Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 72
1.
Nat Chem Biol ; 20(5): 549-550, 2024 May.
Article En | MEDLINE | ID: mdl-38580838
2.
Biology (Basel) ; 12(9)2023 Sep 21.
Article En | MEDLINE | ID: mdl-37759665

A critical step in the immunogenicity cascade is attributed to human leukocyte antigen (HLA) II presentation triggering T cell immune responses. The liquid chromatography-tandem mass spectrometry (LC-MS/MS)-based major histocompatibility complex (MHC) II-associated peptide proteomics (MAPPs) assay is implemented during preclinical risk assessments to identify biotherapeutic-derived T cell epitopes. Although studies indicate that HLA-DP and HLA-DQ alleles are linked to immunogenicity, most MAPPs studies are restricted to using HLA-DR as the dominant HLA II genotype due to the lack of well-characterized immunoprecipitating antibodies. Here, we address this issue by testing various commercially available clones of MHC-II pan (CR3/43, WR18, and Tü39), HLA-DP (B7/21), and HLA-DQ (SPV-L3 and 1a3) antibodies in the MAPPs assay, and characterizing identified peptides according to binding specificity. Our results reveal that HLA II receptor-precipitating reagents with similar reported specificities differ based on clonality and that MHC-II pan antibodies do not entirely exhibit pan-specific tendencies. Since no individual antibody clone is able to recover the complete HLA II peptide repertoire, we recommend a mixed strategy of clones L243, WR18, and SPV-L3 in a single immunoprecipitation step for more robust compound-specific peptide detection. Ultimately, our optimized MAPPs strategy improves the predictability and additional identification of T cell epitopes in immunogenicity risk assessments.

3.
Materials (Basel) ; 16(18)2023 Sep 05.
Article En | MEDLINE | ID: mdl-37763361

Additive manufacturing (AM) techniques, such as wire arc additive manufacturing (WAAM), offer unique advantages in producing large, complex structures with reduced lead time and material waste. However, their application in fatigue-critical applications requires a thorough understanding of the material properties and behavior. Due to the layered nature of the manufacturing process, WAAM structures have different microstructures and mechanical properties compared to their substrate counterparts. This study investigated the mechanical behavior and fatigue performance of Ti-6Al-4V fabricated using WAAM compared to the substrate material. Tensile and low-cycle fatigue (LCF) tests were conducted on both materials, and the microstructure was analyzed using optical microscopy and scanning electron microscopy (SEM). The results showed that the WAAM material has a coarser and more heterogeneous grain structure, an increased amount of defects, and lower ultimate tensile strength and smaller elongation at fracture. Furthermore, strain-controlled LCF tests revealed a lower fatigue strength of the WAAM material compared to the substrate, with crack initiation occurring at pores in the specimen rather than microstructural features. Experimental data were used to fit the Ramberg-Osgood model for cyclic deformation behavior and the Manson-Coffin-Basquin model for strain-life curves. The fitted models were subsequently used to compare the two material conditions with other AM processes. In general, the quasi-static properties of WAAM material were found to be lower than those of powder-based processes like selective laser melting or electron beam melting due to smaller cooling rates within the WAAM process. Finally, two simplified estimation models for the strain-life relationship were compared to the experimentally fitted Manson-Coffin-Basquin parameters. The results showed that the simple "universal material law" is applicable and can be used for a quick and simple estimation of the material behavior in cyclic loading conditions. Overall, this study highlights the importance of understanding the mechanical behavior and fatigue performance of WAAM structures compared to their substrate counterparts, as well as the need for further research to improve the understanding of the effects of WAAM process parameters on the mechanical properties and fatigue performance of the fabricated structures.

4.
Anaesthesiologie ; 72(9): 677-684, 2023 09.
Article De | MEDLINE | ID: mdl-37558827

The scope of the German law of emergency representation by spouses ("Ehegattenvertretungsrecht"), which has been in effect since 1 January 2023, is currently being described as uncertain, fuzzy and insufficiently defined in many aspects. Treating physicians are confronted with a long legal text characterized by references to other norms and in need of interpretation. The law itself is not limited to representation in emergency measures sensu stricto, although the right of representation should only be based on treatment that is "necessary from a medical point of view and cannot be postponed". Pending established case law, this article attempts to present guidelines for the practical application of the law of emergency representation by spouses. Special aspects such as medical liability, the central register of lasting powers of attorney and the inclusion of the represented spouse in studies are discussed.


Delivery of Health Care , Spouses , Humans , Liability, Legal
5.
Ann Rheum Dis ; 82(7): 887-896, 2023 07.
Article En | MEDLINE | ID: mdl-36987655

The 'MHC-I (major histocompatibility complex class I)-opathy' concept describes a family of inflammatory conditions with overlapping clinical manifestations and a strong genetic link to the MHC-I antigen presentation pathway. Classical MHC-I-opathies such as spondyloarthritis, Behçet's disease, psoriasis and birdshot uveitis are widely recognised for their strong association with certain MHC-I alleles and gene variants of the antigen processing aminopeptidases ERAP1 and ERAP2 that implicates altered MHC-I peptide presentation to CD8+T cells in the pathogenesis. Progress in understanding the cause and treatment of these disorders is hampered by patient phenotypic heterogeneity and lack of systematic investigation of the MHC-I pathway.Here, we discuss new insights into the biology of MHC-I-opathies that strongly advocate for disease-overarching and integrated molecular and clinical investigation to decipher underlying disease mechanisms. Because this requires transformative multidisciplinary collaboration, we introduce the EULAR study group on MHC-I-opathies to unite clinical expertise in rheumatology, dermatology and ophthalmology, with fundamental and translational researchers from multiple disciplines such as immunology, genomics and proteomics, alongside patient partners. We prioritise standardisation of disease phenotypes and scientific nomenclature and propose interdisciplinary genetic and translational studies to exploit emerging therapeutic strategies to understand MHC-I-mediated disease mechanisms. These collaborative efforts are required to address outstanding questions in the etiopathogenesis of MHC-I-opathies towards improving patient treatment and prognostication.


Behcet Syndrome , Spondylarthritis , Uveitis , Humans , Genetic Predisposition to Disease , Behcet Syndrome/genetics , Histocompatibility Antigens Class I/genetics , Aminopeptidases/genetics , Minor Histocompatibility Antigens/genetics
6.
Protein Sci ; 31(12): e4478, 2022 12.
Article En | MEDLINE | ID: mdl-36258668

The cell biology and biochemistry of peptide exchange on major histocompatibility complex class I (MHC-I) proteins are of great interest in the study of immunodominance, which requires iterative optimization of peptide affinity, and cross-presentation of pathogen and tumor antigens, in which endogenous peptides are exchanged for exogenous ones. Even though several methods exist to catalyze peptide exchange on recombinant MHC-I proteins, the cellular conditions and mechanisms allowing for peptide exchange in vivo remain unclear. Here, we demonstrate that low pH, as present in endosomes, indeed triggers peptide exchange, and we dissect the individual steps of the exchange reaction. We find that low pH stabilizes the peptide-empty forms of MHC-I that occur as intermediates of the exchange reaction, and that is synergizes with dipeptides and with disulfide-mediated stabilization of MHC-I.


Histocompatibility Antigens Class I , Peptides , Histocompatibility Antigens Class I/chemistry , Peptides/metabolism , Endosomes/metabolism , Dipeptides , Major Histocompatibility Complex
7.
Curr Res Immunol ; 3: 167-174, 2022.
Article En | MEDLINE | ID: mdl-36042776

Complexes of peptides with recombinant major histocompatibility complex class I molecules (rpMHCs) are an important tool for T cell detection, isolation, and activation in cancer immunotherapy. The rapid preparation of rpMHCs is aided by peptide exchange, for which several technologies exist. Here, we show peptide exchange with small-molecule alcohols and demonstrate that they accelerate the dissociation of pre-bound peptides, creating a novel method for rapid production of rpMHCs and increasing the understanding of the conformational flexibility of the MHC-bound peptides.

8.
Curr Res Immunol ; 3: 85-99, 2022.
Article En | MEDLINE | ID: mdl-35647522

Through the presentation of peptide antigens to cytotoxic T lymphocytes, major histocompatibility complex (MHC) class I molecules mediate the adaptive immune response against tumors and viruses. Additional non-immunological functions include the heterotypic association of class I molecules with cell surface receptors, regulating their activities by unknown mechanisms. Also, homotypic associations resulting in class I dimers and oligomers - of unknown function - have been related to pathological outcomes. In this review, we provide an overview of the current knowledge about the occurrence, biochemical nature, and dynamics of homotypic and heterotypic associations of class I molecules at the cell surface with special focus on the molecular species that take part in the complexes and on the evidence that supports novel biological roles for class I molecules. We show that both heterotypic and homotypic class I associations reported in the literature describe not one but several kinds of oligomers with distinctive stoichiometry and biochemical properties.

9.
Cell Rep ; 39(11): 110959, 2022 06 14.
Article En | MEDLINE | ID: mdl-35705051

MHC-E regulates NK cells by displaying MHC class Ia signal peptides (VL9) to NKG2A:CD94 receptors. MHC-E can also present sequence-diverse, lower-affinity, pathogen-derived peptides to T cell receptors (TCRs) on CD8+ T cells. To understand these affinity differences, human MHC-E (HLA-E)-VL9 versus pathogen-derived peptide structures are compared. Small-angle X-ray scatter (SAXS) measures biophysical parameters in solution, allowing comparison with crystal structures. For HLA-E-VL9, there is concordance between SAXS and crystal parameters. In contrast, HLA-E-bound pathogen-derived peptides produce larger SAXS dimensions that reduce to their crystallographic dimensions only when excess peptide is supplied. Further crystallographic analysis demonstrates three amino acids, exclusive to MHC-E, that not only position VL9 close to the α2 helix, but also allow non-VL9 peptide binding with re-configuration of a key TCR-interacting α2 region. Thus, non-VL9-bound peptides introduce an alternative peptide-binding motif and surface recognition landscape, providing a likely basis for VL9- and non-VL9-HLA-E immune discrimination.


Histocompatibility Antigens Class I , CD8-Positive T-Lymphocytes , Histocompatibility Antigens Class I/metabolism , Humans , NK Cell Lectin-Like Receptor Subfamily C/metabolism , Peptides/metabolism , Protein Binding , Protein Conformation , Scattering, Small Angle , X-Ray Diffraction , HLA-E Antigens
10.
Commun Biol ; 5(1): 488, 2022 05 23.
Article En | MEDLINE | ID: mdl-35606511

An essential element of adaptive immunity is selective binding of peptide antigens by major histocompatibility complex (MHC) class I proteins and their presentation to cytotoxic T lymphocytes. Using native mass spectrometry, we analyze the binding of peptides to an empty disulfide-stabilized HLA-A*02:01 molecule and, due to its unique stability, we determine binding affinities of complexes loaded with truncated or charge-reduced peptides. We find that the two anchor positions can be stabilized independently, and we further analyze the contribution of additional amino acid positions to the binding strength. As a complement to computational prediction tools, our method estimates binding strength of even low-affinity peptides to MHC class I complexes quickly and efficiently. It has huge potential to eliminate binding affinity biases and thus accelerate drug discovery in infectious diseases, autoimmunity, vaccine design, and cancer immunotherapy.


Histocompatibility Antigens Class I , Peptides , HLA Antigens , Peptides/chemistry , T-Lymphocytes, Cytotoxic
11.
J Cell Sci ; 135(9)2022 05 01.
Article En | MEDLINE | ID: mdl-35393611

At the plasma membrane of mammalian cells, major histocompatibility complex class I molecules (MHC-I) present antigenic peptides to cytotoxic T cells. Following the loss of the peptide and the light chain beta-2 microglobulin (ß2m, encoded by B2M), the resulting free heavy chains (FHCs) can associate into homotypic complexes in the plasma membrane. Here, we investigate the stoichiometry and dynamics of MHC-I FHCs assemblies by combining a micropattern assay with fluorescence recovery after photobleaching (FRAP) and with single-molecule co-tracking. We identify non-covalent MHC-I FHC dimers, with dimerization mediated by the α3 domain, as the prevalent species at the plasma membrane, leading a moderate decrease in the diffusion coefficient. MHC-I FHC dimers show increased tendency to cluster into higher order oligomers as concluded from an increased immobile fraction with higher single-molecule colocalization. In vitro studies with isolated proteins in conjunction with molecular docking and dynamics simulations suggest that in the complexes, the α3 domain of one FHC binds to another FHC in a manner similar to that seen for ß2m.


Histocompatibility Antigens Class I , beta 2-Microglobulin , Animals , Histocompatibility Antigens Class I/metabolism , Mice , Molecular Docking Simulation , Peptides/metabolism , Protein Binding , beta 2-Microglobulin/metabolism
12.
J Biol Chem ; 298(2): 101542, 2022 02.
Article En | MEDLINE | ID: mdl-34968463

The monomorphic antigen-presenting molecule major histocompatibility complex-I-related protein 1 (MR1) presents small-molecule metabolites to mucosal-associated invariant T (MAIT) cells. The MR1-MAIT cell axis has been implicated in a variety of infectious and noncommunicable diseases, and recent studies have begun to develop an understanding of the molecular mechanisms underlying this specialized antigen presentation pathway. However, proteins regulating MR1 folding, loading, stability, and surface expression remain to be identified. Here, we performed a gene trap screen to discover novel modulators of MR1 surface expression through insertional mutagenesis of an MR1-overexpressing clone derived from the near-haploid human cell line HAP1 (HAP1.MR1). The most significant positive regulators identified included ß2-microglobulin, a known regulator of MR1 surface expression, and ATP13A1, a P5-type ATPase in the endoplasmic reticulum (ER) not previously known to be associated with MR1-mediated antigen presentation. CRISPR/Cas9-mediated knockout of ATP13A1 in both HAP1.MR1 and THP-1 cell lines revealed a profound reduction in MR1 protein levels and a concomitant functional defect specific to MR1-mediated antigen presentation. Collectively, these data are consistent with the ER-resident ATP13A1 being a key posttranscriptional determinant of MR1 surface expression.


Antigen Presentation , Histocompatibility Antigens Class I , Major Histocompatibility Complex , Minor Histocompatibility Antigens , P-type ATPases , Histocompatibility Antigens Class I/metabolism , Humans , Major Histocompatibility Complex/immunology , Minor Histocompatibility Antigens/immunology , P-type ATPases/immunology
15.
Cells ; 10(6)2021 06 16.
Article En | MEDLINE | ID: mdl-34208608

Trace amine-associated receptor 1 (rodent Taar1/human TAAR1) is a G protein-coupled receptor that is mainly recognized for its functions in neuromodulation. Previous in vitro studies suggested that Taar1 may signal from intracellular compartments. However, we have shown Taar1 to localize apically and on ciliary extensions in rodent thyrocytes, suggesting that at least in the thyroid, Taar1 may signal from the cilia at the apical plasma membrane domain of thyrocytes in situ, where it is exposed to the content of the follicle lumen containing putative Taar1 ligands. This study was designed to explore mouse Taar1 (mTaar1) trafficking, heterologously expressed in human and rat thyroid cell lines in order to establish an in vitro system in which Taar1 signaling from the cell surface can be studied in future. The results showed that chimeric mTaar1-EGFP traffics to the apical cell surface and localizes particularly to spherical structures of polarized thyroid cells, procilia, and primary cilia upon serum-starvation. Moreover, mTaar1-EGFP appears to form high molecular mass forms, possibly homodimers and tetramers, in stably expressing human thyroid cell lines. However, only monomeric mTaar1-EGFP was cell surface biotinylated in polarized human thyrocytes. In polarized rat thyrocytes, mTaar1-EGFP is retained in the endoplasmic reticulum, while cilia were reached by mTaar1-EGFP transiently co-expressed in combination with an HA-tagged construct of the related mTaar5. We conclude that Taar1 trafficking to cilia depends on their integrity. The results further suggest that an in vitro cell model was established that recapitulates Taar1 trafficking in thyrocytes in situ, in principle, and will enable studying Taar1 signaling in future, thus extending our general understanding of its potential significance for thyroid autoregulation.


Cilia/metabolism , Protein Transport/physiology , Receptors, G-Protein-Coupled/metabolism , Thyroid Epithelial Cells/metabolism , Animals , Humans , Mice , Rats
16.
J Cell Sci ; 134(11)2021 06 01.
Article En | MEDLINE | ID: mdl-34085696

NKG2D (also known as KLRK1) is a crucial natural killer (NK) cell-activating receptor, and the murine cytomegalovirus (MCMV) employs multiple immunoevasins to avoid NKG2D-mediated activation. One of the MCMV immunoevasins, gp40 (m152), downregulates the cell surface NKG2D ligand RAE-1γ (also known as Raet1c) thus limiting NK cell activation. This study establishes the molecular mechanism by which gp40 retains RAE-1γ in the secretory pathway. Using flow cytometry and pulse-chase analysis, we demonstrate that gp40 retains RAE-1γ in the early secretory pathway, and that this effect depends on the binding of gp40 to a host protein, TMED10, a member of the p24 protein family. We also show that the TMED10-based retention mechanism can be saturated, and that gp40 has a backup mechanism as it masks RAE-1γ on the cell surface, blocking the interaction with the NKG2D receptor and thus NK cell activation.


Muromegalovirus , Animals , Ligands , Membrane Proteins , Mice , NK Cell Lectin-Like Receptor Subfamily K/genetics , Viral Proteins
17.
Mol Immunol ; 136: 73-81, 2021 08.
Article En | MEDLINE | ID: mdl-34091103

Recombinant major histocompatibility complex class I molecules are used in diagnostic and therapeutic approaches in cancer immunotherapy, with many studies exploring their binding to antigenic peptides. Current techniques for kinetic peptide binding studies are hampered by high sample consumption, low throughput, interference with protein stability, and/or high background signal. Here, we validate nanoscale differential scanning fluorimetry (nanoDSF), a method using the tryptophan fluorescence of class I molecules, for class I/peptide binding, and we use it to determine the molecular mechanism of the thermal denaturation of HLA-A*02:01.


Fluorometry/methods , Histocompatibility Antigens Class I/metabolism , Protein Denaturation , Hot Temperature , Humans , Protein Binding/physiology , Protein Conformation , Protein Folding , Protein Stability , Tryptophan/physiology
18.
Curr Opin Immunol ; 70: 82-89, 2021 06.
Article En | MEDLINE | ID: mdl-33993034

The peptide binding site of major histocompatibility complex (MHC) class I molecules is natively unfolded when devoid of peptides. Peptide binding stabilizes the structure and slows the dynamics, but peptide-specific and subtype-specific motions influence, and are influenced by, interaction with assembly chaperones, the T cell receptor, and other class I-binding proteins. The molecular mechanisms of cooperation between peptide, class I heavy chain, and beta-2 microglobulin are insufficiently known but are being elucidated by nuclear magnetic resonance and other modern methods. It appears that micropolymorphic clusters of charged amino acids, often hidden in the molecule interior, determine the dynamics and thus chaperone dependence, cellular fate, and disease association of class I.


Histocompatibility Antigens Class I/immunology , Peptides/immunology , beta 2-Microglobulin/immunology , Animals , Humans
19.
Sci Rep ; 11(1): 9572, 2021 05 05.
Article En | MEDLINE | ID: mdl-33953265

Differential scanning fluorimetry (DSF) using the inherent fluorescence of proteins (nDSF) is a popular technique to evaluate thermal protein stability in different conditions (e.g. buffer, pH). In many cases, ligand binding increases thermal stability of a protein and often this can be detected as a clear shift in nDSF experiments. Here, we evaluate binding affinity quantification based on thermal shifts. We present four protein systems with different binding affinity ligands, ranging from nM to high µM. Our study suggests that binding affinities determined by isothermal analysis are in better agreement with those from established biophysical techniques (ITC and MST) compared to apparent Kds obtained from melting temperatures. In addition, we describe a method to optionally fit the heat capacity change upon unfolding ([Formula: see text]) during the isothermal analysis. This publication includes the release of a web server for easy and accessible application of isothermal analysis to nDSF data.

20.
Int J Mol Sci ; 21(23)2020 Nov 30.
Article En | MEDLINE | ID: mdl-33266306

The significance of cysteine cathepsins for the liberation of thyroid hormones from the precursor thyroglobulin was previously shown by in vivo and in vitro studies. Cathepsin L is most important for thyroglobulin processing in mice. The present study aims at specifying the possible contribution of its closest relative, cysteine cathepsin L2/V, to thyroid function. Immunofluorescence analysis on normal human thyroid tissue revealed its predominant localization at the apical plasma membrane of thyrocytes and within the follicle lumen, indicating the secretion of cathepsin V and extracellular tasks rather than its acting within endo-lysosomes. To explore the trafficking pathways of cathepsin V in more detail, a chimeric protein consisting of human cathepsin V tagged with green fluorescent protein (GFP) was stably expressed in the Nthy-ori 3-1 thyroid epithelial cell line. Colocalization studies with compartment-specific markers and analyses of post-translational modifications revealed that the chimeric protein was sorted into the lumen of the endoplasmic reticulum and subsequently transported to the Golgi apparatus, while being N-glycosylated. Immunoblotting showed that the chimeric protein reached endo-lysosomes and it became secreted from the transduced cells. Astonishingly, thyroid stimulating hormone (TSH)-induced secretion of GFP-tagged cathepsin V occurred as the proform, suggesting that TSH upregulates its transport to the plasma membrane before it reaches endo-lysosomes for maturation. The proform of cathepsin V was found to be reactive with the activity-based probe DCG-04, suggesting that it possesses catalytic activity. We propose that TSH-stimulated secretion of procathepsin V is the default pathway in the thyroid to enable its contribution to thyroglobulin processing by extracellular means.


Cathepsins/biosynthesis , Thyroid Epithelial Cells/metabolism , Thyrotropin/metabolism , Amino Acid Sequence , Biomarkers , Cathepsins/chemistry , Cathepsins/genetics , Cell Line , Cell Membrane/metabolism , Endoplasmic Reticulum/metabolism , Fluorescent Antibody Technique , Gene Expression , Genes, Reporter , Glycosylation , Humans , Lysosomes/metabolism , Protein Transport , Thyroid Gland/metabolism
...