Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 45
Filter
1.
Plant Physiol Biochem ; 208: 108507, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38467083

ABSTRACT

The excess of salts in soils causes stress in most plants, except for some halophytes that can tolerate higher levels of salinity. The excess of Na+ generates an ionic imbalance, reducing the K+ content and altering cellular metabolism, thus impacting in plant growth and development. Additionally, salinity in soil induces water stress due to osmotic effects and increments the production of reactive oxygen species (ROS) that affect the cellular structure, damaging membranes and proteins, and altering the electrochemical potential of H+, which directly affects nutrient absorption by membrane transporters. However, plants possess mechanisms to overcome the toxicity of the sodium ions, such as internalization into the vacuole or exclusion from the cell, synthesis of enzymes or protective compounds against ROS, and the synthesis of metabolites that help to regulate the osmotic potential of plants. Physiologic and molecular mechanisms of salinity tolerance in plants will be addressed in this review. Furthermore, a revision of strategies taken by researchers to confer salt stress tolerance on agriculturally important species are discussed. These strategies include conventional breeding and genetic engineering as transgenesis and genome editing by CRISPR/Cas9.


Subject(s)
Plant Breeding , Salinity , Reactive Oxygen Species , Salt-Tolerant Plants/genetics , Plant Development , Stress, Physiological
2.
Heliyon ; 10(5): e27384, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38486766

ABSTRACT

Environmental oligotrophic bacteria are suspected to be highly relevant carriers of antimicrobial resistance (AMR). However, there is a lack of validated methods for monitoring in the aquatic environment. Since extended-spectrum ß-lactamases (ESBLs) play a particularly important role in the clinical sector, a culturing method based on R2A-medium spiked with different combinations of ß-lactams was applied to quantify ß-lactamase-producing environmental bacteria from surface waters. In German surface water samples (n = 28), oligotrophic bacteria ranging from 4.0 × 103 to 1.7 × 104 CFU per 100 mL were detected on the nutrient-poor medium spiked with 3rd generation cephalosporins and carbapenems. These numbers were 3 log10 higher compared to ESBL-producing Enterobacteriales of clinical relevance from the same water samples. A MALDI-TOF MS identification of the isolates demonstrated, that the method leads to the isolation of environmentally relevant strains with Pseudomonas, Flavobacterium, and Janthinobacterium being predominant ß-lactam resistant genera. Subsequent micro-dilution antibiotic susceptibility tests (Micronaut-S test) confirmed the expression of ß-lactamases. The qPCR analysis of surface waters DNA extracts showed the presence of ß-lactamase genes (blaTEM, blaCMY-2, blaOXA-48, blaVIM-2, blaSHV, and blaNDM-1) at concentrations of 3.7 (±1.2) to 1.0 (±1.9) log10 gene copies per 100 mL. Overall, the results demonstrate a widespread distribution of cephalosporinase and carbapenemase enzymes in oligotrophic environmental bacteria that have to be considered as a reservoir of ARGs and contribute to the spread of antibiotic resistance.

3.
Plants (Basel) ; 12(10)2023 May 09.
Article in English | MEDLINE | ID: mdl-37653842

ABSTRACT

Background: Carotenoids, which are secondary metabolites derived from isoprenoids, play a crucial role in photo-protection and photosynthesis, and act as precursors for abscisic acid, a hormone that plays a significant role in plant abiotic stress responses. The biosynthesis of carotenoids in higher plants initiates with the production of phytoene from two geranylgeranyl pyrophosphate molecules. Phytoene synthase (PSY), an essential catalytic enzyme in the process, regulates this crucial step in the pathway. In Daucus carota L. (carrot), two PSY genes (DcPSY1 and DcPSY2) have been identified but only DcPSY2 expression is induced by ABA. Here we show that the ectopic expression of DcPSY2 in Nicotiana tabacum L. (tobacco) produces in L3 and L6 a significant increase in total carotenoids and chlorophyll a, and a significant increment in phytoene in the T1L6 line. Tobacco transgenic T1L3 and T1L6 lines subjected to chronic NaCl stress showed an increase of between 2 and 3- and 6-fold in survival rate relative to control lines, which correlates directly with an increase in the expression of endogenous carotenogenic and abiotic-related genes, and with ABA levels. Conclusions: These results provide evidence of the functionality of DcPSY2 in conferring salt stress tolerance in transgenic tobacco T1L3 and T1L6 lines.

4.
Int J Hyg Environ Health ; 253: 114241, 2023 08.
Article in English | MEDLINE | ID: mdl-37611533

ABSTRACT

With the advent of molecular biology diagnostics, different quantitative PCR assays have been developed for use in Source Tracking (ST), with none of them showing 100% specificity and sensitivity. Most studies have been conducted at a regional level and mainly in fecal slurry rather than in animal wastewater. The use of a single molecular assay has most often proven to fall short in discriminating with precision the sources of fecal contamination. This work is a multicenter European ST study to compare bacterial and mitochondrial molecular assays and was set to evaluate the efficiency of nine previously described qPCR assays targeting human-, cow/ruminant-, pig-, and poultry-associated fecal contamination. The study was conducted in five European countries with seven fecal indicators and nine ST assays being evaluated in a total of 77 samples. Animal fecal slurry samples and human and non-human wastewater samples were analyzed. Fecal indicators measured by culture and qPCR were generally ubiquitous in the samples. The ST qPCR markers performed at high levels in terms of quantitative sensitivity and specificity demonstrating large geographical application. Sensitivity varied between 73% (PLBif) and 100% for the majority of the tested markers. On the other hand, specificity ranged from 53% (CWMit) and 97% (BacR). Animal-associated ST qPCR markers were generally detected in concentrations greater than those found for the respective human-associated qPCR markers, with mean concentration for the Bacteroides qPCR markers varying between 8.74 and 7.22 log10 GC/10 mL for the pig and human markers, respectively. Bacteroides spp. and mitochondrial DNA qPCR markers generally presented higher Spearman's rank coefficient in the pooled fecal samples tested, particularly the human fecal markers with a coefficient of 0.79. The evaluation of the performance of Bacteroides spp., mitochondrial DNA and Bifidobacterium spp. ST qPCR markers support advanced pollution monitoring of impaired aquatic environments, aiming to elaborate strategies for target-oriented water quality management.


Subject(s)
DNA, Mitochondrial , Wastewater , Cattle , Female , Animals , Swine , Bacteroides/genetics , Biological Assay , Water Quality
5.
Plants (Basel) ; 12(15)2023 Jul 27.
Article in English | MEDLINE | ID: mdl-37570943

ABSTRACT

Plant carotenoids are synthesized and accumulated in plastids through a highly regulated pathway. Lycopene ß-cyclase (LCYB) is a key enzyme involved directly in the synthesis of α-carotene and ß-carotene through the cyclization of trans-lycopene. Daucus carota harbors two LCYB genes, of which DcLCYB2 (annotated as CCS-Like) is mostly expressed in mature storage roots, an organ that accumulates high α-carotene and ß-carotene content. In this work, we determined that DcLCYB2 of the orange Nantes variety presents plastid localization and encodes for a functional LCYB enzyme determined by means of heterologous complementation in Escherichia coli. Also, ectopic expression of DcLCYB2 in tobacco (Nicotiana tabacum) and kiwi (Actinidia deliciosa) plants increases total carotenoid content showing its functional role in plants. In addition, transgenic tobacco T2 homozygous plants showed better performance under chronic salt treatment, while kiwi transgenic calli also presented a higher survival rate under salt treatments than control calli. Our results allow us to propose DcLCYB2 as a prime candidate to engineer carotenoid biofortified crops as well as crops resilient to saline environments.

6.
Sci Total Environ ; 903: 166540, 2023 Dec 10.
Article in English | MEDLINE | ID: mdl-37634730

ABSTRACT

Wastewater-based SARS-CoV-2 epidemiology (WBE) has proven as an excellent tool to monitor pandemic dynamics supporting individual testing strategies. WBE can also be used as an early warning system for monitoring the emergence of novel pathogens or viral variants. However, for a timely transmission of results, sophisticated sample logistics and analytics performed in decentralized laboratories close to the sampling sites are required. Since multiple decentralized laboratories commonly use custom in-house workflows for sample purification and PCR-analysis, comparative quality control of the analytical procedures is essential to report reliable and comparable results. In this study, we performed an interlaboratory comparison at laboratories specialized for PCR and high-throughput-sequencing (HTS)-based WBE analysis. Frozen reserve samples from low COVID-19 incidence periods were spiked with different inactivated authentic SARS-CoV-2 variants in graduated concentrations and ratios. Samples were sent to the participating laboratories for analysis using laboratory specific methods and the reported viral genome copy numbers and the detection of viral variants were compared with the expected values. All PCR-laboratories reported SARS-CoV-2 genome copy equivalents (GCE) for all spiked samples with a mean intra- and inter-laboratory variability of 19 % and 104 %, respectively, largely reproducing the spike-in scheme. PCR-based genotyping was, in dependence of the underlying PCR-assay performance, able to predict the relative amount of variant specific substitutions even in samples with low spike-in amount. The identification of variants by HTS, however, required >100 copies/ml wastewater and had limited predictive value when analyzing at a genome coverage below 60 %. This interlaboratory test demonstrates that despite highly heterogeneous isolation and analysis procedures, overall SARS-CoV-2 GCE and mutations were determined accurately. Hence, decentralized SARS-CoV-2 wastewater monitoring is feasible to generate comparable analysis results. However, since not all assays detected the correct variant, prior evaluation of PCR and sequencing workflows as well as sustained quality control such as interlaboratory comparisons are mandatory for correct variant detection.

8.
Int J Mol Sci ; 23(20)2022 Oct 12.
Article in English | MEDLINE | ID: mdl-36293018

ABSTRACT

ALFIN-like transcription factors (ALs) are involved in several physiological processes such as seed germination, root development and abiotic stress responses in plants. In carrot (Daucus carota), the expression of DcPSY2, a gene encoding phytoene synthase required for carotenoid biosynthesis, is induced after salt and abscisic acid (ABA) treatment. Interestingly, the DcPSY2 promoter contains multiple ALFIN response elements. By in silico analysis, we identified two putative genes with the molecular characteristics of ALs, DcAL4 and DcAL7, in the carrot transcriptome. These genes encode nuclear proteins that transactivate reporter genes and bind to the carrot DcPSY2 promoter in yeast. The expression of both genes is induced in carrot under salt stress, especially DcAL4 which also responds to ABA treatment. Transgenic homozygous T3 Arabidopsis thaliana lines that stably express DcAL4 and DcAL7 show a higher survival rate with respect to control plants after chronic salt stress. Of note is that DcAL4 lines present a better performance in salt treatments, correlating with the expression level of DcAL4, AtPSY and AtDXR and an increase in carotenoid and chlorophyll contents. Likewise, DcAL4 transgenic kiwi (Actinidia deliciosa) lines show increased carotenoid and chlorophyll content and higher survival rate compared to control plants after chronic salt treatment. Therefore, DcAL4 and DcAL7 encode functional transcription factors, while ectopic expression of DcAL4 provides increased tolerance to salinity in Arabidopsis and Kiwi plants.


Subject(s)
Actinidia , Arabidopsis , Daucus carota , Arabidopsis/metabolism , Abscisic Acid/pharmacology , Abscisic Acid/metabolism , Daucus carota/genetics , Daucus carota/metabolism , Actinidia/genetics , Transcription Factors/genetics , Transcription Factors/metabolism , Gene Expression Regulation, Plant , Plants, Genetically Modified/metabolism , Salt Stress/genetics , Stress, Physiological/genetics , Carotenoids/metabolism , Chlorophyll/metabolism , Nuclear Proteins/genetics , Plant Proteins/genetics , Plant Proteins/metabolism
9.
Methods Enzymol ; 671: 273-283, 2022.
Article in English | MEDLINE | ID: mdl-35878981

ABSTRACT

Carrot (Daucus carota) is a useful plant model for the study of carotenoid biosynthesis, specifically in roots which are enriched in carotenoids. Carrot genome and transcriptome sequences, complemented by optimized methods for carrot transformation, contribute to a comprehensive toolbox for exploring pathway regulation. To expand the repertoire of tools available for the study of D. carota, we present protocols for the isolation of protoplasts from D. carota cell suspension cultures and polyethylene glycol (PEG)-mediated transformation. To obtain carrot protoplasts, in vitro somatic embryogenesis from epicotyls is induced. The somatic embryogenic tissue that develops is transferred to liquid medium to obtain a suspension of cells which are homogenized and incubated with cell-wall degrading enzymes to release protoplasts. For transfection, protoplasts are incubated with a plasmid encoding a protein of interest prior to examination of protein localization by light microscopy. As an example, we demonstrate nuclear localization of a carrot transcription factor, DcAREB3.


Subject(s)
Daucus carota , Carotenoids/metabolism , Daucus carota/genetics , Daucus carota/metabolism , Plant Roots/genetics , Plant Roots/metabolism , Protoplasts/metabolism
10.
Methods Enzymol ; 671: 471-488, 2022.
Article in English | MEDLINE | ID: mdl-35878990

ABSTRACT

Carotenoids represent a large class of isoprenoid pigments found in nature. These compounds are synthesized in non-photosynthetic and photosynthetic organisms and have a multitude of functions related to photosynthesis, protection against biotic and abiotic stress, and signaling in development and with other organisms. Thus, manipulation of carotenoid content can influence plant growth, development, and stress tolerance. In mammals, provitamin A and nonprovitamin A carotenoids are important for health. Mammals must obtain carotenoids in the diet, because of the inability to produce carotenoids de novo. Due to these important functions, carotenoids have been a major target for crop biofortification in the last decades. The plant kingdom is a great source of genetic material that encodes a wide range of variant enzymes for carotenoid synthesis. Thus, efficient systems to validate the functionality of structural genes are required. For this purpose, heterologous complementation in E. coli is a widely used in vivo platform to test functionality of carotenogenic enzymes of different origins such as bacteria, yeast, algae and plants. Here we describe the methodology for applying the E. coli heterologous platform to determine functionality of carotenoid enzymes, using the examples of phytoene synthase (PSY) and lycopene ß-cyclase (LCYB) from apple and carrot.


Subject(s)
Carotenoids , Escherichia coli , Animals , Bacteria/metabolism , Carotenoids/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism , Mammals/metabolism , Photosynthesis , Plants/metabolism , Terpenes
11.
Plant Physiol ; 189(3): 1450-1465, 2022 06 27.
Article in English | MEDLINE | ID: mdl-35266544

ABSTRACT

Light stimulates carotenoid synthesis in plants during photomorphogenesis through the expression of PHYTOENE SYNTHASE (PSY), a key gene in carotenoid biosynthesis. The orange carrot (Daucus carota) synthesizes and accumulates high amounts of carotenoids in the taproot that grows underground. Contrary to other organs, light impairs carrot taproot development and represses the expression of carotenogenic genes, such as DcPSY1 and DcPSY2, reducing carotenoid accumulation. By means of RNA sequencing, in a previous analysis, we observed that carrot PHYTOCHROME RAPIDLY REGULATED1 (DcPAR1) is more highly expressed in the underground grown taproot compared with those grown in light. PAR1 is a transcriptional cofactor with a negative role in shade avoidance syndrome regulation in Arabidopsis (Arabidopsis thaliana) through the dimerization with PHYTOCHROME-INTERACTING FACTORs (PIFs), allowing a moderate synthesis of carotenoids. Here, we show that overexpressing AtPAR1 in carrot increases carotenoid production in taproots grown underground as well as DcPSY1 expression. The high expression of AtPAR1 and DcPAR1 led us to hypothesize a functional role of DcPAR1 that was verified through in vivo binding to AtPIF7 and overexpression in Arabidopsis, where AtPSY expression and carotenoid accumulation increased together with a photomorphogenic phenotype. Finally, DcPAR1 antisense carrot lines presented a dramatic decrease in carotenoid levels and in relative expression of key carotenogenic genes as well as impaired taproot development. These results suggest that DcPAR1 is a key factor for secondary root development and carotenoid synthesis in carrot taproot grown underground.


Subject(s)
Arabidopsis , Daucus carota , Phytochrome , Arabidopsis/genetics , Arabidopsis/metabolism , Carotenoids/metabolism , Daucus carota/genetics , Daucus carota/metabolism , Gene Expression Regulation, Plant , Phytochrome/metabolism
12.
Water Res ; 213: 118145, 2022 Apr 15.
Article in English | MEDLINE | ID: mdl-35151087

ABSTRACT

Identification and location of contamination sources is crucial for water resource protection - especially in karst aquifers which provide 25% of the world´s population with water but are highly vulnerable to contamination. Transport-based source tracking is proposed and verified here as a complementary approach to microbial and chemical source tracking in karst aquifers for identifying and locating such sources of contamination and for avoiding ambiguities that might arise from using one method alone. The transport distance is inversely modelled from contaminant breakthrough curves (BTC), based on analytical solutions of the 1D two-region non-equilibrium advection dispersion equation using GNU Octave. Besides the BTC, the model requires reliable estimates of transport velocity and input time. The model is shown to be robust, allows scripted based, automated 2D sensitivity analyses (interplay of two parameters), and can be favourable when distributed numerical models are inappropriate due to insufficient data. Sensitivity analyses illustrate that the model is highly sensitive to the input time, the flow velocity, and the fraction of the mobile fluid region. A conclusive verification approach was performed by applying the method to synthetic data, tracer tests, and event-based field data. Transport distances were correctly modelled for a set of artificial tracer tests using a discharge-velocity relationship that could be established for the respective karst catchment. For the first time such an approach was shown to be applicable to estimate the maximum distance to the contamination source for coliform bacteria in karst spring water combined with microbial source tracking. However, prediction intervals for the transport distance can be large even in well-studied karst catchments mainly related to uncertainties in the flow velocity and the input time. Using a maximum transport distance is proposed to account for less permeable, "slower" pathways. In general, transport-based source tracking might be used wherever transport can be described by the 1D two-region non-equilibrium model, e.g. rivers and fractured or porous aquifers.

13.
Water Res ; 210: 117977, 2022 Feb 15.
Article in English | MEDLINE | ID: mdl-34968879

ABSTRACT

In recent months, wastewater-based epidemiology (WBE) has been shown to be an important tool for early detection of SARS-CoV-2 circulation in the population. In this study, a detection methodology for SARS-CoV-2 RNA (wildtype and variants of concern) in wastewater was developed based on the detection of different target genes (E and ORF1ab) by polyethylene glycol (PEG) precipitation and digital droplet PCR. This methodology was used to determine the SARS-CoV-2 concentration and the proportion of N501Y mutation in raw sewage of the wastewater treatment plant of the city of Karlsruhe in south-western Germany over a period of 1 year (June 2020 to July 2021). Comparison of SARS-CoV-2 concentrations with reported COVID-19 cases in the catchment area showed a significant correlation. As the clinical SARS-CoV-2 official case report chain takes time, viral RNA titre trends appeared more than 12 days earlier than clinical data, demonstrating the potential of wastewater-based epidemiology as an early warning system. Parallel PCR analysis using seven primer and probe systems revealed similar gene copy numbers with E, ORF, RdRP2 and NSP9 assays. RdPP1 and NSP3 generally resulted in lower copy numbers, and in particular for N1 there was low correlation with the other assays. The occurrence of the N501Y mutation in the wastewater of Karlsruhe was consistent with the occurrence of the alpha-variant (B.1.1.7) in the corresponding individual clinical tests. In batch experiments SARS-CoV-2 RNA was stable for several days under anaerobic conditions, but the copy numbers decreased rapidly in the presence of dissolved oxygen. Overall, this study shows that wastewater-based epidemiology is a sensitive and robust approach to detect trends in the spread of SARS-CoV-2 at an early stage, contributing to successful pandemic management.


Subject(s)
COVID-19 , Wastewater , Biomarkers , Humans , RNA, Viral/genetics , Reverse Transcriptase Polymerase Chain Reaction , SARS-CoV-2 , Wastewater-Based Epidemiological Monitoring
14.
ACS ES T Water ; 2(12): 2460-2470, 2022 Dec 09.
Article in English | MEDLINE | ID: mdl-37552738

ABSTRACT

In the context of the COVID-19 pandemic, wastewater-based epidemiology (WBE) emerged as a useful tool to account for the prevalence of SARS-CoV-2 infections on a population scale. In this study, we analyzed wastewater samples from three large (>300,000 people served) and four small (<25,000 people served) communities throughout southern Germany from August to December 2021, capturing the fourth infection wave in Germany dominated by the Delta variant (B.1.617.2). As dilution can skew the SARS-CoV-2 biomarker concentrations in wastewater, normalization to wastewater parameters can improve the relationship between SARS-CoV-2 biomarker data and clinical prevalence data. In this study, we investigated the suitability and performance of various normalization parameters. Influent flow data showed strong relationships to precipitation data; accordingly, flow-normalization reacted distinctly to precipitation events. Normalization by surrogate viruses CrAssphage and pepper mild mottle virus showed varying performance for different sampling sites. The best normalization performance was achieved with a mixed fecal indicator calculated from both surrogate viruses. Analyzing the temporal and spatial variation of normalization parameters proved to be useful to explain normalization performance. Overall, our findings indicate that the performance of surrogate viruses, flow, and hydro-chemical data is site-specific. We recommend testing the suitability of normalization parameters individually for specific sewage systems.

15.
Article in German | MEDLINE | ID: mdl-34596701

ABSTRACT

BACKGROUND: The rise of an infectious disease crisis such as the SARS-CoV­2 pandemic posed significant challenges for the administrative structures of the public health service, which resulted in varying levels of efficiency in outbreak management as a function of staffing and digital resources. This substantially impeded the integration of innovative pandemic outbreak management tools. Innovative crisis management, such as cluster tracking, risk group testing, georeferencing, or the integration of wastewater surveillance recommended by the EU Commission, was made significantly more difficult. AIM: In this case study in Berchtesgadener Land, we present the integration of an area-wide georeferenced wastewater surveillance system that captured 95% of the entire population since November 2020. METHODOLOGY: Sampling occurred twice a week at nine municipal wastewater treatment plants and directly from the main sewer at three locations. Samples were pre-treated by centrifugation and subsequently analyzed by digital droplet polymerase chain reaction (PCR) targeting four specific genes of SARS-CoV­2. RESULTS: The integration of an area-wide georeferenced wastewater surveillance system was successful. Wastewater occurrences are plotted for each municipality against cumulative infections over seven days per 100,000 inhabitants. Changes in the infection pattern in individual communities are noticeable ten days ahead of the official case numbers with a sensitivity of approximately 20 in 100,000 inhabitants. DISCUSSION: The integration of this innovative approach to provide a comprehensive overview of the situation by employing a digital dashboard and the use of an early warning system via quantitative wastewater surveillance resulted in very efficient, proactive management, which might serve as a blueprint for other municipalities in Germany.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/epidemiology , Germany/epidemiology , Humans , Public Health , Wastewater , Wastewater-Based Epidemiological Monitoring
16.
Front Plant Sci ; 12: 677553, 2021.
Article in English | MEDLINE | ID: mdl-34512681

ABSTRACT

Carotenoids are pigments with important nutritional value in the human diet. As antioxidant molecules, they act as scavengers of free radicals enhancing immunity and preventing cancer and cardiovascular diseases. Moreover, α-carotene and ß-carotene, the main carotenoids of carrots (Daucus carota) are precursors of vitamin A, whose deficiency in the diet can trigger night blindness and macular degeneration. With the aim of increasing the carotenoid content in fruit flesh, three key genes of the carotenoid pathway, phytoene synthase (DcPSY2) and lycopene cyclase (DcLCYB1) from carrots, and carotene desaturase (XdCrtI) from the yeast Xanthophyllomyces dendrorhous, were optimized for expression in apple and cloned under the Solanum chilense (tomatillo) polygalacturonase (PG) fruit specific promoter. A biotechnological platform was generated and functionally tested by subcellular localization, and single, double and triple combinations were both stably transformed in tomatoes (Solanum lycopersicum var. Microtom) and transiently transformed in Fuji apple fruit flesh (Malus domestica). We demonstrated the functionality of the S. chilense PG promoter by directing the expression of the transgenes specifically to fruits. Transgenic tomato fruits expressing DcPSY2, DcLCYB1, and DcPSY2-XdCRTI, produced 1.34, 2.0, and 1.99-fold more total carotenoids than wild-type fruits, respectively. Furthermore, transgenic tomatoes expressing DcLCYB1, DcPSY2-XdCRTI, and DcPSY2-XdCRTI-DcLCYB1 exhibited an increment in ß-carotene levels of 2.5, 3.0, and 2.57-fold in comparison with wild-type fruits, respectively. Additionally, Fuji apple flesh agroinfiltrated with DcPSY2 and DcLCYB1 constructs showed a significant increase of 2.75 and 3.11-fold in total carotenoids and 5.11 and 5.84-fold in ß-carotene, respectively whereas the expression of DcPSY2-XdCRTI and DcPSY2-XdCRTI-DcLCYB1 generated lower, but significant changes in the carotenoid profile of infiltrated apple flesh. The results in apple demonstrate that DcPSY2 and DcLCYB1 are suitable biotechnological genes to increase the carotenoid content in fruits of species with reduced amounts of these pigments.

17.
Int J Mol Sci ; 22(3)2021 Jan 26.
Article in English | MEDLINE | ID: mdl-33530294

ABSTRACT

Light is an important cue that stimulates both plastid development and biosynthesis of carotenoids in plants. During photomorphogenesis or de-etiolation, photoreceptors are activated and molecular factors for carotenoid and chlorophyll biosynthesis are induced thereof. In fruits, light is absorbed by chloroplasts in the early stages of ripening, which allows a gradual synthesis of carotenoids in the peel and pulp with the onset of chromoplasts' development. In roots, only a fraction of light reaches this tissue, which is not required for carotenoid synthesis, but it is essential for root development. When exposed to light, roots start greening due to chloroplast development. However, the colored taproot of carrot grown underground presents a high carotenoid accumulation together with chromoplast development, similar to citrus fruits during ripening. Interestingly, total carotenoid levels decrease in carrots roots when illuminated and develop chloroplasts, similar to normal roots exposed to light. The recent findings of the effect of light quality upon the induction of molecular factors involved in carotenoid synthesis in leaves, fruit, and roots are discussed, aiming to propose consensus mechanisms in order to contribute to the understanding of carotenoid synthesis regulation by light in plants.


Subject(s)
Biosynthetic Pathways , Carotenoids/metabolism , Plant Development , Plant Physiological Phenomena , Plastids/genetics , Chloroplasts , Fruit/genetics , Fruit/metabolism , Light , Photosynthesis , Plant Leaves/genetics , Plant Leaves/metabolism , Plant Leaves/radiation effects , Plant Roots/genetics , Plant Roots/metabolism , Plant Roots/radiation effects
18.
Plants (Basel) ; 10(2)2021 Jan 20.
Article in English | MEDLINE | ID: mdl-33498148

ABSTRACT

Reductions in crop yields brought about by abiotic stress are expected to increase as climate change, and other factors, generate harsher environmental conditions in regions traditionally used for cultivation. Although breeding and genetically modified and edited organisms have generated many varieties with greater abiotic stress tolerance, their practical use depends on lengthy processes, such as biological cycles and legal aspects. On the other hand, a non-genetic approach to improve crop yield in stress conditions involves the exogenous application of natural compounds, including plant metabolites. In this review, we examine the recent literature related to the application of different natural primary (proline, l-tryptophan, glutathione, and citric acid) and secondary (polyols, ascorbic acid, lipoic acid, glycine betaine, α-tocopherol, and melatonin) plant metabolites in improving tolerance to abiotic stress. We focus on drought, saline, heavy metal, and temperature as environmental parameters that are forecast to become more extreme or frequent as the climate continues to alter. The benefits of such applications are often evaluated by measuring their effects on metabolic, biochemical, and morphological parameters in a variety of crop plants, which usually result in improved yields when applied in greenhouse conditions or in the field. As this strategy has proven to be an effective way to raise plant tolerance to abiotic stress, we also discuss the prospect of its widespread implementation in the short term.

19.
PeerJ ; 8: e9742, 2020.
Article in English | MEDLINE | ID: mdl-32995076

ABSTRACT

Carotenoids are essential components of the photosynthetic antenna and reaction center complexes, being also responsible for antioxidant defense, coloration, and many other functions in multiple plant tissues. In tomato, salinity negatively affects the development of vegetative organs and productivity, but according to previous studies it might also increase fruit color and taste, improving its quality, which is a current agricultural challenge. The fruit quality parameters that are increased by salinity are cultivar-specific and include carotenoid, sugar, and organic acid contents. However, the relationship between vegetative and reproductive organs and response to salinity is still poorly understood. Considering this, Solanum lycopersicum cv. Micro-Tom plants were grown in the absence of salt supplementation as well as with increasing concentrations of NaCl for 14 weeks, evaluating plant performance from vegetative to reproductive stages. In response to salinity, plants showed a significant reduction in net photosynthesis, stomatal conductance, PSII quantum yield, and electron transport rate, in addition to an increase in non-photochemical quenching. In line with these responses the number of tomato clusters decreased, and smaller fruits with higher soluble solids content were obtained. Mature-green fruits also displayed a salt-dependent higher induction in the expression of PSY1, PDS, ZDS, and LYCB, key genes of the carotenoid biosynthesis pathway, in correlation with increased lycopene, lutein, ß-carotene, and violaxanthin levels. These results suggest a key relationship between photosynthetic plant response and yield, involving impaired photosynthetic capacity, increased carotenoid-related gene expression, and carotenoid biosynthesis.

20.
Mol Genet Genomics ; 295(6): 1379-1392, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32656704

ABSTRACT

Carotenoids are terpenoid pigments synthesized by all photosynthetic and some non-photosynthetic organisms. In plants, these lipophilic compounds are involved in photosynthesis, photoprotection, and phytohormone synthesis. In plants, carotenoid biosynthesis is induced by several environmental factors such as light including photoreceptors, such as phytochromes (PHYs) and negatively regulated by phytochrome interacting factors (PIFs). Daucus carota (carrot) is one of the few plant species that synthesize and accumulate carotenoids in the storage root that grows in darkness. Contrary to other plants, light inhibits secondary root growth and carotenoid accumulation suggesting the existence of new mechanisms repressed by light that regulate both processes. To identify genes induced by dark and repressed by light that regulate carotenoid synthesis and carrot root development, in this work an RNA-Seq analysis was performed from dark- and light-grown carrot roots. Using this high-throughput sequencing methodology, a de novo transcriptome model with 63,164 contigs was obtained, from which 18,488 were differentially expressed (DEG) between the two experimental conditions. Interestingly, light-regulated genes are preferably expressed in dark-grown roots. Enrichment analysis of GO terms with DEGs genes, validation of the transcriptome model and DEG analysis through qPCR allow us to hypothesize that genes involved in photomorphogenesis and light perception such as PHYA, PHYB, PIF3, PAR1, CRY2, FYH3, FAR1 and COP1 participate in the synthesis of carotenoids and carrot storage root development.


Subject(s)
Biosynthetic Pathways/genetics , Carotenoids/metabolism , Computational Biology/methods , Daucus carota/genetics , Daucus carota/metabolism , Gene Expression Regulation, Plant , Plant Proteins/metabolism , Daucus carota/growth & development , Gene Expression Profiling , Pigmentation , Plant Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL