Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 132
Filter
Add more filters










Publication year range
1.
Chempluschem ; 85(2): 346-352, 2020 02.
Article in English | MEDLINE | ID: mdl-32027095

ABSTRACT

We report the synthesis, photophysics, electrochemistry and electrochemiluminescence (ECL) of two dqp (dqp=2,6-di(quinoline-8-yl)pyridine) based ruthenium(II) complexes, bearing either a n-butyl ester (1) or the corresponding carboxylic acid functionality (2). The complexes were prepared from [Ru(dqp)(MeCN)3 ][PF6 ]2 by reaction with the dqp precursor using microwave irradiation. In both cases, photoluminescence spectra present strong 3 MLCT-based red/near-infrared (NIR) emissions centred at about 710 nm. The photoluminescence quantum yields were 6.1 % and 1.8 % for 1 and 2 respectively while the excited state lifetimes were 3.60 µs and 2.37 µs. Both complexes are ECL active, although ECL efficiency (ΦECL ) of 1 was substantially higher than 2, due to its more favourable electrochemical properties. Importantly, 1 also gave strong ECL in aqueous media, which is rare for near-infrared emitters. The results suggest the possibility of very interesting ECL sensing applications for this class of emitter in biological media.

2.
J Sep Sci ; 42(24): 3631-3639, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31651081

ABSTRACT

The interactive behavior of an amphipathic peptide with the Cu2+ , Ni2+ , and Zn2+ complexes of 1,4-bis(triazacyclonon-1-yl)butane), bis(tacn)but , immobilized onto Sepharose CL-4B, has been investigated. The effects of incubation time, as well as the incubation buffer pH and ionic strength, have been examined. The binding data have been interrogated using Langmuir, Langmuir-Freundlich, bi-Langmuir, and Temkin isothermal models and Scatchard plots. These results confirm that this amphipathic peptide binds with relatively high capacities to the immobilized Cu2+ - and Ni2+ -1,4-bis(triazacyclonon-1-yl)butane)-Sepharose CL-4B sorbents via at least two discrete sites. However, the corresponding immobilized Zn2+ -sorbent had low binding capacity. Moreover, the magnitude of the binding capacities of these sorbents was dependent on the pH and ionic strength of the incubation buffer. These results are relevant to the isolation of E. coli expressed recombinant proteins that incorporate this and related amphipathic peptide tags, containing two or more histidine residues, located at the N- or C-terminus of the recombinant protein, and the co-purification of low abundance host cell proteins of diverse structure, by immobilized metal ion affinity chromatographic methods.


Subject(s)
Chelating Agents/chemistry , Cyclobutanes/chemistry , Organometallic Compounds/chemistry , Surface-Active Agents/chemistry , Zinc/chemistry , Adsorption , Chromatography, Affinity , Cyclobutanes/chemical synthesis , Histidine/chemistry , Hydrogen-Ion Concentration , Ligands , Metals, Heavy/chemistry , Organometallic Compounds/chemical synthesis , Peptides/chemistry , Resins, Synthetic/chemistry , Sodium Chloride/chemistry , Surface Properties
3.
Chemistry ; 24(22): 5790-5803, 2018 Apr 17.
Article in English | MEDLINE | ID: mdl-29314368

ABSTRACT

The photodecomposition mechanism of trans,trans,trans-[Pt(N3 )2 (OH)2 (py)2 ] (1, py=pyridine), an anticancer prodrug candidate, was probed using complementary Attenuated Total Reflection Fourier Transform Infrared (ATR-FTIR), transient electronic absorption, and UV/Vis spectroscopy. Data fitting using Principal Component Analysis (PCA) and Multi-Curve Resolution Alternating Least Squares, suggests the formation of a trans-[Pt(N3 )(py)2 (OH/H2 O)] intermediate and trans-[Pt(py)2 (OH/H2 O)2 ] as the final product upon 420 nm irradiation of 1 in water. Rapid disappearance of the hydroxido ligand stretching vibration upon irradiation is correlated with a -10 cm-1 shift to the antisymmetric azido vibration, suggesting a possible second intermediate. Experimental proof of subsequent dissociation of azido ligands from platinum is presented, in which at least one hydroxyl radical is formed in the reduction of PtIV to PtII . Additionally, the photoinduced reaction of 1 with the nucleotide 5'-guanosine monophosphate (5'-GMP) was comprehensively studied, and the identity of key photoproducts was assigned with the help of ATR-FTIR spectroscopy, mass spectrometry, and density functional theory calculations. The identification of marker bands for some of these photoproducts (e.g., trans-[Pt(N3 )(py)2 (5'-GMP)] and trans-[Pt(py)2 (5'-GMP)2 ]) will aid elucidation of the chemical and biological mechanism of anticancer action of 1. In general, these studies demonstrate the potential of vibrational spectroscopic techniques as promising tools for studying such metal complexes.


Subject(s)
Antineoplastic Agents/pharmacology , Organoplatinum Compounds/pharmacology , Prodrugs/pharmacology , Nuclear Magnetic Resonance, Biomolecular , Photochemistry/methods , Stereoisomerism
4.
Chempluschem ; 83(7): 704-710, 2018 Jul.
Article in English | MEDLINE | ID: mdl-31950620

ABSTRACT

The possibility of efficient water electrooxidation sustained by continuous (re)generation of catalysts derived from the oxidative electrodeposition of transition-metal contaminants is examined herein for three natural water samples from Australia and China. The metal composition of the solutions has been determined by inductively coupled plasma optical emission spectrometry, and a range of strategies to produce water-splitting catalysts by means of in situ electrodeposition have been applied. The performance of the resulting electrocatalysts is below the state-of-the-art level owing to large amounts of impurities in the solutions and non-optimal concentrations of naturally available catalyst precursors. Nevertheless, these studies have identified the FePb-based system as a rare example of an electrocatalyst for water oxidation that forms in situ and maintains reasonable activity (≥4.5 mA cm-2 at an overpotential of 0.8 V) in weakly acidic solutions (pH 2.9).

5.
Chempluschem ; 83(7): 728-738, 2018 Jul.
Article in English | MEDLINE | ID: mdl-31950627

ABSTRACT

Metal complexes of Cu2+ , Co2+ , Cd2+ , Zn2+ , and Ni2+ formed with the ligands [Fc(cyclen)] (1) and [Fc(cyclen)2 ] (2) (Fc=ferrocene, cyclen=1,4,7,10-tetraazacyclododecane) are synthesised and characterised. The X-ray structure of the Cu2+ complex of 2, Fc([Cu(cyclen)(CH3 CN)]2 (ClO4 )4 , is reported, and shows that the two positively charged Cu2+ -cyclen units have a coordination number of five, adopting a distorted trigonal-bipyramidal configuration. The Cu2+ -cyclen units are arranged in a trans-like configuration with respect to the Fc group, presumably to minimise electrostatic repulsion. The voltammetric oxidation of the free ligands 1 and 2 in a CH2 Cl2 /CH3 CN (1:4) solvent mixture yields two closely spaced oxidation processes. Both electron-transfer steps are associated with the ferrocenyl moiety, implying strong communication between the cyclen nitrogen atoms and the ferrocenyl group. In contrast, cyclic voltammograms display only a simple reversible one-electron process if 1 and 2 are complexed with Cd2+ , Cu2+ , Zn2+ , Ni2+ , or Co2+ . Binding of these metal ions produces a significant shift in the reversible midpoint potential (Em ). Except for Ni2+ , Em is linearly proportional to the charge density of the transition metal ion, demonstrating that 1 and 2 may undergo redox switching. The diffusion coefficients of Fc, DmFc, 1 and 2, and their metal ion complexes correlate well with their molecular weights.

6.
Chempluschem ; 83(7): 711-720, 2018 Jul.
Article in English | MEDLINE | ID: mdl-31950629

ABSTRACT

Design of novel efficient light-harvesters for p-type dye-sensitised solar cells (DSSCs) is indispensable for further advances in this photovoltaic technology. Herein, a novel D-π-A (D=donor, π=π-conjugated linker, A=acceptor) sensitiser, ZnP1, featuring an electron acceptor, perylenemonoimide (PMI), connected to an electron donor, di(p-carboxyphenyl)amine (DCPA), through fluorene and a zinc(II) porphyrin with alkyl chains as a π-conjugated bridge is introduced. Spectroscopic and electrochemical characterisation of this dye along with a newly synthesised PMI-free reference dye ZnP0 has been undertaken to demonstrate strong electron coupling between the DCPA donor and PMI acceptor subunits through the porphyrin ring in ZnP1, which redshifts the light absorption onset to the near-IR region. When integrated into p-DSSCs based on a mesoporous nickel(II) oxide semiconductor electrode and a tris(acetylacetonato) iron(III/II) redox mediator, ZnP1 exhibits an onset of the incident photon-to-current conversion efficiency at 800 nm and a power conversion efficiency of up to 0.92 % under simulated 100 mW cm-2 AM 1.5 G irradiation. This is the highest efficiency of the porphyrin-based p-DSSCs hitherto reported.

7.
Chempluschem ; 83(7): 565-568, 2018 Jul.
Article in English | MEDLINE | ID: mdl-31950636

ABSTRACT

Heterobimetallic Group 11/13 sulfide nanoparticles (AgInS2 , CuInS2 , Ag9 GaS6 , and CuGaS2 ) are formed by treatment of [M(S2 CAr)3 ] (M=Ga or In) with either AgNO3 or CuCl under mild conditions. The intermediary gallium or indium tris(aryldithioate) complexes are easily prepared by stirring the appropriate metal and aryldithioc acid at room temperature. Overall, this two-step process is a simple solution-based method for transforming Ga and In metal into valuable ternary metallosulfide nanoparticles at relatively low temperatures.

8.
Chempluschem ; 83(7): 547, 2018 Jul.
Article in English | MEDLINE | ID: mdl-31950639

ABSTRACT

Invited for this month's cover are the groups of Prof. Dr. Udo Bach, Prof. Dr. Yi-Bing Cheng, and Prof. Dr. Leone Spiccia (Monash University, Australia), and Dr. Mingkui Wang (Huazhong University of Science and Technology, China). The cover picture shows the charge-transfer processes between a novel porphyrin dye adsorbed on nickel oxide and tris(acetylacetonato) iron(III/II) redox mediator after excitation by sunlight. Read the full text of the article at 10.1002/cplu.201800104.

9.
Nat Commun ; 8(1): 613, 2017 09 20.
Article in English | MEDLINE | ID: mdl-28931833

ABSTRACT

Hybrid organic-inorganic halide perovskites are low-cost solution-processable solar cell materials with photovoltaic properties that rival those of crystalline silicon. The perovskite films are typically sandwiched between thin layers of hole and electron transport materials, which efficiently extract photogenerated charges. This affords high-energy conversion efficiencies but results in significant performance and fabrication challenges. Herein we present a simple charge transport layer-free perovskite solar cell, comprising only a perovskite layer with two interdigitated gold back-contacts. Charge extraction is achieved via self-assembled monolayers and their associated dipole fields at the metal-perovskite interface. Photovoltages of ~600 mV generated by self-assembled molecular monolayer modified perovskite solar cells are equivalent to the built-in potential generated by individual dipole layers. Efficient charge extraction results in photocurrents of up to 12.1 mA cm-2 under simulated sunlight, despite a large electrode spacing.Simplified device concepts may become important for the development of low cost photovoltaics. Lin et al. report solar cells based on interdigitated gold back-contacts and metal halide perovskites where charge extraction is assisted via a dipole field generated by self-assembled molecular monolayers.

10.
Chemistry ; 23(54): 13482-13492, 2017 Sep 27.
Article in English | MEDLINE | ID: mdl-28722330

ABSTRACT

Influence of the conditions for aerobic oxidation of Mn2+(aq) catalysed by the MnxEFG protein complex on the morphology, structure and reactivity of the resulting biogenic manganese oxides (MnOx ) is explored. Physical characterisation of MnOx includes scanning and transmission electron microscopy, and X-ray photoelectron and K-edge Mn, Fe X-ray absorption spectroscopy. This characterisation reveals that the MnOx materials share the structural features of birnessite, yet differ in the degree of structural disorder. Importantly, these biogenic products exhibit strikingly different morphologies that can be easily controlled. Changing the substrate-to-protein ratio produces MnOx either as nm-thin sheets, or rods with diameters below 20 nm, or a combination of the two. Mineralisation in solutions that contain Fe2+(aq) makes solids with significant disorder in the structure, while the presence of Ca2+(aq) facilitates formation of more ordered materials. The (photo)oxidation and (photo)electrocatalytic capacity of the MnOx minerals is examined and correlated with their structural properties.

11.
Angew Chem Int Ed Engl ; 56(41): 12486-12491, 2017 10 02.
Article in English | MEDLINE | ID: mdl-28597547

ABSTRACT

Organo-lead halide perovskites (OHPs) have recently emerged as a new class of exceptional optoelectronic materials, which may find use in many applications, including solar cells, light emitting diodes, and photodetectors. More complex applications, such as lasers and electro-optic modulators, require the use of monocrystalline perovskite materials to reach their ultimate performance levels. Conventional methods for forming single crystals of OHPs like methylammonium lead bromide (MAPbBr3 ) afford limited control over the product morphology, rendering the assembly of defined microcavity nanostructures difficult. We overcame this by synthesizing for the first time (MA)[PbBr3 ]⋅DMF (1), and demonstrating its facile transformation into monocrystalline MAPbBr3 microplatelets. The MAPbBr3 microplatelets were tailored into waveguide based photonic devices, of which an ultra-low propagation loss of 0.04 dB µm-1 for a propagation distance of 100 µm was demonstrated. An efficient active electro-optical modulator (AEOM) consisting of a MAPbBr3 non-linear arc waveguide was demonstrated, exhibiting a 98.4 % PL intensity modulation with an external voltage of 45 V. This novel synthetic approach, as well as the demonstration of effective waveguiding, will pave the way for developing a wide range of photonic devices based on organo-lead halide perovskites.

12.
Chemistry ; 23(34): 8171-8175, 2017 Jun 16.
Article in English | MEDLINE | ID: mdl-28470785

ABSTRACT

The formation of mixed-metal sulfides with the general structure AgBiS2 and Cu3 BiS2 by a simple two-step process utilizing bismuth dithiocarboxylates as Bi and S precursors is described. A sonochemical reaction of Bi2 O3 with six different aryl dithioic acids: dithiobenzoic acid (BDT-H), 4-methoxydithiobenzoic acid (4-MBDT-H), 3-methyldithiobenzoic acid (3-MBDT-H), 2-mesitylenedithioic acid (2-MDT-H), 4-fluorodithiobenzoic acid (4-FBDT-H), and 2-thiophenedithioic acid (2-TDT-H) resulted in the corresponding complexes: [Bi(BDT)3 ] 1, [Bi(4-MBDT)3 ] 2, [{Bi(3-MBDT)3 }2 ⋅C7 H8 ] (32 ⋅C7 H8 ), [Bi(2-MDT)3 ] 4, [Bi(4-FBDT)3 ] 5 and [Bi(2-TDT)3 ] 6. Microwave irradiation of these bismuth(III)aryldithioate complexes with AgNO3 or CuCl under mild reaction conditions (140 °C) resulted in the respective mixed-metal sulfides. Attempt to synthesize AuBiS2 using similar reaction protocols were unsuccessful, resulting only in the formation of elemental Au0 , S8 and BiOCl.

13.
Inorg Chem ; 56(10): 5941-5952, 2017 May 15.
Article in English | MEDLINE | ID: mdl-28467070

ABSTRACT

The UV-light-induced CO release characteristics of a series of ruthenium(II) carbonyl complexes of the form trans-Cl[RuLCl2(CO)2] (L = 4,4'-dimethyl-2,2'-bipyridine, 4'-methyl-2,2'-bipyridine-4-carboxylic acid, or 2,2'-bipyridine-4,4'-dicarboxylic acid) have been elucidated using a combination of UV-vis absorbance and Fourier transform infrared spectroscopies, multivariate curve resolution alternating least-squares analysis, and density functional theory calculations. In acetonitrile, photolysis appears to proceed via a serial three-step mechanism involving the sequential formation of [RuL(CO)(CH3CN)Cl2], [RuL(CH3CN)2Cl2], and [RuL(CH3CN)3Cl]+. Release of the first CO molecule occurs quickly (k1 ≫ 3 min-1), while release of the second CO molecule proceeds at a much more modest rate (k2 = 0.099-0.17 min-1) and is slowed by the presence of electron-withdrawing carboxyl substituents on the bipyridine ligand. In aqueous media (1% dimethyl sulfoxide in H2O), the two photodecarbonylation steps proceed much more slowly (k1 = 0.46-1.3 min-1 and k2 = 0.026-0.035 min-1, respectively) and the influence of the carboxyl groups is less pronounced. These results have implications for the design of new light-responsive CO-releasing molecules ("photoCORMs") intended for future medical use.

14.
Nat Commun ; 8: 14547, 2017 02 23.
Article in English | MEDLINE | ID: mdl-28230064

ABSTRACT

Organic-inorganic hybrid perovskites are exciting candidates for next-generation solar cells, with CH3NH3PbI3 being one of the most widely studied. While there have been intense efforts to fabricate and optimize photovoltaic devices using CH3NH3PbI3, critical questions remain regarding the crystal structure that governs its unique properties of the hybrid perovskite material. Here we report unambiguous evidence for crystallographic twin domains in tetragonal CH3NH3PbI3, observed using low-dose transmission electron microscopy and selected area electron diffraction. The domains are around 100-300 nm wide, which disappear/reappear above/below the tetragonal-to-cubic phase transition temperature (approximate 57 °C) in a reversible process that often 'memorizes' the scale and orientation of the domains. Since these domains exist within the operational temperature range of solar cells, and have dimensions comparable to the thickness of typical CH3NH3PbI3 films in the solar cells, understanding the twin geometry and orientation is essential for further improving perovskite solar cells.

15.
Chemistry ; 23(6): 1346-1352, 2017 Jan 26.
Article in English | MEDLINE | ID: mdl-27726210

ABSTRACT

In a natural geochemical cycle, manganese-oxide minerals (MnOx ) are principally formed through a microbial process, where a putative multicopper oxidase MnxG plays an essential role. Recent success in isolating the approximately 230 kDa, enzymatically active MnxEFG protein complex, has advanced our understanding of biogenic MnOx mineralization. Here, the kinetics of MnOx formation catalyzed by MnxEFG are examined using a quartz crystal microbalance (QCM), and the first electrochemical characterization of the MnxEFG complex is reported using Fourier transformed alternating current voltammetry. The voltammetric studies undertaken using near-neutral solutions (pH 7.8) establish the apparent reversible potentials for the Type 2 Cu sites in MnxEFG immobilized on a carboxy-terminated monolayer to be in the range 0.36-0.40 V versus a normal hydrogen electrode. Oxidative priming of the MnxEFG protein complex substantially enhances the enzymatic activity, as found by in situ electrochemical QCM analysis. The biogeochemical significance of this enzyme is clear, although the role of an oxidative priming of catalytic activity might be either an evolutionary advantage or an ancient relic of primordial existence.


Subject(s)
Manganese Compounds/metabolism , Oxides/metabolism , Oxidoreductases/metabolism , Biocatalysis , Electrochemical Techniques , Kinetics , Microscopy, Electron, Scanning , Quartz Crystal Microbalance Techniques , Spectrometry, X-Ray Emission
16.
Chempluschem ; 82(4): 638-646, 2017 Apr.
Article in English | MEDLINE | ID: mdl-31961584

ABSTRACT

Polyacrylic-acid-coated ultra-small super-paramagnetic iron oxide nanoparticles were surface-modified with low-molecular-weight sulfobetaines or 3-(diethylamino)propylamine in order to generate nanoparticles with zwitterionic character (ZW-NPs). The ZW-NPs proved highly resistant to serum protein corona formation in vitro, as revealed by atomic force microscopy, SDS-PAGE and proteomics analysis, and exhibited low cytotoxicity towards A431 and HEK293 cells. The presence of unreacted carboxylic acid groups enabled additional functionalization with fluorescent (Cy5) and radioactive [64 Cu-dmptacn; dmptacn=1,4-bis(2-pyridinylmethyl)-1,4,7-triazacyclononane] moieties. Overall, the ZW-NPs represent promising platforms for the development of new multimodal diagnostic/therapeutic agents possessing "stealth" properties.

17.
Medchemcomm ; 8(5): 1112-1120, 2017 May 01.
Article in English | MEDLINE | ID: mdl-30108822

ABSTRACT

The increase in bacterial and viral resistance to current therapeutics has led to intensive research for new antibacterial and antiviral agents. Among these, aminoglycosides and their guanidino derivatives are potent candidates targeting specific RNA sequences. It is necessary that these substances can pass across mammalian membranes in order to reach their intracellular targets. This study investigated the effects of the aminoglycosides kanamycin A and neomycin B and their guanidino derivatives on mammalian mimetic membranes using a quartz crystal microbalance with dissipation monitoring (QCM-D). Lipid bilayers as membrane models were deposited onto gold coated quartz crystals and aminoglycosides added afterwards. Notably, the guanidino derivatives exhibited an initial stiffening of the membrane layer indicating a quick insertion of the planar guanidino groups into the membrane. The guanidino derivatives also reached their maximum binding to the membrane at lower concentrations than the native compounds. Therefore, these modified aminoglycosides are promising agents for the development of new antimicrobial treatments.

18.
J Am Chem Soc ; 138(49): 16095-16104, 2016 12 14.
Article in English | MEDLINE | ID: mdl-27960304

ABSTRACT

Detection and quantification of redox transformations involved in water oxidation electrocatalysis is often not possible using conventional techniques. Herein, use of large amplitude Fourier transformed ac voltammetry and comprehensive analysis of the higher harmonics has enabled us to access the redox processes responsible for catalysis. An examination of the voltammetric data for water oxidation in borate buffered solutions (pH 9.2) at electrodes functionalized with systematically varied low loadings of cobalt (CoOx), manganese (MnOx), and nickel oxides (NiOx) has been undertaken, and extensive experiment-simulation comparisons have been introduced for the first time. Analysis shows that a single redox process controls the rate of catalysis for Co and Mn oxides, while two electron transfer events contribute in the Ni case. We apply a "molecular catalysis" model that couples a redox transformation of a surface-confined species (effective reversible potential, Eeff0) to a catalytic reaction with a substrate in solution (pseudo-first-order rate constant, k1f), accounts for the important role of a Brønsted base, and mimics the experimental behavior. The analysis revealed that Eeff0 values for CoOx, MnOx, and NiOx lie within the range 1.9-2.1 V vs reversible hydrogen electrode, and k1f varies from 2 × 103 to 4 × 104 s-1. The k1f values are much higher than reported for any water electrooxidation catalyst before. The Eeff0 values provide a guide for in situ spectroscopic characterization of the active states involved in catalysis by metal oxides.

19.
Inorg Chem ; 55(12): 5983-92, 2016 Jun 20.
Article in English | MEDLINE | ID: mdl-27257848

ABSTRACT

We report a detailed study of a promising photoactivatable metal-based anticancer prodrug candidate, trans,trans,trans-[Pt(N3)2(OH)2(py)2] (C1; py = pyridine), using vibrational spectroscopic techniques. Attenuated total reflection Fourier transform infrared (ATR-FTIR), Raman, and synchrotron radiation far-IR (SR-FIR) spectroscopies were applied to obtain highly resolved ligand and Pt-ligand vibrations for C1 and its precursors (trans-[Pt(N3)2(py)2] (C2) and trans-[PtCl2(py)2] (C3)). Distinct IR- and Raman-active vibrational modes were assigned with the aid of density functional theory calculations, and trends in the frequency shifts as a function of changing Pt coordination environment were determined and detailed for the first time. The data provide the ligand and Pt-ligand (azide, hydroxide, pyridine) vibrational signatures for C1 in the mid- and far-IR region, which will provide a basis for the better understanding of the interaction of C1 with biomolecules.


Subject(s)
Antineoplastic Agents/chemistry , Organoplatinum Compounds/chemistry , Prodrugs/chemistry , Spectrum Analysis/methods
20.
Sci Rep ; 6: 24422, 2016 Apr 13.
Article in English | MEDLINE | ID: mdl-27073060

ABSTRACT

Interfacial charge transfer from photoexcited ruthenium-based N3 dye molecules into ZnO thin films received controversial interpretations. To identify the physical origin for the delayed electron transfer in ZnO compared to TiO2, we probe directly the electronic structure at both dye-semiconductor interfaces by applying ultrafast XUV photoemission spectroscopy. In the range of pump-probe time delays between 0.5 to 1.0 ps, the transient signal of the intermediate states was compared, revealing a distinct difference in their electron binding energies of 0.4 eV. This finding strongly indicates the nature of the charge injection at the ZnO interface associated with the formation of an interfacial electron-cation complex. It further highlights that the energetic alignment between the dye donor and semiconductor acceptor states appears to be of minor importance for the injection kinetics and that the injection efficiency is dominated by the electronic coupling.

SELECTION OF CITATIONS
SEARCH DETAIL