to define a novel CDHR5 autoantibody in a subset of select patients with ILD. Our data complement a recent study showing polymorphisms in the CDHR5-IRF7 gene locus strongly associated with titer of anticentromere antibodies in systemic sclerosis, creating a growing body of evidence suggesting a link between CDHR5 and autoimmunity.

2.
Article in English | MEDLINE | ID: mdl-38924775

ABSTRACT

Rationale: Fibrotic hypersensitivity pneumonitis is a debilitating interstitial lung disease driven by incompletely understood immune mechanisms. Objectives: To elucidate immune aberrations in fibrotic hypersensitivity pneumonitis in single-cell resolution. Methods: Single-cell 5' RNA sequencing was conducted on peripheral blood mononuclear cells and bronchoalveolar lavage cells obtained from 45 patients with fibrotic hypersensitivity pneumonitis, 63 idiopathic pulmonary fibrosis, 4 non-fibrotic hypersensitivity pneumonitis, and 36 healthy controls in the United States and Mexico. Analyses included differential gene expression (Seurat), transcription factor activity imputation (DoRothEA-VIPER), and trajectory analyses (Monocle3/Velocyto-scVelo-CellRank). Measurements and Main Results: Overall, 501,534 peripheral blood mononuclear cells from 110 patients and controls and 88,336 bronchoalveolar lavage cells from 19 patients were profiled. Compared to controls, fibrotic hypersensitivity pneumonitis has elevated classical monocytes (adjusted-p=2.5e-3) and are enriched in CCL3hi/CCL4hi and S100Ahi classical monocytes (adjusted-p<2.2e-16). Trajectory analyses demonstrate that S100Ahi classical monocytes differentiate into SPP1hi lung macrophages associated with fibrosis. Compared to both controls and idiopathic pulmonary fibrosis, fibrotic hypersensitivity pneumonitis patient cells are significantly enriched in GZMhi cytotoxic T cells. These cells exhibit transcription factor activities indicative of TGFß and TNFα/NFκB pathways. These results are publicly available at https://ildimmunecellatlas.org. Conclusions: Single-cell transcriptomics of fibrotic hypersensitivity pneumonitis patients uncovered novel immune perturbations, including previously undescribed increases in GZMhi cytotoxic CD4+ and CD8+ T cells - reflecting this disease's unique inflammatory T-cell driven nature - as well as increased S100Ahi and CCL3hi/CCL4hi classical monocytes also observed in idiopathic pulmonary fibrosis. Both cell populations may guide the development of new biomarkers and therapeutic interventions.

3.
Am J Respir Cell Mol Biol ; 71(1): 23-29, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38593005

ABSTRACT

Investigations into the mechanisms of injury and repair in fibroproliferative disease require consideration of the spatial heterogeneity inherent in the disease. Most scoring of fibrotic remodeling in preclinical animal models relies on the modified Ashcroft score, which is an ordinal rubric of macroscopic resolution. The obvious limitations of manual histopathologic scoring have generated an unmet need for unbiased, repeatable scoring of fibroproliferative burden in tissue. Using computer vision approaches on immunofluorescence imaging of the extracellular matrix component laminin, we generated a robust and repeatable quantitative remodeling scorer. In the bleomycin lung injury model, the quantitative remodeling scorer shows significant agreement with the modified Ashcroft scale. This antibody-based approach is easily integrated into larger multiplex immunofluorescence experiments, which we demonstrate by testing the spatial apposition of tertiary lymphoid structures to fibroproliferative tissue, a poorly characterized phenomenon observed in both human interstitial lung diseases and preclinical models of lung fibrosis. The tool reported in this article is available as a stand-alone application that is usable without programming knowledge.


Subject(s)
Bleomycin , Laminin , Pulmonary Fibrosis , Laminin/metabolism , Animals , Pulmonary Fibrosis/pathology , Pulmonary Fibrosis/metabolism , Pulmonary Fibrosis/chemically induced , Lung/pathology , Lung/metabolism , Mice , Lung Injury/pathology , Lung Injury/metabolism , Lung Injury/chemically induced , Disease Models, Animal , Mice, Inbred C57BL , Tertiary Lymphoid Structures/pathology , Tertiary Lymphoid Structures/immunology , Humans , Fluorescent Antibody Technique , Extracellular Matrix/metabolism , Extracellular Matrix/pathology
SELECTION OF CITATIONS
SEARCH DETAIL