Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 145
Filter
2.
Nat Commun ; 12(1): 6486, 2021 11 10.
Article in English | MEDLINE | ID: mdl-34759311

ABSTRACT

The hepatokine follistatin is elevated in patients with type 2 diabetes (T2D) and promotes hyperglycemia in mice. Here we explore the relationship of plasma follistatin levels with incident T2D and mechanisms involved. Adjusted hazard ratio (HR) per standard deviation (SD) increase in follistatin levels for T2D is 1.24 (CI: 1.04-1.47, p < 0.05) during 19-year follow-up (n = 4060, Sweden); and 1.31 (CI: 1.09-1.58, p < 0.01) during 4-year follow-up (n = 883, Finland). High circulating follistatin associates with adipose tissue insulin resistance and non-alcoholic fatty liver disease (n = 210, Germany). In human adipocytes, follistatin dose-dependently increases free fatty acid release. In genome-wide association study (GWAS), variation in the glucokinase regulatory protein gene (GCKR) associates with plasma follistatin levels (n = 4239, Sweden; n = 885, UK, Italy and Sweden) and GCKR regulates follistatin secretion in hepatocytes in vitro. Our findings suggest that GCKR regulates follistatin secretion and that elevated circulating follistatin associates with an increased risk of T2D by inducing adipose tissue insulin resistance.


Subject(s)
Diabetes Mellitus, Type 2/blood , Follistatin/blood , Adaptor Proteins, Signal Transducing/blood , Adipose Tissue/metabolism , Genome-Wide Association Study , Hepatocytes/metabolism , Humans , Insulin Resistance/physiology , Middle Aged , Non-alcoholic Fatty Liver Disease/blood
3.
J Clin Endocrinol Metab ; 106(2): e982-e989, 2021 01 23.
Article in English | MEDLINE | ID: mdl-33277657

ABSTRACT

OBJECTIVE: Elevated plasma glutamate levels are associated with an increased risk of cardiovascular disease (CVD). Because plasma glutamate levels are also strongly associated with visceral adiposity, nonalcoholic fatty liver disease, insulin resistance, and high circulating levels of branched-chain amino acids (BCAAs), it is unknown to what extent elevated circulating glutamate is an independent marker of an increased risk of atherosclerosis. METHODS: Plasma levels of glutamate and BCAAs were measured in 102 individuals who were precisely phenotyped for body fat mass and distribution (magnetic resonance [MR] tomography), liver fat content (1H-MR spectroscopy), insulin sensitivity (oral glucose tolerance test and hyperinsulinemic, euglycemic clamp [N = 57]), and carotid intima media thickness (cIMT). RESULTS: Plasma glutamate levels, adjusted for age, sex, body fat mass, and visceral fat mass, correlated positively with liver fat content and cIMT (all std ß ≥ .22, all P ≤ .023) and negatively with insulin sensitivity (std ß ≤ -.31, P ≤ .002). Glutamate levels also were associated with cIMT, independently of additional adjustment for liver fat content, insulin sensitivity and BCAAs levels (std ß ≥ .24, P ≤ .02). Furthermore, an independent positive association of glutamate and interleukin-6 (IL-6) levels was observed (N = 50; std ß = .39, P = .03). Although glutamate, adjusted for age, sex, body fat mass, and visceral fat mass, also correlated positively with cIMT in this subgroup (std ß = .31, P = .02), after additional adjustment for the parameters liver fat content, insulin sensitivity, BCAAs, or IL-6 levels, adjustment for IL-6 most strongly attenuated this relationship (std ß = .28, P = .05). CONCLUSIONS: Elevated plasma glutamate levels are associated with increased cIMT, independently of established CVD risk factors, and this relationship may in part be explained by IL-6-associated subclinical inflammation.


Subject(s)
Adiposity , Atherosclerosis/diagnosis , Biomarkers/blood , Carotid Intima-Media Thickness , Glutamic Acid/blood , Insulin Resistance , Intra-Abdominal Fat , Atherosclerosis/blood , Cross-Sectional Studies , Female , Follow-Up Studies , Humans , Male , Middle Aged , Prognosis
4.
R Soc Open Sci ; 7(9): 200701, 2020 Sep.
Article in English | MEDLINE | ID: mdl-33047031

ABSTRACT

Astrocytes provide neurons with structural support and energy in form of lactate, modulate synaptic transmission, are insulin sensitive and act as gatekeeper for water, ions, glutamate and second messengers. Furthermore, astrocytes are important for glucose sensing, possess neuroendocrine functions and also play an important role in cerebral lipid metabolism. To answer the question, if there is a connection between lipid metabolism and insulin action in human astrocytes, we investigated if storage of ectopic lipids in human astrocytes has an impact on insulin signalling in those cells. Human astrocytes were cultured in the presence of a lipid emulsion, consisting of fatty acids and triglycerides, to induce ectopic lipid storage. After several days, cells were stimulated with insulin and gene expression profiling was performed. In addition, phosphorylation of Akt as well as glycogen synthesis and cell proliferation was assessed. Ectopic lipid storage was detected in human astrocytes after lipid exposure and lipid storage was persistent even when the fat emulsion was removed from the cell culture medium. Chronic exposure to lipids induced profound changes in the gene expression profile, whereby some genes showed a reversible gene expression profile upon removal of fat, and some did not. This included FOXO-dependent expression patterns. Furthermore, insulin-induced phosphorylation of Akt was diminished and also insulin-induced glycogen synthesis and proliferation was impaired in lipid-laden astrocytes. Chronic lipid exposure induces lipid storage in human astrocytes accompanied by insulin resistance. Analyses of the gene expression pattern indicated the potential of a partially reversible gene expression profile. Targeting astrocytic insulin resistance by reducing ectopic lipid load might represent a promising treatment target for insulin resistance of the brain in obesity, diabetes and neurodegeneration.

5.
Sci Rep ; 10(1): 12407, 2020 07 24.
Article in English | MEDLINE | ID: mdl-32709986

ABSTRACT

Among obese subjects, metabolically healthy (MHO) and unhealthy obese (MUHO) subjects exist, the latter being characterized by whole-body insulin resistance, hepatic steatosis, and subclinical inflammation. Insulin resistance and obesity are known to associate with alterations in mitochondrial density, morphology, and function. Therefore, we assessed mitochondrial function in human subcutaneous preadipocytes as well as in differentiated adipocytes derived from well-matched donors. Primary subcutaneous preadipocytes from 4 insulin-resistant (MUHO) versus 4 insulin-sensitive (MHO), non-diabetic, morbidly obese Caucasians (BMI > 40 kg/m2), matched for sex, age, BMI, and percentage of body fat, were differentiated in vitro to adipocytes. Real-time cellular respiration was measured using an XF24 Extracellular Flux Analyzer (Seahorse). Lipolysis was stimulated by forskolin (FSK) treatment. Mitochondrial respiration was fourfold higher in adipocytes versus preadipocytes (p = 1.6*10-9). In adipocytes, a negative correlation of mitochondrial respiration with donors' insulin sensitivity was shown (p = 0.0008). Correspondingly, in adipocytes of MUHO subjects, an increased basal respiration (p = 0.002), higher proton leak (p = 0.04), elevated ATP production (p = 0.01), increased maximal respiration (p = 0.02), and higher spare respiratory capacity (p = 0.03) were found, compared to MHO. After stimulation with FSK, the differences in ATP production, maximal respiration and spare respiratory capacity were blunted. The differences in mitochondrial respiration between MUHO/MHO were not due to altered mitochondrial content, fuel switch, or lipid metabolism. Thus, despite the insulin resistance of MUHO, we could clearly show an elevated mitochondrial respiration of MUHO adipocytes. We suggest that the higher mitochondrial respiration reflects a compensatory mechanism to cope with insulin resistance and its consequences. Preserving this state of compensation might be an attractive goal for preventing or delaying the transition from insulin resistance to overt diabetes.


Subject(s)
Adipocytes/pathology , Health , Mitochondria/metabolism , Obesity/metabolism , Obesity/pathology , Adult , Body Mass Index , Cell Respiration , Female , Glycolysis , Humans , Male , Middle Aged , Phenotype
6.
Exp Clin Endocrinol Diabetes ; 128(11): 752-770, 2020 Nov.
Article in English | MEDLINE | ID: mdl-31108554

ABSTRACT

Human fibroblast growth factor 21 (FGF21) is primarily produced and secreted by the liver as a hepatokine. This hormone circulates to its target tissues (e. g., brain, adipose tissue), which requires two components, one of the preferred FGF receptor isoforms (FGFR1c and FGFR3c) and the co-factor beta-Klotho (KLB) to trigger downstream signaling pathways. Although targeting FGF21 signaling in humans by analogues and receptor agonists results in beneficial effects, e. g., improvements in plasma lipids and decreased body weight, it failed to recapitulate the improvements in glucose handling shown for many mouse models. FGF21's role and metabolic effects in mice and its therapeutic potential have extensively been reviewed elsewhere. In this review we focus on circulating FGF21 levels in humans and their associations with disease and clinical parameters, focusing primarily on obesity and obesity-associated diseases such as type-2 diabetes. We provide a comprehensive overview on human circulating FGF21 levels under normal physiology and metabolic disease. We discuss the emerging field of inactivating FGF21 in human blood by fibroblast activation protein (FAP) and its potential clinical implications.


Subject(s)
Diabetes Mellitus, Type 2/blood , Endopeptidases/metabolism , Fibroblast Growth Factors/blood , Membrane Proteins/metabolism , Metabolic Diseases/blood , Obesity/blood , Biomarkers/blood , Diabetes Mellitus, Type 2/diagnosis , Humans , Metabolic Diseases/diagnosis , Obesity/diagnosis
7.
J Clin Endocrinol Metab ; 105(1)2020 01 01.
Article in English | MEDLINE | ID: mdl-31512724

ABSTRACT

CONTEXT: Adenosine monophosphate (AMP)-activated protein kinase (AMPK) is a heterotrimeric enzyme and central regulator of cellular energy metabolism. The impact of single nucleotide polymorphisms (SNPs) in all 7 AMPK subunit genes on adiposity, glucose metabolism, and lipid metabolism has not yet been systematically studied. OBJECTIVE: To analyze the associations of common SNPs in all AMPK genes, and of different scores thereof, with adiposity, insulin sensitivity, insulin secretion, blood glucose, low-density lipoprotein (LDL) cholesterol, high-density lipoprotein (HDL) cholesterol, total cholesterol, and triglycerides. STUDY DESIGN AND METHODS: A cohort of 2789 nondiabetic participants from the Tübingen Family study of type 2 diabetes, metabolically characterized by oral glucose tolerance test and genotyped by genome-wide SNP array, was analyzed. RESULTS: We identified 6 largely nonoverlapping SNP sets across 4 AMPK genes (PRKAA1, PRKAA2, PRKAG2, PRKAG3) associated with adiposity, insulin sensitivity, insulin secretion, blood glucose, total/LDL cholesterol, or HDL cholesterol, respectively. A genetic score of body-fat-increasing alleles revealed per-allele effect sizes on body mass index (BMI) of +0.22 kg/m2 (P = 2.3 × 10-7), insulin sensitivity of -0.12 × 1019 L2/mol2 (P = 9.9 × 10-6) and 2-hour blood glucose of +0.02 mmol/L (P = 0.0048). Similar effects on blood glucose were observed with scores of insulin-sensitivity-reducing, insulin-secretion-reducing and glucose-raising alleles, respectively. A genetic cholesterol score increased total and LDL cholesterol by 1.17 mg/dL per allele (P = 0.0002 and P = 3.2 × 10-5, respectively), and a genetic HDL score decreased HDL cholesterol by 0.32 mg/dL per allele (P = 9.1 × 10-6). CONCLUSIONS: We describe largely nonoverlapping genetic determinants in AMPK genes for diabetes-/atherosclerosis-related traits, which reflect the metabolic pathways controlled by the enzyme. Formation of trait-specific genetic scores revealed additivity of allele effects, with body-fat-raising alleles reaching a marked effect size. (J Clin Endocrinol Metab XX: 0-0, 2019).


Subject(s)
AMP-Activated Protein Kinases/genetics , Adiposity , Cholesterol/metabolism , Diabetes Mellitus, Type 2/epidemiology , Glucose/metabolism , Lipids/analysis , Polymorphism, Single Nucleotide , Adult , Biomarkers/analysis , Cross-Sectional Studies , Diabetes Mellitus, Type 2/genetics , Diabetes Mellitus, Type 2/metabolism , Female , Follow-Up Studies , Germany/epidemiology , Humans , Insulin/metabolism , Insulin Resistance , Male , Prevalence , Prognosis
8.
Stem Cell Res ; 39: 101531, 2019 08.
Article in English | MEDLINE | ID: mdl-31419739

ABSTRACT

Induced pluripotent stem cells (iPSCs) can be used to generate different somatic cell types in vitro, including insulin-producing pancreatic ß-cells. Here, we have generated iPSCs from a healthy male individual using an episomal reprogramming method. The resulting iPSCs are integration-free, have a normal karyotype and are pluripotent in vitro and in vivo. Furthermore, we show that this iPSC line can be differentiated into pancreatic lineage cells. Taken together, this iPSC line will be useful to test differentiation protocols towards ß-cell as well as other cell types and will also serve as a control for drug development and disease modelling studies.


Subject(s)
Induced Pluripotent Stem Cells/cytology , Cell Differentiation/genetics , Cell Differentiation/physiology , Cell Lineage , Cells, Cultured , Cellular Reprogramming/genetics , Cellular Reprogramming/physiology , Humans , Male
9.
Bioinformatics ; 35(22): 4834-4836, 2019 11 01.
Article in English | MEDLINE | ID: mdl-31228198

ABSTRACT

SUMMARY: Despite their fundamental role in various biological processes, the analysis of small RNA sequencing data remains a challenging task. Major obstacles arise when short RNA sequences map to multiple locations in the genome, align to regions that are not annotated or underwent post-transcriptional changes which hamper accurate mapping. In order to tackle these issues, we present a novel profiling strategy that circumvents the need for read mapping to a reference genome by utilizing the actual read sequences to determine expression intensities. After differential expression analysis of individual sequence counts, significant sequences are annotated against user defined feature databases and clustered by sequence similarity. This strategy enables a more comprehensive and concise representation of small RNA populations without any data loss or data distortion. AVAILABILITY AND IMPLEMENTATION: Code and documentation of our R package at http://ibis.helmholtz-muenchen.de/deus/. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Subject(s)
Software , Gene Expression Profiling , Genome , RNA , Sequence Analysis, RNA
10.
Mol Metab ; 25: 1-10, 2019 07.
Article in English | MEDLINE | ID: mdl-31113756

ABSTRACT

BACKGROUND: It is now generally accepted that obesity is a major risk factor for type 2 diabetes mellitus (T2DM). Hepatic steatosis in particular, as well as visceral and ectopic fat accumulation within tissues, is associated with the development of the disease. We recently presented the first study on isolated human pancreatic adipocytes and their interaction with islets [Gerst, F., Wagner, R., Kaiser, G., Panse, M., Heni, M., Machann, J., et al., 2017. Metabolic crosstalk between fatty pancreas and fatty liver: effects on local inflammation and insulin secretion. Diabetologia 60(11):2240-2251.]. The results indicate that the function of adipocytes depends on the overall metabolic status in humans which, in turn, differentially affects islet hormone release. SCOPE OF REVIEW: This review summarizes former and recent studies on factors derived from adipocytes and their effects on insulin-secreting ß-cells, with particular emphasis on the human pancreas. The adipocyte secretome is discussed with a special focus on its influence on insulin secretion, ß-cell survival and apoptotic ß-cell death. MAJOR CONCLUSIONS: Human pancreatic adipocytes store lipids and release adipokines, metabolites, and pro-inflammatory molecules in response to the overall metabolic, humoral, and neuronal status. The differentially regulated adipocyte secretome impacts on endocrine function, i.e., insulin secretion, ß-cell survival and death which interferes with glycemic control. This review attempts to explain why the extent of pancreatic steatosis is associated with reduced insulin secretion in some studies but not in others.


Subject(s)
Adipocytes/metabolism , Insulin-Secreting Cells/metabolism , Pancreas/metabolism , Adipocytes, White/metabolism , Adipokines/metabolism , Animals , Blood Glucose/metabolism , Cell Differentiation , Cytokines/metabolism , Diabetes Mellitus, Type 2/metabolism , Fatty Liver/metabolism , Humans , Inflammation/metabolism , Obesity/metabolism , Paracrine Communication , Risk Factors
11.
Mol Metab ; 24: 80-97, 2019 06.
Article in English | MEDLINE | ID: mdl-30930126

ABSTRACT

OBJECTIVE: Hundreds of missense mutations in the coding region of PDX1 exist; however, if these mutations predispose to diabetes mellitus is unknown. METHODS: In this study, we screened a large cohort of subjects with increased risk for diabetes and identified two subjects with impaired glucose tolerance carrying common, heterozygous, missense mutations in the PDX1 coding region leading to single amino acid exchanges (P33T, C18R) in its transactivation domain. We generated iPSCs from patients with heterozygous PDX1P33T/+, PDX1C18R/+ mutations and engineered isogenic cell lines carrying homozygous PDX1P33T/P33T, PDX1C18R/C18R mutations and a heterozygous PDX1 loss-of-function mutation (PDX1+/-). RESULTS: Using an in vitro ß-cell differentiation protocol, we demonstrated that both, heterozygous PDX1P33T/+, PDX1C18R/+ and homozygous PDX1P33T/P33T, PDX1C18R/C18R mutations impair ß-cell differentiation and function. Furthermore, PDX1+/- and PDX1P33T/P33T mutations reduced differentiation efficiency of pancreatic progenitors (PPs), due to downregulation of PDX1-bound genes, including transcription factors MNX1 and PDX1 as well as insulin resistance gene CES1. Additionally, both PDX1P33T/+ and PDX1P33T/P33T mutations in PPs reduced the expression of PDX1-bound genes including the long-noncoding RNA, MEG3 and the imprinted gene NNAT, both involved in insulin synthesis and secretion. CONCLUSIONS: Our results reveal mechanistic details of how common coding mutations in PDX1 impair human pancreatic endocrine lineage formation and ß-cell function and contribute to the predisposition for diabetes.


Subject(s)
Cell Differentiation , Diabetes Mellitus/genetics , Homeodomain Proteins/genetics , Insulin Secretion , Insulin-Secreting Cells/metabolism , Point Mutation , Trans-Activators/genetics , Adult , Carboxylic Ester Hydrolases/genetics , Carboxylic Ester Hydrolases/metabolism , Cell Line , Female , Homeodomain Proteins/chemistry , Homeodomain Proteins/metabolism , Humans , Insulin-Secreting Cells/cytology , Loss of Function Mutation , Male , Protein Domains , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Trans-Activators/chemistry , Trans-Activators/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism
12.
Article in English | MEDLINE | ID: mdl-30846969

ABSTRACT

Introduction: Genetic polymorphisms in TCF7L2 are the strongest common risk variants for type 2 diabetes mellitus (T2D). We and others have shown that genetic variation in TCF7L2 and WFS1 affect incretin-stimulated insulin secretion. A recent genome-wide association study discovered genetic variants associated with incretin levels. We hypothesized that these SNPs (single nucleotide polymorphisms) interact with the well-known TCF7L2 variant rs7903146 on insulin secretion due to their incretin altering effect. Methods: In this retrospective analysis, we used data from the cross-sectional TUEF-cohort (n = 2929) and a hyperglycemic clamp study using additional GLP-1 infusion at the end of the clamp (n = 76). Insulin secretion was measured by evaluating OGTT-derived indexes of insulin secretion and insulin/C-peptide levels during clamp. We genotyped rs7903146 in TCF7L2, rs10010131 in WFS1, and six SNPs associated with GLP-1 and GIP levels. Results: One of the six incretin-associated SNPs, rs17681684 in GLP2R, exhibited significant SNP x SNP interactions with rs7903146 in TCF7L2 on insulin secretion (p = 0.0024) after correction for multiple testing. Three further SNP's showed nominally significant interactions (p < 0.05). In the hyperglycemic clamp study, rs7903146 in TCF7L2 also interacted with rs17681684 on AUC C-peptide during the GLP-1 stimulation phase, thereby replicating the above finding. Conclusion: The findings exemplify the role of SNP x SNP interactions in the genetics of type 2 diabetes mellitus and corroborate the existence of clinically relevant differences in incretin sensitivity.

13.
Diabetes ; 68(3): 502-514, 2019 03.
Article in English | MEDLINE | ID: mdl-30626608

ABSTRACT

The ADAMTS9 rs4607103 C allele is one of the few gene variants proposed to increase the risk of type 2 diabetes through an impairment of insulin sensitivity. We show that the variant is associated with increased expression of the secreted ADAMTS9 and decreased insulin sensitivity and signaling in human skeletal muscle. In line with this, mice lacking Adamts9 selectively in skeletal muscle have improved insulin sensitivity. The molecular link between ADAMTS9 and insulin signaling was characterized further in a model where ADAMTS9 was overexpressed in skeletal muscle. This selective overexpression resulted in decreased insulin signaling presumably mediated through alterations of the integrin ß1 signaling pathway and disruption of the intracellular cytoskeletal organization. Furthermore, this led to impaired mitochondrial function in mouse muscle-an observation found to be of translational character because humans carrying the ADAMTS9 risk allele have decreased expression of mitochondrial markers. Finally, we found that the link between ADAMTS9 overexpression and impaired insulin signaling could be due to accumulation of harmful lipid intermediates. Our findings contribute to the understanding of the molecular mechanisms underlying insulin resistance and type 2 diabetes and point to inhibition of ADAMTS9 as a potential novel mode of treating insulin resistance.


Subject(s)
ADAMTS9 Protein/metabolism , Extracellular Matrix/metabolism , Insulin/metabolism , Muscle, Skeletal/metabolism , ADAMTS9 Protein/genetics , Alleles , Animals , Humans , Immunohistochemistry , Insulin Resistance/genetics , Insulin Resistance/physiology , Integrin beta1/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Knockout
14.
J Clin Endocrinol Metab ; 104(4): 1090-1098, 2019 04 01.
Article in English | MEDLINE | ID: mdl-30649496

ABSTRACT

CONTEXT: Primary dysregulation of adipose tissue lipolysis caused by genetic variation and independent of insulin resistance could explain unhealthy body fat distribution and its metabolic consequences. OBJECTIVE: To analyze common single nucleotide polymorphisms (SNPs) in 48 lipolysis-, but not insulin-signaling-related genes, to form polygenic risk scores of lipolysis-associated SNPs, and to investigate their effects on body fat distribution, glycemia, insulin sensitivity, insulin secretion, and proinsulin conversion. STUDY DESIGN, PARTICIPANTS, AND METHODS: SNP array, anthropometric, and metabolic data were available from up to 2789 participants without diabetes of the Tübingen Family study of type 2 diabetes characterized by oral glucose tolerance tests. In a subgroup (n = 942), magnetic resonance measurements of body fat stores were available. RESULTS: We identified insulin-sensitivity-independent nominal associations (P < 0.05) of SNPs in 10 genes with plasma free fatty acids (FFAs), in 7 genes with plasma glycerol and in 6 genes with both, plasma FFAs and glycerol. A score formed of the latter SNPs (in ADCY4, CIDEA, GNAS, PDE8B, PRKAA1, PRKAG2) was associated with plasma FFA and glycerol measurements (1.4*10-9 ≤ P ≤ 1.2*10-5), visceral adipose tissue mass (P = 0.0326), and proinsulin conversion (P ≤ 0.0272). The more lipolysis-increasing alleles a subject had, the lower was the visceral fat mass and the lower the proinsulin conversion. CONCLUSIONS: We found evidence for a genetic basis of adipose tissue lipolysis resulting from common SNPs in CIDEA, AMP-activated protein kinase subunits, and cAMP signaling components. A genetic score of lipolysis-increasing alleles determined lower visceral fat mass and lower proinsulin conversion.


Subject(s)
Intra-Abdominal Fat/diagnostic imaging , Lipolysis/genetics , Metabolic Networks and Pathways/genetics , Proinsulin/metabolism , AMP-Activated Protein Kinases/metabolism , Adult , Alleles , Apoptosis Regulatory Proteins/metabolism , Cyclic AMP/metabolism , Fatty Acids, Nonesterified/blood , Fatty Acids, Nonesterified/metabolism , Female , Germany , Glucose Tolerance Test , Glycerol/blood , Glycerol/metabolism , Humans , Intra-Abdominal Fat/metabolism , Magnetic Resonance Imaging , Male , Metabolomics , Middle Aged , Polymorphism, Single Nucleotide , Risk Assessment
15.
Mol Metab ; 20: 28-37, 2019 02.
Article in English | MEDLINE | ID: mdl-30528280

ABSTRACT

BACKGROUND/OBJECTIVES: Although the prevalence of obesity and its associated metabolic disorders is increasing in both sexes, the clinical phenotype differs between men and women, highlighting the need for individual treatment options. Mitochondrial dysfunction in various tissues, including white adipose tissue (WAT), has been accepted as a key factor for obesity-associated comorbidities such as diabetes. Given higher expression of mitochondria-related genes in the WAT of women, we hypothesized that gender differences in the bioenergetic profile of white (pre-) adipocytes from obese (age- and BMI-matched) donors must exist. SUBJECTS/METHODS: Using Seahorse technology, we measured oxygen consumption rates (OCR) and extracellular acidification rates (ECAR) of (pre-)adipocytes from male (n = 10) and female (n = 10) deeply-phenotyped obese donors under hypo-, normo- and hyperglycemic (0, 5 and 25 mM glucose) and insulin-stimulated conditions. Additionally, expression levels (mRNA/protein) of mitochondria-related genes (e.g. UQCRC2) and glycolytic enzymes (e.g. PKM2) were determined. RESULTS: Dissecting cellular OCR and ECAR into different functional modules revealed that preadipocytes from female donors show significantly higher mitochondrial to glycolytic activity (higher OCR/ECAR ratio, p = 0.036), which is supported by a higher ratio of UQCRC2 to PKM2 mRNA levels (p = 0.021). However, no major gender differences are detectable in in vitro differentiated adipocytes (e.g. OCR/ECAR, p = 0.248). Importantly, glucose and insulin suppress mitochondrial activity (i.e. ATP-linked respiration) significantly only in preadipocytes of female donors, reflecting their trends towards higher insulin sensitivity. CONCLUSIONS: Collectively, we show that preadipocytes, but not in vitro differentiated adipocytes, represent a model system to reveal gender differences with clinical importance for metabolic disease status. In particular preadipocytes of females maintain enhanced mitochondrial flexibility, as demonstrated by pronounced responses of ATP-linked respiration to glucose.


Subject(s)
Adipocytes, White/metabolism , Energy Metabolism , Glucose/metabolism , Insulin/metabolism , Obesity/metabolism , Adult , Carrier Proteins/metabolism , Cells, Cultured , Electron Transport Complex III/metabolism , Female , Humans , Male , Membrane Proteins/metabolism , Middle Aged , Oxygen Consumption , Sex Factors , Thyroid Hormones/metabolism , Thyroid Hormone-Binding Proteins
16.
Diabetes ; 68(1): 207-219, 2019 01.
Article in English | MEDLINE | ID: mdl-30352878

ABSTRACT

Recent genetic studies have identified alleles associated with opposite effects on adiposity and risk of type 2 diabetes. We aimed to identify more of these variants and test the hypothesis that such favorable adiposity alleles are associated with higher subcutaneous fat and lower ectopic fat. We combined MRI data with genome-wide association studies of body fat percentage (%) and metabolic traits. We report 14 alleles, including 7 newly characterized alleles, associated with higher adiposity but a favorable metabolic profile. Consistent with previous studies, individuals carrying more favorable adiposity alleles had higher body fat % and higher BMI but lower risk of type 2 diabetes, heart disease, and hypertension. These individuals also had higher subcutaneous fat but lower liver fat and a lower visceral-to-subcutaneous adipose tissue ratio. Individual alleles associated with higher body fat % but lower liver fat and lower risk of type 2 diabetes included those in PPARG, GRB14, and IRS1, whereas the allele in ANKRD55 was paradoxically associated with higher visceral fat but lower risk of type 2 diabetes. Most identified favorable adiposity alleles are associated with higher subcutaneous and lower liver fat, a mechanism consistent with the beneficial effects of storing excess triglycerides in metabolically low-risk depots.


Subject(s)
Diabetes Mellitus, Type 2/diagnostic imaging , Diabetes Mellitus, Type 2/genetics , Heart Diseases/diagnostic imaging , Heart Diseases/genetics , Magnetic Resonance Imaging/methods , Adiposity/genetics , Adiposity/physiology , Adult , Aged , Diabetes Mellitus, Type 2/physiopathology , Female , Genome-Wide Association Study , Heart Diseases/physiopathology , Humans , Hypertension/diagnostic imaging , Hypertension/genetics , Hypertension/physiopathology , Intra-Abdominal Fat/metabolism , Male , Middle Aged , Obesity/diagnostic imaging , Obesity/genetics , Obesity/physiopathology , Waist-Hip Ratio
17.
J Clin Endocrinol Metab ; 103(12): 4373-4383, 2018 12 01.
Article in English | MEDLINE | ID: mdl-30202879

ABSTRACT

Context: Reduced ß-cell mass, impaired islet function, and dedifferentiation are considered causal to development of hyperglycemia and type 2 diabetes. In human cohort studies, changes of islet cell-specific expression patterns have been associated with diabetes but not directly with in vivo insulin secretion. Objective: This study investigates alterations of islet gene expression and corresponding gene variants in the context of in vivo glycemic traits from the same patients. Methods: Fasting blood was collected before surgery, and pancreatic tissue was frozen after resection from 18 patients undergoing pancreatectomy. Islet tissue was isolated by laser capture microdissection. Islet transcriptome was analyzed using microarray and quantitative RT-PCR. Proteins were examined by immunohistochemistry and western blotting. The association of gene variants with insulin secretion was investigated with oral glucose tolerance test (OGTT)-derived insulin secretion measured in a large cohort of subjects at increased risk of type 2 diabetes and with hyperglycemic clamp in a subset. Results: Differential gene expression between islets from normoglycemic and hyperglycemic patients was prominent for the glycolytic enzyme ALDOB and the obesity-associated gene FAIM2. The mRNA levels of both genes correlated negatively with insulin secretion and positively with HbA1c. Islets of hyperglycemic patients displayed increased ALDOB immunoreactivity in insulin-positive cells, whereas α- and δ-cells were negative. Exposure of isolated islets to hyperglycemia augmented ALDOB expression. The minor allele of the ALDOB variant rs550915 associated with significantly higher levels of C-peptide and insulin during OGTT and hyperglycemic clamp, respectively. Conclusion: Our analyses suggest that increased ALDOB expression in human islets is associated with lower insulin secretion.


Subject(s)
Diabetes Mellitus, Type 2/metabolism , Fructose-Bisphosphate Aldolase/metabolism , Hyperglycemia/metabolism , Insulin Secretion/physiology , Islets of Langerhans/metabolism , Blood Glucose , Cells, Cultured , Cross-Sectional Studies , Diabetes Mellitus, Type 2/blood , Diabetes Mellitus, Type 2/genetics , Fructose-Bisphosphate Aldolase/genetics , Gene Expression Profiling , Glucose Clamp Technique , Glucose Tolerance Test , Glycated Hemoglobin/analysis , Healthy Volunteers , Humans , Hyperglycemia/blood , Hyperglycemia/genetics , Insulin/blood , Laser Capture Microdissection , Pancreatectomy , Pancreatic Neoplasms/surgery , Polymorphism, Single Nucleotide , Primary Cell Culture
18.
Mol Metab ; 16: 191-202, 2018 10.
Article in English | MEDLINE | ID: mdl-30093356

ABSTRACT

OBJECTIVE: The metabolic role of d-serine, a non-proteinogenic NMDA receptor co-agonist, is poorly understood. Conversely, inhibition of pancreatic NMDA receptors as well as loss of the d-serine producing enzyme serine racemase have been shown to modulate insulin secretion. Thus, we aim to study the impact of chronic and acute d-serine supplementation on insulin secretion and other parameters of glucose homeostasis. METHODS: We apply MALDI FT-ICR mass spectrometry imaging, NMR based metabolomics, 16s rRNA gene sequencing of gut microbiota in combination with a detailed physiological characterization to unravel the metabolic action of d-serine in mice acutely and chronically treated with 1% d-serine in drinking water in combination with either chow or high fat diet feeding. Moreover, we identify SNPs in SRR, the enzyme converting L-to d-serine and two subunits of the NMDA receptor to associate with insulin secretion in humans, based on the analysis of 2760 non-diabetic Caucasian individuals. RESULTS: We show that chronic elevation of d-serine results in reduced high fat diet intake. In addition, d-serine leads to diet-independent hyperglycemia due to blunted insulin secretion from pancreatic beta cells. Inhibition of alpha 2-adrenergic receptors rapidly restores glycemia and glucose tolerance in d-serine supplemented mice. Moreover, we show that single nucleotide polymorphisms (SNPs) in SRR as well as in individual NMDAR subunits are associated with insulin secretion in humans. CONCLUSION: Thus, we identify a novel role of d-serine in regulating systemic glucose metabolism through modulating insulin secretion.


Subject(s)
Insulin Secretion/drug effects , Serine/pharmacology , Animals , Blood Glucose/metabolism , Body Weight , Diet, High-Fat , Dietary Supplements , Energy Metabolism , Glucose/metabolism , Glucose Intolerance/metabolism , Glucose Tolerance Test , Homeostasis , Hyperglycemia/metabolism , Insulin/metabolism , Insulin Resistance/physiology , Insulin-Secreting Cells/drug effects , Insulin-Secreting Cells/metabolism , Liver/metabolism , Male , Mice , Mice, Inbred C57BL , Obesity/metabolism , Serine/metabolism
19.
J Clin Endocrinol Metab ; 103(9): 3299-3309, 2018 09 01.
Article in English | MEDLINE | ID: mdl-29931171

ABSTRACT

Purpose: Recently, alterations in maternal lipid metabolism were associated with gestational diabetes mellitus (GDM). However, detailed plasma lipid profiles and their relevance for placental and fetal metabolism are currently not understood. Methods: Maternal and placental lipid profiles were characterized in women with GDM and women with normal glucose tolerance (NGT). Inflammatory gene expression was compared in placentas and primary term trophoblasts between the groups. In addition, trophoblasts were stimulated with nonesterified fatty acids (NEFAs), and effects on gene expression were quantified. Finally, placental macrophage content and cord blood concentrations of inflammatory parameters and NEFAs were compared between women with GDM and women with NGT with similar body mass index (BMI). Results: Palmitate and stearate levels were elevated in both maternal plasma and placental tissue of women with GDM. Placental GDM-associated elevations of IL6, IL8, and TLR2 expression were reflected in trophoblasts derived from women with GDM. Stimulation of primary trophoblasts with palmitate led to increased mRNA expression and protein release of the cytokine IL6 and the chemokine IL8. In line with this, elevated amounts of CD68-positive cells were quantified in the placental tissue of women with GDM. No GDM-associated elevations in a range of inflammatory parameters and NEFAs in cord blood of NGT vs GDM neonates was found. Conclusions: GDM, independently of BMI, altered maternal plasma NEFAs and the placental lipid profile. GDM was associated with trophoblast and whole-placenta lipoinflammation; however, this was not accompanied by elevated concentrations of inflammatory cytokines or NEFAs in neonatal cord blood.


Subject(s)
Diabetes, Gestational/metabolism , Placenta/metabolism , Adult , Anthropometry/methods , Antigens, CD/analysis , Antigens, Differentiation, Myelomonocytic/analysis , Body Mass Index , Cells, Cultured , Cytokines/blood , Diabetes, Gestational/blood , Diabetes, Gestational/pathology , Fatty Acids, Nonesterified/blood , Female , Fetal Blood/metabolism , Gene Expression , Humans , Inflammation Mediators/metabolism , Lipids/analysis , Placenta/pathology , Pregnancy , RNA, Messenger/genetics , Trophoblasts/metabolism
20.
Sci Rep ; 8(1): 7745, 2018 05 17.
Article in English | MEDLINE | ID: mdl-29773828

ABSTRACT

Genetically modified mice models suggest an important role for G-protein-coupled receptor kinase 5 (GRK5) in the pathophysiology of obesity and related disorders. We investigated whether single nucleotide polymorphisms (SNPs) in the gene encoding GRK5 affect cardiometabolic traits in humans. We genotyped 3 common SNPs in intron 1 (rs1980030, rs10466210, rs9325562) and one SNP in intron 3 (rs10886471) of GRK5 in 2332 subjects at risk for type 2 diabetes. Total- and visceral fat mass were measured by magnetic resonance (MR) tomography and liver fat content by 1H-MR spectroscopy. Insulin secretion and sensitivity were estimated during an OGTT and measured during the euglycemic, hyperinsulinemic clamp (n = 498). Carriers of the minor allele of rs10466210 and rs1980030 had higher total- and LDL-cholesterol levels (p = 0.0018 and p = 0.0031, respectively, for rs10466210; p = 0.0035 and p = 0.0081, respectively, for rs1980030), independently of gender, age, BMI and lipid-lowering drugs. The effects of rs10466210 withstood Bonferroni correction. Similar associations were observed with apolipoprotein B levels (p = 0.0034 and p = 0.0122, respectively). Carriers of the minor allele of rs10466210 additionally displayed a trend for higher intima-media thickness of the carotid artery (p = 0.075). GRK5 may represent a novel target for strategies aiming at lowering LDL-cholesterol levels and at modifying cardiovascular risk.


Subject(s)
Cardiovascular Abnormalities/etiology , Carotid Intima-Media Thickness , Cholesterol, LDL/blood , Diabetes Mellitus, Type 2/genetics , G-Protein-Coupled Receptor Kinase 5/genetics , Insulin Resistance , Polymorphism, Single Nucleotide/genetics , Adult , Cardiovascular Abnormalities/metabolism , Cardiovascular Abnormalities/pathology , Diabetes Mellitus, Type 2/complications , Female , Genetic Predisposition to Disease , Genotype , Humans , Insulin/metabolism , Lipids/blood , Male , Middle Aged
SELECTION OF CITATIONS
SEARCH DETAIL