Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 30
Filter
1.
J Affect Disord ; 358: 416-421, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38735581

ABSTRACT

BACKGROUND: The therapeutic response to lithium in patients with bipolar disorder is highly variable and has a polygenic basis. Genome-wide association studies investigating lithium response have identified several relevant loci, though the precise mechanisms driving these associations are poorly understood. We aimed to prioritise the most likely effector gene and determine the mechanisms underlying an intergenic lithium response locus on chromosome 21 identified by the International Consortium on Lithium Genetics (ConLi+Gen). METHODS: We conducted in-silico functional analyses by integrating and synthesising information from several publicly available functional genetic datasets and databases including the Genotype-Tissue Expression (GTEx) project and HaploReg. RESULTS: The findings from this study highlighted TMPRSS15 as the most likely effector gene at the ConLi+Gen lithium response locus. TMPRSS15 encodes enterokinase, a gastrointestinal enzyme responsible for converting trypsinogen into trypsin and thus aiding digestion. Convergent findings from gene-based lookups in human and mouse databases as well as co-expression network analyses of small intestinal RNA-seq data (GTEx) implicated TMPRSS15 in the regulation of intestinal nutrient absorption, including ions like sodium and potassium, which may extend to lithium. LIMITATIONS: Although the findings from this study indicated that TMPRSS15 was the most likely effector gene at the ConLi+Gen lithium response locus, the evidence was circumstantial. Thus, the conclusions from this study need to be validated in appropriately designed wet-lab studies. CONCLUSIONS: The findings from this study are consistent with a model whereby TMPRSS15 impacts the efficacy of lithium treatment in patients with bipolar disorder by modulating intestinal lithium absorption.


Subject(s)
Bipolar Disorder , Computer Simulation , Intestinal Absorption , Serine Endopeptidases , Bipolar Disorder/drug therapy , Bipolar Disorder/genetics , Bipolar Disorder/metabolism , Humans , Intestinal Absorption/drug effects , Serine Endopeptidases/genetics , Serine Endopeptidases/metabolism , Mice , Animals , Membrane Proteins/genetics , Membrane Proteins/metabolism , Lithium/therapeutic use , Lithium/pharmacology , Antimanic Agents/pharmacology , Antimanic Agents/therapeutic use , Genome-Wide Association Study , Lithium Compounds/pharmacology , Lithium Compounds/therapeutic use , Lithium Compounds/pharmacokinetics
2.
Cancer Med ; 13(4): e7051, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38457211

ABSTRACT

BACKGROUND: Ovarian cancer (OC) is commonly diagnosed among older women who have comorbidities. This hypothesis-free phenome-wide association study (PheWAS) aimed to identify comorbidities associated with OC, as well as traits that share a genetic architecture with OC. METHODS: We used data from 181,203 white British female UK Biobank participants and analysed OC and OC subtype-specific genetic risk scores (OC-GRS) for an association with 889 diseases and 43 other traits. We conducted PheWAS and colocalization analyses for individual variants to identify evidence for shared genetic architecture. RESULTS: The OC-GRS was associated with 10 diseases, and the clear cell OC-GRS was associated with five diseases at the FDR threshold (p = 5.6 × 10-4 ). Mendelian randomizaiton analysis (MR) provided robust evidence for the association of OC with higher risk of "secondary malignant neoplasm of digestive systems" (OR 1.64, 95% CI 1.33, 2.02), "ascites" (1.48, 95% CI 1.17, 1.86), "chronic airway obstruction" (1.17, 95% CI 1.07, 1.29), and "abnormal findings on examination of the lung" (1.51, 95% CI 1.22, 1.87). Analyses of lung spirometry measures provided further support for compromised respiratory function. PheWAS on individual OC variants identified five genetic variants associated with other diseases, and seven variants associated with biomarkers (all, p ≤ 4.5 × 10-8 ). Colocalization analysis identified rs4449583 (from TERT locus) as the shared causal variant for OC and seborrheic keratosis. CONCLUSIONS: OC is associated with digestive and respiratory comorbidities. Several variants affecting OC risk were associated with other diseases and biomarkers, with this study identifying a novel genetic locus shared between OC and skin conditions.


Subject(s)
Genome-Wide Association Study , Ovarian Neoplasms , Humans , Female , Aged , Comorbidity , Biomarkers , Phenotype , Ovarian Neoplasms/epidemiology , Ovarian Neoplasms/genetics , Polymorphism, Single Nucleotide , Mendelian Randomization Analysis
3.
Biol Psychiatry ; 2024 Feb 22.
Article in English | MEDLINE | ID: mdl-38401803

ABSTRACT

BACKGROUND: Bipolar disorder (BPD) is a debilitating mood disorder with an unclear etiology. A better understanding of the underlying pathophysiological mechanisms will help to identify novel targets for improved treatment options and prevention strategies. In this metabolome-wide Mendelian randomization study, we screened for metabolites that may have a causal role in BPD. METHODS: We tested a total of 913 circulating metabolite exposures assessed in 14,296 Europeans using a mass spectrometry-based platform. For the BPD outcome, we used summary data from the largest and most recent genome-wide association study reported to date, including 41,917 BPD cases. RESULTS: We identified 33 metabolites associated with BPD (padjusted < 5.48 × 10-5). Most of them were lipids, including arachidonic acid (ß = -0.154, SE = 0.023, p = 3.30 × 10-11), a polyunsaturated omega-6 fatty acid, along with several complex lipids containing either an arachidonic or a linoleic fatty acid side chain. These associations did not extend to other closely related psychiatric disorders like schizophrenia or depression, although they may be involved in the regulation of lithium response. These lipid associations were driven by genetic variants within the FADS1/2/3 gene cluster, which is a robust BPD risk locus encoding a family of fatty acid desaturase enzymes that are responsible for catalyzing the conversion of linoleic acid into arachidonic acid. Statistical colocalization analyses indicated that 27 of the 33 metabolites shared the same genetic etiology with BPD at the FADS1/2/3 cluster, demonstrating that our findings are not confounded by linkage disequilibrium. CONCLUSIONS: Overall, our findings support the notion that arachidonic acid and other polyunsaturated fatty acids may represent potential targets for BPD.

5.
Nat Immunol ; 24(9): 1540-1551, 2023 09.
Article in English | MEDLINE | ID: mdl-37563310

ABSTRACT

Circulating proteins have important functions in inflammation and a broad range of diseases. To identify genetic influences on inflammation-related proteins, we conducted a genome-wide protein quantitative trait locus (pQTL) study of 91 plasma proteins measured using the Olink Target platform in 14,824 participants. We identified 180 pQTLs (59 cis, 121 trans). Integration of pQTL data with eQTL and disease genome-wide association studies provided insight into pathogenesis, implicating lymphotoxin-α in multiple sclerosis. Using Mendelian randomization (MR) to assess causality in disease etiology, we identified both shared and distinct effects of specific proteins across immune-mediated diseases, including directionally discordant effects of CD40 on risk of rheumatoid arthritis versus multiple sclerosis and inflammatory bowel disease. MR implicated CXCL5 in the etiology of ulcerative colitis (UC) and we show elevated gut CXCL5 transcript expression in patients with UC. These results identify targets of existing drugs and provide a powerful resource to facilitate future drug target prioritization.


Subject(s)
Colitis, Ulcerative , Inflammatory Bowel Diseases , Multiple Sclerosis , Humans , Genome-Wide Association Study , Inflammatory Bowel Diseases/genetics , Quantitative Trait Loci , Colitis, Ulcerative/drug therapy , Colitis, Ulcerative/genetics , Inflammation/genetics , Multiple Sclerosis/genetics , Polymorphism, Single Nucleotide
6.
Eur Neuropsychopharmacol ; 69: 26-46, 2023 04.
Article in English | MEDLINE | ID: mdl-36706689

ABSTRACT

To study mental illness and health, in the past researchers have often broken down their complexity into individual subsystems (e.g., genomics, transcriptomics, proteomics, clinical data) and explored the components independently. Technological advancements and decreasing costs of high throughput sequencing has led to an unprecedented increase in data generation. Furthermore, over the years it has become increasingly clear that these subsystems do not act in isolation but instead interact with each other to drive mental illness and health. Consequently, individual subsystems are now analysed jointly to promote a holistic understanding of the underlying biological complexity of health and disease. Complementing the increasing data availability, current research is geared towards developing novel methods that can efficiently combine the information rich multi-omics data to discover biologically meaningful biomarkers for diagnosis, treatment, and prognosis. However, clinical translation of the research is still challenging. In this review, we summarise conventional and state-of-the-art statistical and machine learning approaches for discovery of biomarker, diagnosis, as well as outcome and treatment response prediction through integrating multi-omics and clinical data. In addition, we describe the role of biological model systems and in silico multi-omics model designs in clinical translation of psychiatric research from bench to bedside. Finally, we discuss the current challenges and explore the application of multi-omics integration in future psychiatric research. The review provides a structured overview and latest updates in the field of multi-omics in psychiatry.


Subject(s)
Mental Disorders , Multiomics , Humans , Genomics , Proteomics/methods , Machine Learning , Mental Disorders/diagnosis , Mental Disorders/genetics , Mental Disorders/therapy
8.
Nat Commun ; 13(1): 1222, 2022 03 09.
Article in English | MEDLINE | ID: mdl-35264566

ABSTRACT

Many individual genetic risk loci have been associated with multiple common human diseases. However, the molecular basis of this pleiotropy often remains unclear. We present an integrative approach to reveal the molecular mechanism underlying the PROCR locus, associated with lower coronary artery disease (CAD) risk but higher venous thromboembolism (VTE) risk. We identify PROCR-p.Ser219Gly as the likely causal variant at the locus and protein C as a causal factor. Using genetic analyses, human recall-by-genotype and in vitro experimentation, we demonstrate that PROCR-219Gly increases plasma levels of (activated) protein C through endothelial protein C receptor (EPCR) ectodomain shedding in endothelial cells, attenuating leukocyte-endothelial cell adhesion and vascular inflammation. We also associate PROCR-219Gly with an increased pro-thrombotic state via coagulation factor VII, a ligand of EPCR. Our study, which links PROCR-219Gly to CAD through anti-inflammatory mechanisms and to VTE through pro-thrombotic mechanisms, provides a framework to reveal the mechanisms underlying similar cross-phenotype associations.


Subject(s)
Thrombosis , Venous Thromboembolism , Antigens, CD/genetics , Crosses, Genetic , Endothelial Cells/metabolism , Endothelial Protein C Receptor/genetics , Humans , Protein C/metabolism , Receptors, Cell Surface/genetics , Thrombosis/genetics , Venous Thromboembolism/genetics
9.
Eur Neuropsychopharmacol ; 55: 112-157, 2022 02.
Article in English | MEDLINE | ID: mdl-35016057

ABSTRACT

Variation in the expression level and activity of genes involved in drug disposition and action in tissues of pharmacological importance have been increasingly investigated in patients treated with psychotropic drugs. Findings are promising, but reliable predictive biomarkers of response have yet to be identified. Here we conducted a PRISMA-compliant systematic search of PubMed, Scopus and PsycInfo up to 12 September 2020 for studies investigating RNA expression levels in cells or biofluids from patients with major depressive disorder, schizophrenia or bipolar disorder characterized for response to psychotropic drugs (antidepressants, antipsychotics or mood stabilizers) or adverse effects. Among 5497 retrieved studies, 123 (63 on antidepressants, 33 on antipsychotics and 27 on mood stabilizers) met inclusion criteria. Studies were either focused on mRNAs (n = 96), microRNAs (n = 19) or long non-coding RNAs (n = 1), with only a minority investigating both mRNAs and microRNAs levels (n = 7). The most replicated results include genes playing a role in inflammation (antidepressants), neurotransmission (antidepressants and antipsychotics) or mitochondrial function (mood stabilizers). Compared to those investigating response to antidepressants, studies focused on antipsychotics or mood stabilizers more often showed lower sample size and lacked replication. Strengths and limitations of available studies are presented and discussed in light of the specific designs, methodology and clinical characterization of included patients for transcriptomic compared to DNA-based studies. Finally, future directions of transcriptomics of psychopharmacological interventions in psychiatric disorders are discussed.


Subject(s)
Antipsychotic Agents , Depressive Disorder, Major , Mental Disorders , MicroRNAs , Anticonvulsants , Antimanic Agents , Antipsychotic Agents/therapeutic use , Biomarkers , Depressive Disorder, Major/drug therapy , Depressive Disorder, Major/genetics , Humans , Mental Disorders/drug therapy , Mental Disorders/genetics , MicroRNAs/genetics
10.
Eur Neuropsychopharmacol ; 54: 41-53, 2022 01.
Article in English | MEDLINE | ID: mdl-34743061

ABSTRACT

Pharmacotranscriptomics is a still very new field of research that has just begun to flourish and promises to enable target discovery, inform biomarker and evaluate drug efficacy beyond pharmacogenomics. The aim of this review is to provide a critical overview of the biological foundations of transcriptomics, methodological approaches to transcriptomic studies, and their advantages and limitations. We present the different RNA species (rRNAs, tRNAs, mtRNAs, snRNAs, scRNAs, mRNAs, ncRNAs, LINE and SINE transcripts, circular RNAs, piRNAs, miRNAs, snoRNAs) and their potential for pharmacotranscriptomic studies as markers to predict treatment response in neurological and psychiatric disorders. We also review the accessible sources of RNA in patients peripheral blood cells (including platelets), plasma, microvesicles, exosomes, apoptotic bodies, and how those affect the integrity and relative abundances of RNAs and reflect the situation in the Central Nervous System (CNS). Finally, we discuss the suitability and indications of different techniques, such as microarrays and RNA-sequencing (RNA-Seq) techniques to understand gene expression differences or to reveal variation in expression levels of coding and non-coding genes. We conclude with some recommendations for future directions, e.g., gaps of knowledge and particular RNAs/tissues that have been overlooked.


Subject(s)
MicroRNAs , Biomarkers , Humans , MicroRNAs/genetics , RNA, Small Interfering , Sequence Analysis, RNA , Transcriptome
11.
BMC Med ; 19(1): 232, 2021 09 10.
Article in English | MEDLINE | ID: mdl-34503513

ABSTRACT

BACKGROUND: Genetic, lifestyle, and environmental factors can lead to perturbations in circulating lipid levels and increase the risk of cardiovascular and metabolic diseases. However, how changes in individual lipid species contribute to disease risk is often unclear. Moreover, little is known about the role of lipids on cardiovascular disease in Pakistan, a population historically underrepresented in cardiovascular studies. METHODS: We characterised the genetic architecture of the human blood lipidome in 5662 hospital controls from the Pakistan Risk of Myocardial Infarction Study (PROMIS) and 13,814 healthy British blood donors from the INTERVAL study. We applied a candidate causal gene prioritisation tool to link the genetic variants associated with each lipid to the most likely causal genes, and Gaussian Graphical Modelling network analysis to identify and illustrate relationships between lipids and genetic loci. RESULTS: We identified 253 genetic associations with 181 lipids measured using direct infusion high-resolution mass spectrometry in PROMIS, and 502 genetic associations with 244 lipids in INTERVAL. Our analyses revealed new biological insights at genetic loci associated with cardiometabolic diseases, including novel lipid associations at the LPL, MBOAT7, LIPC, APOE-C1-C2-C4, SGPP1, and SPTLC3 loci. CONCLUSIONS: Our findings, generated using a distinctive lipidomics platform in an understudied South Asian population, strengthen and expand the knowledge base of the genetic determinants of lipids and their association with cardiometabolic disease-related loci.


Subject(s)
Genome-Wide Association Study , Myocardial Infarction , Asian People/genetics , Genetic Predisposition to Disease , Humans , Lipids , Polymorphism, Single Nucleotide , White People
12.
J Affect Disord ; 267: 42-48, 2020 04 15.
Article in English | MEDLINE | ID: mdl-32063571

ABSTRACT

BACKGROUND: At present, no predictive markers for Major Depressive Disorder (MDD) exist. The search for such markers has been challenging due to clinical and molecular heterogeneity of MDD, the lack of statistical power in studies and suboptimal statistical tools applied to multidimensional data. Machine learning is a powerful approach to mitigate some of these limitations. METHODS: We aimed to identify the predictive markers of recurrent MDD in the elderly using peripheral whole blood from the Sydney Memory and Aging Study (SMAS) (N = 521, aged over 65) and adopting machine learning methodology on transcriptome data. Fuzzy Forests is a Random Forests-based classification algorithm that takes advantage of the co-expression network structure between genes; it allows to alleviate the problem of p >> n via reducing the dimensionality of transcriptomic feature space. RESULTS: By adopting Fuzzy Forests on transcriptome data, we found that the downregulated TFRC (transferrin receptor) can predict recurrent MDD with an accuracy of 63%. LIMITATIONS: Although we corrected our data for several important confounders, we were not able to account for the comorbidities and medication taken, which may be numerous in the elderly and might have affected the levels of gene transcription. CONCLUSIONS: We found that downregulated TFRC is predictive of recurrent MDD, which is consistent with the previous literature, indicating the role of the innate immune system in depression. This study is the first to successfully apply Fuzzy Forests methodology on psychiatric condition, opening, therefore, a methodological avenue that can lead to clinically useful predictive markers of complex traits.


Subject(s)
Depressive Disorder, Major , Aged , Biomarkers , Depressive Disorder, Major/genetics , Humans , Machine Learning , Receptors, Transferrin , Recurrence
13.
J Proteome Res ; 18(6): 2397-2410, 2019 06 07.
Article in English | MEDLINE | ID: mdl-30887811

ABSTRACT

Direct infusion high-resolution mass spectrometry (DIHRMS) is a novel, high-throughput approach to rapidly and accurately profile hundreds of lipids in human serum without prior chromatography, facilitating in-depth lipid phenotyping for large epidemiological studies to reveal the detailed associations of individual lipids with coronary heart disease (CHD) risk factors. Intact lipid profiling by DIHRMS was performed on 5662 serum samples from healthy participants in the Pakistan Risk of Myocardial Infarction Study (PROMIS). We developed a novel semi-targeted peak-picking algorithm to detect mass-to-charge ratios in positive and negative ionization modes. We analyzed lipid partial correlations, assessed the association of lipid principal components with established CHD risk factors and genetic variants, and examined differences between lipids for a common genetic polymorphism. The DIHRMS method provided information on 360 lipids (including fatty acyls, glycerolipids, glycerophospholipids, sphingolipids, and sterol lipids), with a median coefficient of variation of 11.6% (range: 5.4-51.9). The lipids were highly correlated and exhibited a range of associations with clinical chemistry biomarkers and lifestyle factors. This platform can provide many novel insights into the effects of physiology and lifestyle on lipid metabolism, genetic determinants of lipids, and the relationship between individual lipids and CHD risk factors.


Subject(s)
Biomarkers/blood , Coronary Disease/genetics , Lipids/genetics , Coronary Disease/blood , Coronary Disease/pathology , Female , Genetic Variation , Glycerophospholipids/blood , Humans , Lipid Metabolism/genetics , Lipids/blood , Male , Middle Aged , Risk Factors , Sphingolipids/blood , Sphingolipids/genetics , Sterols/blood
14.
Nucleic Acids Res ; 47(1): e3, 2019 01 10.
Article in English | MEDLINE | ID: mdl-30239796

ABSTRACT

Quantitative trait locus (QTL) mapping of molecular phenotypes such as metabolites, lipids and proteins through genome-wide association studies represents a powerful means of highlighting molecular mechanisms relevant to human diseases. However, a major challenge of this approach is to identify the causal gene(s) at the observed QTLs. Here, we present a framework for the 'Prioritization of candidate causal Genes at Molecular QTLs' (ProGeM), which incorporates biological domain-specific annotation data alongside genome annotation data from multiple repositories. We assessed the performance of ProGeM using a reference set of 227 previously reported and extensively curated metabolite QTLs. For 98% of these loci, the expert-curated gene was one of the candidate causal genes prioritized by ProGeM. Benchmarking analyses revealed that 69% of the causal candidates were nearest to the sentinel variant at the investigated molecular QTLs, indicating that genomic proximity is the most reliable indicator of 'true positive' causal genes. In contrast, cis-gene expression QTL data led to three false positive candidate causal gene assignments for every one true positive assignment. We provide evidence that these conclusions also apply to other molecular phenotypes, suggesting that ProGeM is a powerful and versatile tool for annotating molecular QTLs. ProGeM is freely available via GitHub.


Subject(s)
Genetic Association Studies , Genome-Wide Association Study/methods , Molecular Sequence Annotation/methods , Quantitative Trait Loci/genetics , Chromosome Mapping/methods , Humans , Lipids/genetics , Phenotype , Proteins/genetics
15.
J Psychiatr Res ; 107: 19-27, 2018 12.
Article in English | MEDLINE | ID: mdl-30312913

ABSTRACT

The molecular factors involved in the pathophysiology of major depressive disorder (MDD) remain poorly understood. One approach to examine the molecular basis of MDD is co-expression network analysis, which facilitates the examination of complex interactions between expression levels of individual genes and how they influence biological pathways affected in MDD. Here, we applied an unsupervised gene-network based approach to a prospective experimental design using microarray genome-wide gene expression from the peripheral whole blood of older adults. We utilised the Sydney Memory and Ageing Study (sMAS, N = 521) and the Older Australian Twins Study (OATS, N = 186) as discovery and replication cohorts, respectively. We constructed networks using Weighted Gene Co-expression Network Analysis (WGCNA), and correlated identified modules with four subtypes of depression: single episode, current, recurrent, and lifetime MDD. Four modules of highly co-expressed genes were associated with recurrent MDD (N = 27) in our discovery cohort (FDR<0.2), with no significant findings for a single episode, current or lifetime MDD. Functional characterisation of these modules revealed a complex interplay between dysregulated protein processing in the endoplasmic reticulum (ER), and innate and adaptive immune response signalling, with possible involvement of pathogen-related pathways. We were underpowered to replicate findings at the network level in an independent cohort (OATS), however; we found a significant overlap for 9 individual genes with similar co-expression and dysregulation patterns associated with recurrent MDD in both cohorts. Overall, our findings support other reports on dysregulated immune response and protein processing in the ER in MDD and provide novel insights into the pathophysiology of depression.


Subject(s)
Adaptive Immunity/immunology , Depressive Disorder, Major , Endoplasmic Reticulum/metabolism , Gene Expression Profiling , Gene Expression , Gene Regulatory Networks , Immunity, Innate/immunology , Aged , Aged, 80 and over , Depressive Disorder, Major/genetics , Depressive Disorder, Major/immunology , Depressive Disorder, Major/metabolism , Down-Regulation , Endoplasmic Reticulum/genetics , Female , Humans , Male , Recurrence
16.
Transl Psychiatry ; 8(1): 183, 2018 09 05.
Article in English | MEDLINE | ID: mdl-30185780

ABSTRACT

Lithium is the first-line treatment for bipolar affective disorder (BPAD) but two-thirds of patients respond only partially or not at all. The reasons for this high variability in lithium response are not well understood. Transcriptome-wide profiling, which tests the interface between genes and the environment, represents a viable means of exploring the molecular mechanisms underlying lithium response variability. Thus, in the present study we performed co-expression network analyses of whole-blood-derived RNA-seq data from n = 50 lithium-treated BPAD patients. Lithium response was assessed using the well-validated ALDA scale, which we used to define both a continuous and a dichotomous measure. We identified a nominally significant correlation between a co-expression module comprising 46 genes and lithium response represented as a continuous (i.e., scale ranging 0-10) phenotype (cor = -0.299, p = 0.035). Forty-three of these 46 genes had reduced mRNA expression levels in better lithium responders relative to poorer responders, and the central regulators of this module were all mitochondrially-encoded (MT-ND1, MT-ATP6, MT-CYB). Accordingly, enrichment analyses indicated that genes involved in mitochondrial functioning were heavily over-represented in this module, specifically highlighting the electron transport chain (ETC) and oxidative phosphorylation (OXPHOS) as affected processes. Disrupted ETC and OXPHOS activity have previously been implicated in the pathophysiology of BPAD. Our data adds to previous evidence suggesting that a normalisation of these processes could be central to lithium's mode of action, and could underlie a favourable therapeutic response.


Subject(s)
Bipolar Disorder/genetics , Electron Transport , Gene Regulatory Networks , Lithium/therapeutic use , Mitochondria/genetics , Adult , Aged , Aged, 80 and over , Antimanic Agents/therapeutic use , Bipolar Disorder/drug therapy , Female , Gene Expression , Gene Expression Profiling , Humans , Male , Middle Aged , Mitochondria/metabolism , Phenotype , Treatment Outcome , Young Adult
17.
Nature ; 558(7708): 73-79, 2018 06.
Article in English | MEDLINE | ID: mdl-29875488

ABSTRACT

Although plasma proteins have important roles in biological processes and are the direct targets of many drugs, the genetic factors that control inter-individual variation in plasma protein levels are not well understood. Here we characterize the genetic architecture of the human plasma proteome in healthy blood donors from the INTERVAL study. We identify 1,927 genetic associations with 1,478 proteins, a fourfold increase on existing knowledge, including trans associations for 1,104 proteins. To understand the consequences of perturbations in plasma protein levels, we apply an integrated approach that links genetic variation with biological pathway, disease, and drug databases. We show that protein quantitative trait loci overlap with gene expression quantitative trait loci, as well as with disease-associated loci, and find evidence that protein biomarkers have causal roles in disease using Mendelian randomization analysis. By linking genetic factors to diseases via specific proteins, our analyses highlight potential therapeutic targets, opportunities for matching existing drugs with new disease indications, and potential safety concerns for drugs under development.


Subject(s)
Blood Proteins/genetics , Genomics , Proteome/genetics , Female , Hepatocyte Growth Factor/genetics , Humans , Inflammatory Bowel Diseases/genetics , Male , Mutation, Missense/genetics , Myeloblastin/genetics , Positive Regulatory Domain I-Binding Factor 1/genetics , Proto-Oncogene Proteins/genetics , Quantitative Trait Loci/genetics , Vasculitis/genetics , alpha 1-Antitrypsin/genetics
18.
Cardiovasc Res ; 114(9): 1258-1270, 2018 07 15.
Article in English | MEDLINE | ID: mdl-29800275

ABSTRACT

In the last decade, over 175 genetic loci have robustly been associated to levels of major circulating blood lipids. Most loci are specific to one or two lipids, whereas some (SUGP1, ZPR1, TRIB1, HERPUD1, and FADS1) are associated to all. While exposing the polygenic architecture of circulating lipids and the underpinnings of dyslipidaemia, these genome-wide association studies (GWAS) have provided further evidence of the critical role that lipids play in coronary heart disease (CHD) risk, as indicated by the 2.7-fold enrichment for macrophage gene expression in atherosclerotic plaques and the association of 25 loci (such as PCSK9, APOB, ABCG5-G8, KCNK5, LPL, HMGCR, NPC1L1, CETP, TRIB1, ABO, PMAIP1-MC4R, and LDLR) with CHD. These GWAS also confirmed known and commonly used therapeutic targets, including HMGCR (statins), PCSK9 (antibodies), and NPC1L1 (ezetimibe). As we head into the post-GWAS era, we offer suggestions for how to move forward beyond genetic risk loci, towards refining the biology behind the associations and identifying causal genes and therapeutic targets. Deep phenotyping through lipidomics and metabolomics will refine and increase the resolution to find causal and druggable targets, and studies aimed at demonstrating gene transcriptional and regulatory effects of lipid associated loci will further aid in identifying these targets. Thus, we argue the need for deeply phenotyped, large genetic association studies to reduce costs and failures and increase the efficiency of the drug discovery pipeline. We conjecture that in the next decade a paradigm shift will tip the balance towards a data-driven approach to therapeutic target development and the application of precision medicine where human genomics takes centre stage.


Subject(s)
Cardiovascular Diseases/genetics , Drug Discovery/methods , Dyslipidemias/genetics , Genetic Markers , Genetic Variation , Genome-Wide Association Study , Lipid Metabolism/genetics , Cardiovascular Diseases/blood , Cardiovascular Diseases/diagnosis , Cardiovascular Diseases/prevention & control , Delta-5 Fatty Acid Desaturase , Dyslipidemias/blood , Dyslipidemias/diagnosis , Dyslipidemias/drug therapy , Genetic Predisposition to Disease , Humans , Hypolipidemic Agents/therapeutic use , Lipid Metabolism/drug effects , Lipids/blood , Metabolomics , Molecular Targeted Therapy , Phenotype
19.
J Proteomics ; 188: 63-70, 2018 09 30.
Article in English | MEDLINE | ID: mdl-29474866

ABSTRACT

In order to accelerate the understanding of pathophysiological mechanisms and clinical biomarker discovery and in psychiatry, approaches that integrate multiple -omics platforms are needed. We introduce a workflow that investigates a narrowly defined psychiatric phenotype, makes use of the potent and cost-effective discovery technology of gene expression microarrays, applies Weighted Gene Co-Expression Network Analysis (WGCNA) to better capture complex and polygenic traits, and finally explores gene expression findings on the proteomic level using targeted mass-spectrometry (MS) technologies. To illustrate the effectiveness of the workflow, we present a proteomic analysis of peripheral blood plasma from patient's remitted major depressive disorder (MDD) who experience ongoing cognitive deficits. We show that co-expression patterns previous detected on the transcript level could be replicated for plasma proteins, as could the module eigengene correlation with cognitive performance. Further, we demonstrate that functional analysis of multi-omics data has the potential to point to cellular mechanisms and candidate biomarkers for cognitive dysfunction in MDD, implicating cell cycle regulation by cyclin D3 (CCND3), regulation of protein processing in the endoplasmatic reticulum by Thioredoxin domain-containing protein 5 (TXND5), and modulation of inflammatory cytokines by Tripartite Motif Containing 26 (TRI26). SIGNIFICANCE: This paper discusses how data from multiple -omics platforms can be integrated to accelerate biomarker discovery in psychiatry. Using the phenotype of cognitive impairment in remitted major depressive disorder (MDD) as an example, we show that the application of a systems biology approach - weighted gene co-expression network analysis (WGCNA) - in the discovery phase, and targeted proteomic follow-up of results, provides a structured avenue towards uncovering novel candidate markers and pathways for personalized clinical psychiatry.


Subject(s)
Cognitive Dysfunction/psychology , Data Aggregation , Depressive Disorder, Major/psychology , Proteomics/methods , Workflow , Data Mining/methods , Gene Expression , Humans , Mass Spectrometry , Precision Medicine , Psychiatry/methods
20.
Eur Neuropsychopharmacol ; 27(6): 568-588, 2017 06.
Article in English | MEDLINE | ID: mdl-26718789

ABSTRACT

Cognitive impairment, or decline, is not only a feature of Alzheimer׳s disease and other forms of dementia but also normal ageing. Abundant evidence from epidemiological studies points towards perturbed inflammatory mechanisms in aged individuals, though the cause-effect nature of this apparent relationship is difficult to establish. Genetic association studies focusing on polymorphism in and around inflammatory genes represent a viable approach to establish whether inflammatory mechanisms might play a causal role in cognitive decline, whilst also enabling the identification of specific genes potentially influencing specific cognitive facets. Thus, here we provide a review of published genetic association studies investigating inflammatory genes in the context of cognitive decline in elderly, non-demented, samples. Numerous candidate gene association studies have been performed to date, focusing almost exclusively on genes encoding major cytokines. Some of these studies report significant cognitive domain-specific associations implicating Interleukin 1ß (IL1ß) (rs16944), Tumour Necrosis Factor α (TNFα) (rs1800629) and C-reactive protein (CRP) in various domains of cognitive function. However, the majority of these studies are lacking in statistical power and have other methodological limitations, suggesting some of them may have yielded false positive results. Genome-wide association studies have implicated less direct and less obvious regulators of inflammatory processes (i.e., PDE7A, HS3ST4, SPOCK3), indicating that a shift away from the major cytokine-encoding genes in future studies will be important. Furthermore, better cohesion across studies with regards to the cognitive test batteries administered to participants along with the continued application of longitudinal designs will be vital.


Subject(s)
Cognitive Dysfunction/blood , Cognitive Dysfunction/genetics , Dementia , Genetic Association Studies/methods , Inflammation Mediators/blood , Polymorphism, Single Nucleotide/genetics , Aged , Cognitive Dysfunction/diagnosis , Genome-Wide Association Study/methods , Humans , Prospective Studies
SELECTION OF CITATIONS
SEARCH DETAIL
...