Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 129
Filter
1.
Neurology ; 103(8): e209886, 2024 Oct 22.
Article in English | MEDLINE | ID: mdl-39321406

ABSTRACT

BACKGROUND AND OBJECTIVES: Although rituximab failed to demonstrate a significant effect on disability progression in primary progressive multiple sclerosis (PPMS), ocrelizumab succeeded. Our main objective was to analyze confirmed disability progression (CDP) in a cohort of patients with PPMS treated with anti-CD20 therapies compared with a weighted untreated control cohort. METHODS: This was a retrospective study using data from the French MS registry (Observatoire Français de la Sclérose En Plaques). We included patients with PPMS treated or never treated with anti-CD20 therapies from 2016 to 2021, with an Expanded Disability Status Scale score of ≤6.5 at baseline. The primary outcome was time to first CDP. The secondary outcomes were time to first relapse, MRI activity at 2 years, identification of risk factors associated with CDP, and serious infection incidence rates (IIRs). Each outcome was studied using an inverse probability of treatment weighting method. The outcomes were modeled using a weighted proportional Cox model for the time-to-event outcomes and by a logistic regression regarding the MRI activity. RESULTS: A total of 1,184 patients (426 treated and 758 untreated) fulfilled the inclusion criteria. Median age (Q1-Q3) was 56 years (49.3-63.8), and 52.7% were female. Among treated patients, 295 received rituximab, whereas 131 received ocrelizumab. At baseline, anti-CD20-treated patients were younger (median 51.9 vs 58.6 years, Cohen d = 0.683) and had more active disease (54.5 vs 27.8%, Cohen d = 0.562). 91.6% were drug-naive at inclusion. In time to first CDP analysis, no statistical significance was observed (hazard ratio [HR], 1.13; 95% CI 0.93-1.36, p = 0.2113). In time to first relapse analysis, a nonsignificant trend toward fewer patients relapsing in the treated group was observed (HR 0.83; 95% CI 0.48-1.28, p = 0.0809). For MRI activity, no significant difference was found between the 2 groups. Risk factors associated with CDP in the treated group were male sex and MS duration. IIR was 6.67 (95% CI 3.12-14.25) per 100 person-years in the treated group vs 2.67 (95% CI 0.80-8.86) in the untreated group. DISCUSSION: Time to first CDP was not different between anti-CD20 treated and untreated patients with PPMS. Although our study is retrospective and mainly included patients treated by rituximab, our results indicate that there should be a constant evaluation of all available data to ascertain the best risk/benefit ratio for patients with PPMS. CLASSIFICATION OF EVIDENCE: This study provides Class III evidence that anti-CD20 therapy of previously untreated patients with PPMS was not superior to no therapy in delaying time to first CDP.


Subject(s)
Antigens, CD20 , Immunologic Factors , Multiple Sclerosis, Chronic Progressive , Rituximab , Humans , Female , Male , Middle Aged , Multiple Sclerosis, Chronic Progressive/drug therapy , Multiple Sclerosis, Chronic Progressive/diagnostic imaging , Retrospective Studies , Rituximab/therapeutic use , Immunologic Factors/therapeutic use , Antigens, CD20/immunology , Disease Progression , Antibodies, Monoclonal, Humanized/therapeutic use , Registries , Magnetic Resonance Imaging , France/epidemiology , Treatment Outcome
2.
Mult Scler ; 30(10): 1278-1289, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39246289

ABSTRACT

BACKGROUND: Choroid plexus (ChP) enlargement is an emerging radiological biomarker in multiple sclerosis (MS). OBJECTIVES: This study aims to assess ChP volume in a large cohort of patients with radiologically isolated syndrome (RIS) versus healthy controls (HC) and explore its relationship with other brain volumes, disease activity, and biological markers. METHODS: RIS individuals were included retrospectively and compared with HC. ChPs were automatically segmented using an in-house automated algorithm and manually corrected. RESULTS: A total of 124 patients fulfilled the 2023 RIS criteria, and 55 HCs were included. We confirmed that ChPs are enlarged in RIS versus HC (mean (±SD) normalized ChP volume: 17.24 (±4.95) and 11.61 (±3.58), respectively, p < 0.001). Larger ChPs were associated with more periventricular lesions (ρ = 0.26; r2 = 0.27; p = 0.005 for the correlation with lesion volume, and ρ = 0.2; r2 = 0.21; p = 0.002 for the correlation with lesion number) and lower thalamic volume (ρ = -0.38; r2 = 0.44; p < 0.001), but not with lesions in other brain regions. Conversely, ChP volume did not correlate with biological markers. No significant difference in ChP volume was observed between subjects who presented or did not have a clinical event or between those with or without imaging disease activity. CONCLUSIONS: This study provides evidence that ChP volume is higher in RIS and is associated with measures reflecting periventricular pathology but does not correlate with biological, radiological, or clinical markers of disease activity.


Subject(s)
Choroid Plexus , Demyelinating Diseases , Magnetic Resonance Imaging , Humans , Female , Male , Adult , Choroid Plexus/pathology , Choroid Plexus/diagnostic imaging , Middle Aged , Demyelinating Diseases/diagnostic imaging , Demyelinating Diseases/pathology , Retrospective Studies , Multiple Sclerosis/diagnostic imaging , Multiple Sclerosis/pathology
3.
Nat Rev Neurol ; 20(10): 573-586, 2024 10.
Article in English | MEDLINE | ID: mdl-39251843

ABSTRACT

Progressive multiple sclerosis poses a considerable challenge in the evaluation of disease progression and treatment response owing to its multifaceted pathophysiology. Traditional clinical measures such as the Expanded Disability Status Scale are limited in capturing the full scope of disease and treatment effects. Advanced imaging techniques, including MRI and PET scans, have emerged as valuable tools for the assessment of neurodegenerative processes, including the respective role of adaptive and innate immunity, detailed insights into brain and spinal cord atrophy, lesion dynamics and grey matter damage. The potential of cerebrospinal fluid and blood biomarkers is increasingly recognized, with neurofilament light chain levels being a notable indicator of neuro-axonal damage. Moreover, patient-reported outcomes are crucial for reflecting the subjective experience of disease progression and treatment efficacy, covering aspects such as fatigue, cognitive function and overall quality of life. The future incorporation of digital technologies and wearable devices in research and clinical practice promises to enhance our understanding of functional impairments and disease progression. This Review offers a comprehensive examination of these diverse evaluation tools, highlighting their combined use in accurately assessing disease progression and treatment efficacy in progressive multiple sclerosis, thereby guiding more effective therapeutic strategies.


Subject(s)
Disease Progression , Multiple Sclerosis, Chronic Progressive , Humans , Multiple Sclerosis, Chronic Progressive/therapy , Multiple Sclerosis, Chronic Progressive/diagnostic imaging , Treatment Outcome , Magnetic Resonance Imaging/methods , Biomarkers/blood
4.
Front Neurosci ; 18: 1395769, 2024.
Article in English | MEDLINE | ID: mdl-39104610

ABSTRACT

Introduction: Recent evidence suggests the blood-to-brain influx rate (K1 ) in TSPO PET imaging as a promising biomarker of blood-brain barrier (BBB) permeability alterations commonly associated with peripheral inflammation and heightened immune activity in the brain. However, standard compartmental modeling quantification is limited by the requirement of invasive and laborious procedures for extracting an arterial blood input function. In this study, we validate a simplified blood-free methodologic framework for K1 estimation by fitting the early phase tracer dynamics using a single irreversible compartment model and an image-derived input function (1T1K-IDIF). Methods: The method is tested on a multi-site dataset containing 177 PET studies from two TSPO tracers ([11C]PBR28 and [18F]DPA714). Firstly, 1T1K-IDIF K1 estimates were compared in terms of both bias and correlation with standard kinetic methodology. Then, the method was tested on an independent sample of [11C]PBR28 scans before and after inflammatory interferon-α challenge, and on test-retest dataset of [18F]DPA714 scans. Results: Comparison with standard kinetic methodology showed good-to-excellent intra-subject correlation for regional 1T1K-IDIF-K1 (ρintra = 0.93 ± 0.08), although the bias was variable depending on IDIF ability to approximate blood input functions (0.03-0.39 mL/cm3/min). 1T1K-IDIF-K1 unveiled a significant reduction of BBB permeability after inflammatory interferon-α challenge, replicating results from standard quantification. High intra-subject correlation (ρ = 0.97 ± 0.01) was reported between K1 estimates of test and retest scans. Discussion: This evidence supports 1T1K-IDIF as blood-free alternative to assess TSPO tracers' unidirectional blood brain clearance. K1 investigation could complement more traditional measures in TSPO studies, and even allow further mechanistic insight in the interpretation of TSPO signal.

5.
Front Immunol ; 15: 1416074, 2024.
Article in English | MEDLINE | ID: mdl-39086476

ABSTRACT

Introduction: Progressive Multifocal Leukoencephalopathy (PML) is a rare and deadly demyelinating disease caused by JC virus (JCV) replication in the central nervous system. PML occurs exclusively in patients with severe underlying immune deficiencies, including AIDS and hematological malignancies. PML has also emerged as a significant threat to patients on potent new immunosuppressive biologics, including natalizumab in multiple sclerosis. Methods: Here, we developed an IFN-γ release assay (IGRA) that mainly detects JCV-specific effector memory T cells and effectors T cells in the blood. Results: This assay was frequently positive in patients with active PML (with a positive JCV PCR in CSF) of various underlying immunosuppression causes (84% sensitivity). Only 3% of healthy donors had a positive response (97% specificity). The frequency of positivity also increased in multiple sclerosis patients according to the time on natalizumab (up to 36% in patients treated for more than 48 months, who are considered at a higher risk of PML). Discussion: The results show this assay's frequent or increased positivity in patients with PML or an increased risk of PML, respectively. The assay may help to stratify the risk of PML.


Subject(s)
Interferon-gamma , JC Virus , Leukoencephalopathy, Progressive Multifocal , Memory T Cells , Humans , Leukoencephalopathy, Progressive Multifocal/immunology , Leukoencephalopathy, Progressive Multifocal/diagnosis , Leukoencephalopathy, Progressive Multifocal/etiology , Male , JC Virus/immunology , Female , Middle Aged , Adult , Memory T Cells/immunology , Memory T Cells/metabolism , Natalizumab/therapeutic use , Aged , Multiple Sclerosis/immunology , Multiple Sclerosis/drug therapy
6.
JAMA Neurol ; 81(8): 814-823, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38949816

ABSTRACT

Importance: Understanding the association between clinically defined relapses and radiological activity in multiple sclerosis (MS) is essential for patient treatment and therapeutic development. Objective: To investigate clinical events identified as relapses but not associated with new T2 lesions or gadolinium-enhanced T1 lesions on brain and spinal cord magnetic resonance imaging (MRI). Design, Setting, and Participants: This multicenter observational cohort study was conducted between January 2015 and June 2023. Data were extracted on June 8, 2023, from the French MS registry. All clinical events reported as relapses in patients with relapsing-remitting MS were included if brain and spinal cord MRI was performed within 12 and 24 months before the event, respectively, and 50 days thereafter with gadolinium injection. Exposures: Events were classified as relapses with active MRI (RAM) if a new T2 lesion or gadolinium-enhanced T1 lesion appeared on brain or spinal cord MRI or as acute clinical events with stable MRI (ACES) otherwise. Main Outcomes and Measures: Factors associated with ACES were investigated; patients with ACES and RAM were compared regarding Expanded Disability Status Scale (EDSS) course, relapse rate, confirmed disability accrual (CDA), relapse-associated worsening (RAW), progression independent of relapse activity (PIRA), and transition to secondary progressive (SP) MS, and ACES and RAM rates under each disease-modifying therapy (DMT) were estimated. Results: Among 31 885 clinical events, 637 in 608 patients (493 [77.4%] female; mean [SD] age, 35.8 [10.7] years) were included. ACES accounted for 166 (26.1%) events and were more likely in patients receiving highly effective DMTs, those with longer disease duration (odds ratio [OR], 1.04; 95% CI, 1.01-1.07), or those presenting with fatigue (OR, 2.14; 95% CI, 1.15-3.96). ACES were associated with significant EDSS score increases, lower than those found for RAM. Before the index event, patients with ACES experienced significantly higher rates of relapse (relative rate [RR], 1.21; 95% CI, 1.01-1.46), CDA (hazard ratio [HR], 1.54; 95% CI, 1.13-2.11), and RAW (HR, 1.72; 95% CI, 1.20-2.45). Patients with ACES were at significantly greater risk of SP transition (HR, 2.58; 95% CI, 1.02-6.51). Although RAM rate decreased with DMTs according to their expected efficacy, ACES rate was stable across DMTs. Conclusions and Relevance: The findings in this study introduce the concept of ACES in MS, which accounted for one-fourth of clinical events identified as relapses.


Subject(s)
Magnetic Resonance Imaging , Multiple Sclerosis, Relapsing-Remitting , Recurrence , Humans , Female , Male , Adult , Magnetic Resonance Imaging/methods , Multiple Sclerosis, Relapsing-Remitting/diagnostic imaging , Multiple Sclerosis, Relapsing-Remitting/drug therapy , Middle Aged , Cohort Studies , Spinal Cord/diagnostic imaging , Spinal Cord/pathology , Brain/diagnostic imaging , Disease Progression , Gadolinium , Registries
7.
Ann Neurol ; 96(2): 276-288, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38780377

ABSTRACT

OBJECTIVE: To evaluate: (1) the distribution of gray matter (GM) atrophy in myelin oligodendrocyte glycoprotein antibody-associated disease (MOGAD), aquaporin-4 antibody-positive neuromyelitis optica spectrum disorder (AQP4+NMOSD), and relapsing-remitting multiple sclerosis (RRMS); and (2) the relationship between GM volumes and white matter lesions in various brain regions within each disease. METHODS: A retrospective, multicenter analysis of magnetic resonance imaging data included patients with MOGAD/AQP4+NMOSD/RRMS in non-acute disease stage. Voxel-wise analyses and general linear models were used to evaluate the relevance of regional GM atrophy. For significant results (p < 0.05), volumes of atrophic areas are reported. RESULTS: We studied 135 MOGAD patients, 135 AQP4+NMOSD, 175 RRMS, and 144 healthy controls (HC). Compared with HC, MOGAD showed lower GM volumes in the temporal lobes, deep GM, insula, and cingulate cortex (75.79 cm3); AQP4+NMOSD in the occipital cortex (32.83 cm3); and RRMS diffusely in the GM (260.61 cm3). MOGAD showed more pronounced temporal cortex atrophy than RRMS (6.71 cm3), whereas AQP4+NMOSD displayed greater occipital cortex atrophy than RRMS (19.82 cm3). RRMS demonstrated more pronounced deep GM atrophy in comparison with MOGAD (27.90 cm3) and AQP4+NMOSD (47.04 cm3). In MOGAD, higher periventricular and cortical/juxtacortical lesions were linked to reduced temporal cortex, deep GM, and insula volumes. In RRMS, the diffuse GM atrophy was associated with lesions in all locations. AQP4+NMOSD showed no lesion/GM volume correlation. INTERPRETATION: GM atrophy is more widespread in RRMS compared with the other two conditions. MOGAD primarily affects the temporal cortex, whereas AQP4+NMOSD mainly involves the occipital cortex. In MOGAD and RRMS, lesion-related tract degeneration is associated with atrophy, but this link is absent in AQP4+NMOSD. ANN NEUROL 2024;96:276-288.


Subject(s)
Aquaporin 4 , Atrophy , Autoantibodies , Gray Matter , Magnetic Resonance Imaging , Myelin-Oligodendrocyte Glycoprotein , Neuromyelitis Optica , White Matter , Humans , Female , Aquaporin 4/immunology , Neuromyelitis Optica/pathology , Neuromyelitis Optica/diagnostic imaging , Neuromyelitis Optica/immunology , Male , Myelin-Oligodendrocyte Glycoprotein/immunology , Adult , Atrophy/pathology , Gray Matter/pathology , Gray Matter/diagnostic imaging , White Matter/pathology , White Matter/diagnostic imaging , White Matter/immunology , Middle Aged , Retrospective Studies , Autoantibodies/blood , Multiple Sclerosis, Relapsing-Remitting/pathology , Multiple Sclerosis, Relapsing-Remitting/diagnostic imaging , Multiple Sclerosis, Relapsing-Remitting/immunology , Young Adult
8.
EJNMMI Res ; 14(1): 50, 2024 May 27.
Article in English | MEDLINE | ID: mdl-38801594

ABSTRACT

BACKGROUND: Exploring the relationship between oxygen supply and myelin damage would benefit from a simultaneous quantification of myelin and cerebral blood flow (CBF) in the brain's white matter (WM). To validate an analytical method for quantifying both CBF and myelin content in the WM using dynamic [11C]PiB positron emission tomography (PET). METHODS: A test-retest study was performed on eight healthy subjects who underwent two consecutive dynamic [11 C]PiB-PET scans. Three quantitative approaches were compared: simplified reference tissue model 2 (SRTM2), LOGAN graphical model, and standardized uptake value ratio (SUVR). The sensitivity of methods to the size of the region of interest was explored by simulating lesion masks obtained from 36 subjects with multiple sclerosis. Reproducibility was assessed using the relative difference and interclass correlation coefficient. Repeated measures correlations were used to test for cross-correlations between metrics. RESULTS: Among the CBF measures, the relative delivery (R1) of the simplified reference tissue model 2 (SRTM2) displayed the best reproducibility in the white matter, with a strong influence of the size of regions analyzed, the test-retest variability being below 10% for regions above 68 mm3 in the supratentorial white matter. [11C]PiB PET-derived proxies of CBF demonstrated lower perfusion of white matter compared to grey matter with an overall ratio equal to 1.71 ± 0.09 when the SRTM2-R1 was employed. Tissue binding in the white matter was well estimated by the Logan graphical model through estimation of the distribution volume ratio (LOGAN-DVR) and SRTM2 distribution volume ratio (SRTM2-DVR), with test-retest variability being below 10% for regions exceeding 106 mm3 for LOGAN-DVR and 300 mm3 for SRTM2-DVR. SRTM2-DVR provided a better contrast between white matter and grey matter. The interhemispheric variability was also dependent on the size of the region analyzed, being below 10% for regions above 103 mm3 for SRTM2-R1 and above 110 mm3 for LOGAN-DVR. Whereas the 1 to 8-minute standardized uptake value ratio (SUVR1-8) showed an intermediary reproducibility for CBF assessment, SUVR0-2 for perfusion or SUVR50-70 for tissue binding showed poor reproducibility and correlated only mildly with SRTM2-R1 and LOGAN-DVR estimations respectively. CONCLUSIONS: [11C]PiB PET imaging can simultaneously quantify perfusion and myelin content in WM diseases associated with focal lesions. For longitudinal studies, SRTM2-R1 and DVR should be preferred over SUVR for the assessment of regional CBF and myelin content, respectively. TRIAL REGISTRATION: European Union Clinical Trials Register EUDRACT; EudraCT Number: 2008-004174-40; Date: 2009-03-06; https//www.clinicaltrialsregister.eu ; number 2008-004174-40.

9.
JAMA Neurol ; 81(5): 490-498, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38526462

ABSTRACT

Importance: A recent randomized clinical trial concluded that discontinuing medium-efficacy therapy might be a reasonable option for older patients with nonactive multiple sclerosis (MS), but there is a lack of data on discontinuing high-efficacy therapy (HET). In younger patients, the discontinuation of natalizumab and fingolimod is associated with a risk of rebound of disease activity. Objective: To determine whether discontinuing HET in patients 50 years and older with nonactive MS is associated with an increased risk of relapse compared with continuing HET. Design, Setting, and Participants: This observational cohort study used data from 38 referral centers from the French MS registry (Observatoire Français de la Sclérose en Plaques [OFSEP] database). Among 84704 patients in the database, data were extracted for 1857 patients 50 years and older with relapsing-remitting MS treated by HET and with no relapse or magnetic resonance imaging activity for at least 2 years. After verification of the medical records, 1620 patients were classified as having discontinued HET or having remained taking treatment and were matched 1:1 using a dynamic propensity score (including age, sex, disease phenotype, disability, treatment of interest, and time since last inflammatory activity). Patients were included from February 2008 to November 2021, with a mean (SD) follow-up of 5.1 (2.9) years. Data were extracted in June 2022. Exposures: Natalizumab, fingolimod, rituximab, and ocrelizumab. Main Outcomes and Measures: Time to first relapse. Results: Of 1620 included patients, 1175 (72.5%) were female, and the mean (SD) age was 54.7 (4.8) years. Among the 1452 in the HET continuation group and 168 in the HET discontinuation group, 154 patients in each group were matched using propensity scores (mean [SD] age, 57.7 [5.5] years; mean [SD] delay since the last inflammatory activity, 5.6 [3.8] years; mean [SD] follow-up duration after propensity score matching, 2.5 [2.1] years). Time to first relapse was significantly reduced in the HET discontinuation group compared with the HET continuation group (hazard ratio, 4.1; 95% CI, 2.0-8.5; P < .001) but differed between HETs, with a hazard ratio of 7.2 (95% CI, 2.1-24.5; P = .001) for natalizumab, 4.5 (95% CI, 1.3-15.5; P = .02) for fingolimod, and 1.1 (95% CI, 0.3-4.8; P = .85) for anti-CD20 therapy. Conclusion and Relevance: As in younger patients, in patients 50 years and older with nonactive MS, the risk of relapse increased significantly after stopping HETs that impact immune cell trafficking (natalizumab and fingolimod). There was no significant increase in risk after stopping HETs that deplete B-cells (anti-CD20 therapy). This result may inform decisions about stopping HETs in clinical practice.


Subject(s)
Multiple Sclerosis, Relapsing-Remitting , Natalizumab , Humans , Female , Male , Middle Aged , Natalizumab/therapeutic use , Multiple Sclerosis, Relapsing-Remitting/drug therapy , Cohort Studies , Fingolimod Hydrochloride/therapeutic use , Immunologic Factors/therapeutic use , Immunologic Factors/administration & dosage , Registries , Aged , Withholding Treatment , Immunosuppressive Agents/therapeutic use , Multiple Sclerosis/drug therapy
10.
Mult Scler ; 30(6): 726-737, 2024 May.
Article in English | MEDLINE | ID: mdl-38519434

ABSTRACT

BACKGROUND: Respiratory disorders remain incompletely described in multiple sclerosis (MS), even though they are a frequent cause of death. METHODS: The objective was to describe respiratory disorders in MS patients with Expanded Disability Status Score (EDSS) ⩾ 6.5. Diaphragm dysfunction was defined by at least two of the seven criteria: clinical signs, inspiratory recruitment of neck muscles during wakefulness, reduced upright vital capacity (VC) < 80%, upright-to-supine VC ⩾ 15% of upright VC, decrease in Maximal Inspiratory Pressure < 60%, phasic activation of inspiratory neck muscles during sleep, and opposition of thoracic and abdominal movements during sleep. Cough weakness was defined by a peak cough flow < 270 L/min and/or need for cough assist. Sleep apnea syndrome was defined by an apnea-hypopnea index ⩾ 15. RESULTS: Notably, 71 MS patients were included: median age 54 [48, 61] years; median disease duration 21.4 [16.0, 31.4] years. Of these, 52 patients had one or more respiratory disorders; diaphragm dysfunction was the most frequent (n = 34). Patients with diaphragm dysfunction and cough weakness were more disabled. The fatigue score and the cognitive evaluations did not differ between the groups. Five patients required non-invasive ventilation. CONCLUSION: Respiratory disorders are frequent in severe MS, mostly diaphragm dysfunction. Of interest, instrumental interventions are available to address these disorders.


Subject(s)
Multiple Sclerosis , Humans , Male , Female , Middle Aged , Cross-Sectional Studies , Multiple Sclerosis/complications , Multiple Sclerosis/physiopathology , Respiration Disorders/etiology , Respiration Disorders/physiopathology , Diaphragm/physiopathology , Cough/physiopathology , Cough/etiology , Severity of Illness Index , Sleep Apnea Syndromes/physiopathology , Adult
11.
JAMA Neurol ; 81(3): 273-282, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38345791

ABSTRACT

Importance: Moderately effective therapies (METs) have been the main treatment in pediatric-onset multiple sclerosis (POMS) for years. Despite the expanding use of highly effective therapies (HETs), treatment strategies for POMS still lack consensus. Objective: To assess the real-world association of HET as an index treatment compared with MET with disease activity. Design, Setting, and Participants: This was a retrospective cohort study conducted from January 1, 2010, to December 8, 2022, until the last recorded visit. The median follow-up was 5.8 years. A total of 36 French MS centers participated in the Observatoire Français de la Sclérose en Plaques (OFSEP) cohort. Of the total participants in OFSEP, only treatment-naive children with relapsing-remitting POMS who received a first HET or MET before adulthood and at least 1 follow-up clinical visit were included in the study. All eligible participants were included in the study, and none declined to participate. Exposure: HET or MET at treatment initiation. Main Outcomes and Measures: The primary outcome was the time to first relapse after treatment. Secondary outcomes were annualized relapse rate (ARR), magnetic resonance imaging (MRI) activity, time to Expanded Disability Status Scale (EDSS) progression, tertiary education attainment, and treatment safety/tolerability. An adapted statistical method was used to model the logarithm of event rate by penalized splines of time, allowing adjustment for effects of covariates that is sensitive to nonlinearity and interactions. Results: Of the 3841 children (5.2% of 74 367 total participants in OFSEP), 530 patients (mean [SD] age, 16.0 [1.8] years; 364 female [68.7%]) were included in the study. In study patients, both treatment strategies were associated with a reduced risk of first relapse within the first 2 years. HET dampened disease activity with a 54% reduction in first relapse risk (adjusted hazard ratio [HR], 0.46; 95% CI, 0.31-0.67; P < .001) sustained over 5 years, confirmed on MRI activity (adjusted odds ratio [OR], 0.34; 95% CI, 0.18-0.66; P = .001), and with a better tolerability pattern than MET. The risk of discontinuation at 2 years was 6 times higher with MET (HR, 5.97; 95% CI, 2.92-12.20). The primary reasons for treatment discontinuation were lack of efficacy and intolerance. Index treatment was not associated with EDSS progression or tertiary education attainment (adjusted OR, 0.51; 95% CI, 0.24-1.10; P = .09). Conclusions and Relevance: Results of this cohort study suggest that compared with MET, initial HET in POMS was associated with a reduction in the risk of first relapse with an optimal outcome within the first 2 years and was associated with a lower rate of treatment switching and a better midterm tolerance in children. These findings suggest prioritizing initial HET in POMS, although long-term safety studies are needed.


Subject(s)
Multiple Sclerosis, Relapsing-Remitting , Multiple Sclerosis , Child , Humans , Female , Adult , Adolescent , Multiple Sclerosis/therapy , Multiple Sclerosis/drug therapy , Cohort Studies , Retrospective Studies , Neoplasm Recurrence, Local , Multiple Sclerosis, Relapsing-Remitting/drug therapy , Recurrence
12.
Brain ; 147(4): 1331-1343, 2024 Apr 04.
Article in English | MEDLINE | ID: mdl-38267729

ABSTRACT

Cortical myelin loss and repair in multiple sclerosis (MS) have been explored in neuropathological studies, but the impact of these processes on neurodegeneration and the irreversible clinical progression of the disease remains unknown. Here, we evaluated in vivo cortical demyelination and remyelination in a large cohort of people with all clinical phenotypes of MS followed up for 5 years using magnetization transfer imaging (MTI), a technique that has been shown to be sensitive to myelin content changes in the cortex. We investigated 140 people with MS (37 clinically isolated syndrome, 71 relapsing-MS, 32 progressive-MS), who were clinically assessed at baseline and after 5 years and, along with 84 healthy controls, underwent a 3 T-MRI protocol including MTI at baseline and after 1 year. Changes in cortical volume over the radiological follow-up were computed with a Jacobian integration method. Magnetization transfer ratio was employed to calculate for each patient an index of cortical demyelination at baseline and of dynamic cortical demyelination and remyelination over the follow-up period. The three indices of cortical myelin content change were heterogeneous across patients but did not significantly differ across clinical phenotypes or treatment groups. Cortical remyelination, which tended to fail in the regions closer to CSF (-11%, P < 0.001), was extensive in half of the cohort and occurred independently of age, disease duration and clinical phenotype. Higher indices of cortical dynamic demyelination (ß = 0.23, P = 0.024) and lower indices of cortical remyelination (ß = -0.18, P = 0.03) were significantly associated with greater cortical atrophy after 1 year, independently of age and MS phenotype. While the extent of cortical demyelination predicted a higher probability of clinical progression after 5 years in the entire cohort [odds ratio (OR) = 1.2; P = 0.043], the impact of cortical remyelination in reducing the risk of accumulating clinical disability after 5 years was significant only in the subgroup of patients with shorter disease duration and limited extent of demyelination in cortical regions (OR = 0.86, P = 0.015, area under the curve = 0.93). In this subgroup, a 30% increase in cortical remyelination nearly halved the risk of clinical progression at 5 years, independently of clinical relapses. Overall, our results highlight the critical role of cortical myelin dynamics in the cascade of events leading to neurodegeneration and to the subsequent accumulation of irreversible disability in MS. Our findings suggest that early-stage myelin repair compensating for cortical myelin loss has the potential to prevent neuro-axonal loss and its long-term irreversible clinical consequences in people with MS.


Subject(s)
Multiple Sclerosis, Chronic Progressive , Multiple Sclerosis , Humans , Myelin Sheath/pathology , Multiple Sclerosis/pathology , Multiple Sclerosis, Chronic Progressive/diagnostic imaging , Multiple Sclerosis, Chronic Progressive/pathology , Disease Progression , Atrophy/pathology
13.
Mult Scler ; 30(3): 381-395, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38247113

ABSTRACT

BACKGROUND: Epidemiologic studies on coronavirus disease 2019 (COVID-19) in patients with multiple sclerosis (pwMS) have focused on the first waves of the pandemic until early 2021. OBJECTIVES: We aimed to extend these data from the onset of the pandemic to the global coverage by vaccination in summer 2022. METHODS: This retrospective, multicenter observational study analyzed COVISEP registry data on reported COVID-19 cases in pwMS between January 2020 and July 2022. Severe COVID-19 was defined as hospitalization or higher severity. RESULTS: Among 2584 pwMS with confirmed/highly suspected COVID-19, severe infection rates declined from 14.6% preomicron wave to 5.7% during omicron wave (p < 0.001). Multivariate analysis identified age (odds ratio (OR) = 1.43, 95% confidence interval (CI) = [1.25-1.64] per 10 years), male sex (OR = 2.01, 95% CI = [1.51-2.67]), obesity (OR = 2.36, 95% CI = [1.52-3.68]), cardiac comorbidities (OR = 2.36, 95% CI = [1.46-3.83]), higher Expanded Disability Status Scale (EDSS) scores (OR = 2.09, 95% CI = [1.43-3.06] for EDSS 3-5.5 and OR = 4.53, 95% CI = [3.04-6.75] for EDSS ⩾6), and anti-CD20 therapies (OR = 2.67, 95% CI = [1.85-3.87]) as risk factors for COVID-19 severity. Vaccinated individuals experienced less severe COVID-19, whether on (risk ratio (RR) = 0.64, 95% CI = [0.60-0.69]) or off (RR = 0.32, 95% CI = [0.30-0.33]) anti-CD20. DISCUSSION: In pwMS, consistent risk factors were anti-CD20 therapies and neurological disability, emerging as vital drivers of COVID-19 severity regardless of wave, period, or vaccination status.


Subject(s)
COVID-19 , Multiple Sclerosis , Humans , Male , Child , Retrospective Studies , Heart , Hospitalization
14.
Magn Reson Med ; 91(4): 1608-1624, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38102807

ABSTRACT

PURPOSE: MP2RAGE parameter optimization is redefined to allow more time-efficient MR acquisitions, whereas the T1 -based synthetic imaging framework is used to obtain on-demand T1 -weighted contrasts. Our aim was to validate this concept on healthy volunteers and patients with multiple sclerosis, using plug-and-play parallel-transmission brain imaging at 7 T. METHODS: A "time-efficient" MP2RAGE sequence was designed with optimized parameters including TI and TR set as small as possible. Extended phase graph formalism was used to set flip-angle values to maximize the gray-to-white-matter contrast-to-noise ratio (CNR). Several synthetic contrasts (UNI, EDGE, FGATIR, FLAWSMIN , FLAWSHCO ) were generated online based on the acquired T1 maps. Experimental validation was performed on 4 healthy volunteers at various spatial resolutions. Clinical applicability was evaluated on 6 patients with multiple sclerosis, scanned with both time-efficient and conventional MP2RAGE parameterizations. RESULTS: The proposed time-efficient MP2RAGE protocols reduced acquisition time by 40%, 30%, and 19% for brain imaging at (1 mm)3 , (0.80 mm)3 and (0.65 mm)3 , respectively, when compared with conventional parameterizations. They also provided all synthetic contrasts and comparable contrast-to-noise ratio on UNI images. The flexibility in parameter selection allowed us to obtain a whole-brain (0.45 mm)3 acquisition in 19 min 56 s. On patients with multiple sclerosis, a (0.67 mm)3 time-efficient acquisition enhanced cortical lesion visualization compared with a conventional (0.80 mm)3 protocol, while decreasing the scan time by 15%. CONCLUSION: The proposed optimization, associated with T1 -based synthetic contrasts, enabled substantial decrease of the acquisition time or higher spatial resolution scans for a given time budget, while generating all typical brain contrasts derived from MP2RAGE.


Subject(s)
Magnetic Resonance Imaging , Multiple Sclerosis , Humans , Magnetic Resonance Imaging/methods , Brain/diagnostic imaging , Brain/pathology , Image Enhancement/methods , Imaging, Three-Dimensional/methods , Multiple Sclerosis/diagnostic imaging , Multiple Sclerosis/pathology
15.
Mult Scler Relat Disord ; 77: 104872, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37453261

ABSTRACT

Today's medicine strives to be personalized, preventive, predictive and participatory. This implies to have access to multimodal data to better characterize patients groups and to combine clinical and imaging data with high-quality biological samples. Collecting such data is one of the objectives of the Observatoire français de la sclérose en plaques (OFSEP), the French MS registry. On December 2022, the OFSEP biocollection includes 4,888 patients with scientific characteristics and about 90,000 samples. Thanks to its richness, this biocollection open for the scientific community, contributes to address unmet needs in MS through identification of multiomics determinants of MS activity, progression and secondary effects.


Subject(s)
Multiple Sclerosis , Humans , Registries
16.
Ann Neurol ; 94(2): 366-383, 2023 08.
Article in English | MEDLINE | ID: mdl-37039158

ABSTRACT

OBJECTIVE: To determine the prognostic value of persisting neuroinflammation in multiple sclerosis (MS) lesions, we developed a 18 kDa-translocator-protein-positron emission tomography (PET) -based classification of each lesion according to innate immune cell content and localization. We assessed the respective predictive value of lesion phenotype and diffuse inflammation on atrophy and disability progression over 2 years. METHODS: Thirty-six people with MS (disease duration 9 ± 6 years; 12 with relapsing-remitting, 13 with secondary-progressive, and 11 with primary-progressive) and 19 healthy controls (HCs) underwent a dynamic [18 F]-DPA-714-PET. At baseline and after 2 years, the patients also underwent a magnetic resonance imaging (MRI) and neurological examination. Based on a threshold of significant inflammation defined by a comparison of [18 F]-DPA-714 binding between patients with MS and HCs, white matter lesions were classified as homogeneously active (active center), rim-active (inactive center and active periphery), or nonactive. Longitudinal cortical atrophy was measured using Jacobian integration. RESULTS: Patients with MS had higher innate inflammation in normal-appearing white matter (NAWM) and cortex than HCs (respective standardized effect size = 1.15, 0.89, p = 0.003 and < 0.001). Out of 1,335 non-gadolinium-enhancing lesions, 53% were classified as homogeneously-active (median = 17 per patient with MS), 6% rim-active (median = 1 per patient with MS), and 41% non-active (median = 14 per patient with MS). The number of homogenously-active lesions was the strongest predictor of longitudinal changes, associating with cortical atrophy (ß = 0.49, p = 0.023) and Expanded Disability Status Scale (EDSS) changes (ß = 0.35, p = 0.023) over 2 years. NAWM and cortical binding were not associated to volumetric and clinical changes. INTERPRETATION: The [18 F]-DPA-714-PET revealed that an unexpectedly high proportion of MS lesions have a smoldering component, which predicts atrophy and clinical progression. This suggests that following the acute phase, most lesions develop a chronic inflammatory component, promoting neurodegeneration and clinical progression. ANN NEUROL 2023;94:366-383.


Subject(s)
Multiple Sclerosis, Relapsing-Remitting , Multiple Sclerosis , White Matter , Humans , Multiple Sclerosis/pathology , White Matter/pathology , Positron-Emission Tomography , Magnetic Resonance Imaging/methods , Inflammation/metabolism , Disease Progression , Atrophy/pathology , Brain/pathology , Multiple Sclerosis, Relapsing-Remitting/pathology
17.
Curr Opin Neurol ; 36(3): 214-221, 2023 06 01.
Article in English | MEDLINE | ID: mdl-37078651

ABSTRACT

PURPOSE OF REVIEW: Choroid plexuses (ChPs) are key actors of the blood-to-cerebrospinal-fluid barrier and serve as brain immune checkpoint. The past years have seen a regain of interest about their potential involvement in the physiopathology of neuroinflammatory disorders like multiple sclerosis (MS). This article offers an overview of the recent findings on ChP alterations in MS, with a focus on the imaging tools able to detect these abnormalities and on their involvement in inflammation, tissue damage and repair. RECENT FINDINGS: On MRI, ChPs are enlarged in people with MS (PwMS) versus healthy individuals. This size increase is an early event, already detected in presymptomatic and pediatric MS. Enlargement of ChPs is linked to local inflammatory infiltrates, and their dysfunction selectively impacts periventricular damage, larger ChPs predicting the expansion of chronic active lesions, smoldering inflammation and remyelination failure in tissues surrounding the ventricles. ChP volumetry may add value for the prediction of disease activity and disability worsening. SUMMARY: ChP imaging metrics are emerging as possible biomarkers of neuroinflammation and repair failure in MS. Future works combining multimodal imaging techniques should provide a more refined characterization of ChP functional changes, their link with tissue damage, blood to cerebrospinal-fluid barrier dysfunction and fluid trafficking in MS.


Subject(s)
Multiple Sclerosis , Child , Humans , Multiple Sclerosis/pathology , Brain , Blood-Brain Barrier/diagnostic imaging , Blood-Brain Barrier/pathology , Inflammation/pathology , Choroid/pathology
18.
Brain ; 146(6): 2453-2463, 2023 06 01.
Article in English | MEDLINE | ID: mdl-36995973

ABSTRACT

In multiple sclerosis, while remarkable progress has been accomplished to control the inflammatory component of the disease, repair of demyelinated lesions is still an unmet need. Despite encouraging results generated in experimental models, several candidates favouring or promoting remyelination have not reached the expected outcomes in clinical trials. One possible reason for these failures is that, in most cases, during preclinical testing, efficacy was evaluated on histology only, while functional recovery had not been assessed. We have generated a Xenopus laevis transgenic model Tg(mbp:GFP-NTR) of conditional demyelination in which spontaneous remyelination can be accelerated using candidate molecules. Xenopus laevis is a classic model for in vivo studies of myelination because tadpoles are translucent. We reasoned that demyelination should translate into loss of sensorimotor functions followed by behavioural recovery upon remyelination. To this end, we measured the swimming speed and distance travelled before and after demyelination and during the ongoing spontaneous remyelination and have developed a functional assay based on the visual avoidance of a virtual collision. Here we show that alteration of these functional and clinical performances correlated well with the level of demyelination and that histological remyelination, assayed by counting in vivo the number of myelinating oligodendrocytes in the optic nerve, translated in clinical-functional recovery. This method was further validated in tadpoles treated with pro-remyelinating agents (clemastine, siponimod) showing that increased remyelination in the optic nerve was associated with functional improvement. Our data illustrate the potential interest of correlating histopathological parameters and functional-clinical parameters to screen molecules promoting remyelination in a simple in vivo model of conditional demyelination.


Subject(s)
Multiple Sclerosis , Remyelination , Animals , Multiple Sclerosis/pathology , Oligodendroglia/pathology , Remyelination/physiology , Optic Nerve/pathology , Disease Models, Animal , Xenopus laevis , Myelin Sheath/pathology
19.
Neuroimage Clin ; 38: 103368, 2023.
Article in English | MEDLINE | ID: mdl-36913908

ABSTRACT

Choroid Plexuses (ChP) are structures located in the ventricles that produce the cerebrospinal fluid (CSF) in the central nervous system. They are also a key component of the blood-CSF barrier. Recent studies have described clinically relevant ChP volumetric changes in several neurological diseases including Alzheimer's, Parkinson's disease, and multiple sclerosis (MS). Therefore, a reliable and automated tool for ChP segmentation on images derived from magnetic resonance imaging (MRI) is a crucial need for large studies attempting to elucidate their role in neurological disorders. Here, we propose a novel automatic method for ChP segmentation in large imaging datasets. The approach is based on a 2-step 3D U-Net to keep preprocessing steps to a minimum for ease of use and to lower memory requirements. The models are trained and validated on a first research cohort including people with MS and healthy subjects. A second validation is also performed on a cohort of pre-symptomatic MS patients having acquired MRIs in routine clinical practice. Our method reaches an average Dice coefficient of 0.72 ± 0.01 with the ground truth and a volume correlation of 0.86 on the first cohort while outperforming FreeSurfer and FastSurfer-based ChP segmentations. On the dataset originating from clinical practice, the method reaches a Dice coefficient of 0.67 ± 0.01 (being close to the inter-rater agreement of 0.64 ± 0.02) and a volume correlation of 0.84. These results demonstrate that this is a suitable and robust method for the segmentation of the ChP both on research and clinical datasets.


Subject(s)
Multiple Sclerosis , Parkinson Disease , Humans , Multiple Sclerosis/diagnostic imaging , Multiple Sclerosis/pathology , Magnetic Resonance Imaging/methods , Parkinson Disease/pathology , Choroid/pathology , Image Processing, Computer-Assisted/methods
20.
Mult Scler ; 29(2): 236-247, 2023 02.
Article in English | MEDLINE | ID: mdl-36515394

ABSTRACT

BACKGROUND: In relapsing-remitting multiple sclerosis (RRMS), early identification of suboptimal responders can prevent disability progression. OBJECTIVE: We aimed to develop and validate a dynamic score to guide the early decision to switch from first- to second-line therapy. METHODS: Using time-dependent propensity scores (PS) from a French cohort of 12,823 patients with RRMS, we constructed one training and two validation PS-matched cohorts to compare the switched patients to second-line treatment and the maintained patients. We used a frailty Cox model for predicting individual hazard ratios (iHRs). RESULTS: From the validation PS-matched cohort of 348 independent patients with iHR ⩽ 0.69, we reported the 5-year relapse-free survival at 0.14 (95% confidence interval (CI) 0.09-0.22) for the waiting group and 0.40 (95% CI 0.32-0.51) for the switched group. From the validation PS-matched cohort of 518 independent patients with iHR > 0.69, these values were 0.37 (95% CI 0.30-0.46) and 0.44 (95% CI 0.37-0.52), respectively. CONCLUSIONS: By using the proposed dynamic score, we estimated that at least one-third of patients could benefit from an earlier switch to prevent relapse.


Subject(s)
Multiple Sclerosis, Relapsing-Remitting , Multiple Sclerosis , Humans , Immunologic Factors , Multiple Sclerosis, Relapsing-Remitting/drug therapy
SELECTION OF CITATIONS
SEARCH DETAIL