Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 32
Filter
1.
Int J Mol Sci ; 25(5)2024 Feb 22.
Article in English | MEDLINE | ID: mdl-38473785

ABSTRACT

Deep learning is a machine learning technique to model high-level abstractions in data by utilizing a graph composed of multiple processing layers that experience various linear and non-linear transformations. This technique has been shown to perform well for applications in drug discovery, utilizing structural features of small molecules to predict activity. Here, we report a large-scale study to predict the activity of small molecules across the human kinome-a major family of drug targets, particularly in anti-cancer agents. While small-molecule kinase inhibitors exhibit impressive clinical efficacy in several different diseases, resistance often arises through adaptive kinome reprogramming or subpopulation diversity. Polypharmacology and combination therapies offer potential therapeutic strategies for patients with resistant diseases. Their development would benefit from a more comprehensive and dense knowledge of small-molecule inhibition across the human kinome. Leveraging over 650,000 bioactivity annotations for more than 300,000 small molecules, we evaluated multiple machine learning methods to predict the small-molecule inhibition of 342 kinases across the human kinome. Our results demonstrated that multi-task deep neural networks outperformed classical single-task methods, offering the potential for conducting large-scale virtual screening, predicting activity profiles, and bridging the gaps in the available data.


Subject(s)
Deep Learning , Humans , Phosphotransferases , Drug Discovery/methods , Polypharmacology , Machine Learning
4.
Cell ; 186(18): 3921-3944.e25, 2023 08 31.
Article in English | MEDLINE | ID: mdl-37582357

ABSTRACT

Cancer driver events refer to key genetic aberrations that drive oncogenesis; however, their exact molecular mechanisms remain insufficiently understood. Here, our multi-omics pan-cancer analysis uncovers insights into the impacts of cancer drivers by identifying their significant cis-effects and distal trans-effects quantified at the RNA, protein, and phosphoprotein levels. Salient observations include the association of point mutations and copy-number alterations with the rewiring of protein interaction networks, and notably, most cancer genes converge toward similar molecular states denoted by sequence-based kinase activity profiles. A correlation between predicted neoantigen burden and measured T cell infiltration suggests potential vulnerabilities for immunotherapies. Patterns of cancer hallmarks vary by polygenic protein abundance ranging from uniform to heterogeneous. Overall, our work demonstrates the value of comprehensive proteogenomics in understanding the functional states of oncogenic drivers and their links to cancer development, surpassing the limitations of studying individual cancer types.


Subject(s)
Neoplasms , Proteogenomics , Humans , Neoplasms/genetics , Oncogenes , Cell Transformation, Neoplastic/genetics , DNA Copy Number Variations
5.
Cell ; 186(16): 3476-3498.e35, 2023 08 03.
Article in English | MEDLINE | ID: mdl-37541199

ABSTRACT

To improve the understanding of chemo-refractory high-grade serous ovarian cancers (HGSOCs), we characterized the proteogenomic landscape of 242 (refractory and sensitive) HGSOCs, representing one discovery and two validation cohorts across two biospecimen types (formalin-fixed paraffin-embedded and frozen). We identified a 64-protein signature that predicts with high specificity a subset of HGSOCs refractory to initial platinum-based therapy and is validated in two independent patient cohorts. We detected significant association between lack of Ch17 loss of heterozygosity (LOH) and chemo-refractoriness. Based on pathway protein expression, we identified 5 clusters of HGSOC, which validated across two independent patient cohorts and patient-derived xenograft (PDX) models. These clusters may represent different mechanisms of refractoriness and implicate putative therapeutic vulnerabilities.


Subject(s)
Cystadenocarcinoma, Serous , Ovarian Neoplasms , Proteogenomics , Female , Humans , Cystadenocarcinoma, Serous/drug therapy , Cystadenocarcinoma, Serous/genetics , Ovarian Neoplasms/drug therapy , Ovarian Neoplasms/genetics
6.
Data Brief ; 49: 109330, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37409171

ABSTRACT

Adenoid cystic carcinoma of the lacrimal gland (LGACC) is a slow-growing but aggressive orbital malignancy. Due to the rarity of LGACC, it is poorly understood, which makes diagnosing, treating, and monitoring disease progression difficult. The aim is to understand the molecular drivers of LGACC further to identify potential targets for treating this cancer. Mass spectrometry was performed on LGACC and normal lacrimal gland samples to examine the differentially expressed proteins to understand this cancer's proteomic characteristics. Downstream gene ontology and pathway analysis revealed the extracellular matrix is the most upregulated process in LGACC. This data serves as a resource for further understanding LGACC and identifying potential treatment targets. This dataset is publicly available.

7.
Cancers (Basel) ; 15(12)2023 Jun 16.
Article in English | MEDLINE | ID: mdl-37370820

ABSTRACT

Although primary tumors of the lacrimal gland are rare, adenoid cystic carcinoma (ACC) is the most common and lethal epithelial lacrimal gland malignancy. Traditional management of lacrimal gland adenoid cystic carcinoma (LGACC) involves the removal of the eye and surrounding socket contents, followed by chemoradiation. Even with this radical treatment, the 10-year survival rate for LGACC is 20% given the propensity for recurrence and metastasis. Due to the rarity of LGACC, its pathobiology is not well-understood, leading to difficulties in diagnosis, treatment, and effective management. Here, we integrate bulk RNA sequencing (RNA-seq) and spatial transcriptomics to identify a specific LGACC gene signature that can inform novel targeted therapies. Of the 3499 differentially expressed genes identified by bulk RNA-seq, the results of our spatial transcriptomic analysis reveal 15 upregulated and 12 downregulated genes that specifically arise from LGACC cells, whereas fibroblasts, reactive fibrotic tissue, and nervous and skeletal muscle account for the remaining bulk RNA-seq signature. In light of the analysis, we identified a transitional state cell or stem cell cluster. The results of the pathway analysis identified the upregulation of PI3K-Akt signaling, IL-17 signaling, and multiple other cancer pathways. This study provides insights into the molecular and cellular landscape of LGACC, which can inform new, targeted therapies to improve patient outcomes.

8.
Nat Commun ; 13(1): 4678, 2022 08 09.
Article in English | MEDLINE | ID: mdl-35945222

ABSTRACT

There are only a few platforms that integrate multiple omics data types, bioinformatics tools, and interfaces for integrative analyses and visualization that do not require programming skills. Here we present iLINCS ( http://ilincs.org ), an integrative web-based platform for analysis of omics data and signatures of cellular perturbations. The platform facilitates mining and re-analysis of the large collection of omics datasets (>34,000), pre-computed signatures (>200,000), and their connections, as well as the analysis of user-submitted omics signatures of diseases and cellular perturbations. iLINCS analysis workflows integrate vast omics data resources and a range of analytics and interactive visualization tools into a comprehensive platform for analysis of omics signatures. iLINCS user-friendly interfaces enable execution of sophisticated analyses of omics signatures, mechanism of action analysis, and signature-driven drug repositioning. We illustrate the utility of iLINCS with three use cases involving analysis of cancer proteogenomic signatures, COVID 19 transcriptomic signatures and mTOR signaling.


Subject(s)
COVID-19 , Neoplasms , COVID-19/genetics , Computational Biology , Humans , Neoplasms/genetics , Software , Transcriptome , Workflow
9.
Neurooncol Adv ; 4(1): vdab192, 2022.
Article in English | MEDLINE | ID: mdl-35118385

ABSTRACT

BACKGROUND: Poor prognosis of glioblastoma patients and the extensive heterogeneity of glioblastoma at both the molecular and cellular level necessitates developing novel individualized treatment modalities via genomics-driven approaches. METHODS: This study leverages numerous pharmacogenomic and tissue databases to examine drug repositioning for glioblastoma. RNA-seq of glioblastoma tumor samples from The Cancer Genome Atlas (TCGA, n = 117) were compared to "normal" frontal lobe samples from Genotype-Tissue Expression Portal (GTEX, n = 120) to find differentially expressed genes (DEGs). Using compound gene expression data and drug activity data from the Library of Integrated Network-Based Cellular Signatures (LINCS, n = 66,512 compounds) CCLE (71 glioma cell lines), and Chemical European Molecular Biology Laboratory (ChEMBL) platforms, we employed a summarized reversal gene expression metric (sRGES) to "reverse" the resultant disease signature for GBM and its subtypes. A multiparametric strategy was employed to stratify compounds capable of blood-brain barrier penetrance with a favorable pharmacokinetic profile (CNS-MPO). RESULTS: Significant correlations were identified between sRGES and drug efficacy in GBM cell lines in both ChEMBL(r = 0.37, P < .001) and Cancer Therapeutic Response Portal (CTRP) databases (r = 0.35, P < 0.001). Our multiparametric algorithm identified two classes of drugs with highest sRGES and CNS-MPO: HDAC inhibitors (vorinostat and entinostat) and topoisomerase inhibitors suitable for drug repurposing. CONCLUSIONS: Our studies suggest that reversal of glioblastoma disease signature correlates with drug potency for various GBM subtypes. This multiparametric approach may set the foundation for an early-phase personalized -omics clinical trial for glioblastoma by effectively identifying drugs that are capable of reversing the disease signature and have favorable pharmacokinetic and safety profiles.

10.
Cell ; 184(16): 4348-4371.e40, 2021 08 05.
Article in English | MEDLINE | ID: mdl-34358469

ABSTRACT

Lung squamous cell carcinoma (LSCC) remains a leading cause of cancer death with few therapeutic options. We characterized the proteogenomic landscape of LSCC, providing a deeper exposition of LSCC biology with potential therapeutic implications. We identify NSD3 as an alternative driver in FGFR1-amplified tumors and low-p63 tumors overexpressing the therapeutic target survivin. SOX2 is considered undruggable, but our analyses provide rationale for exploring chromatin modifiers such as LSD1 and EZH2 to target SOX2-overexpressing tumors. Our data support complex regulation of metabolic pathways by crosstalk between post-translational modifications including ubiquitylation. Numerous immune-related proteogenomic observations suggest directions for further investigation. Proteogenomic dissection of CDKN2A mutations argue for more nuanced assessment of RB1 protein expression and phosphorylation before declaring CDK4/6 inhibition unsuccessful. Finally, triangulation between LSCC, LUAD, and HNSCC identified both unique and common therapeutic vulnerabilities. These observations and proteogenomics data resources may guide research into the biology and treatment of LSCC.


Subject(s)
Carcinoma, Squamous Cell/genetics , Lung Neoplasms/genetics , Proteogenomics , Acetylation , Adult , Aged , Aged, 80 and over , Cluster Analysis , Cyclin-Dependent Kinase 4/genetics , Cyclin-Dependent Kinase 6/genetics , Epithelial-Mesenchymal Transition/genetics , Female , Gene Expression Regulation, Neoplastic , Humans , Male , Middle Aged , Mutation/genetics , Neoplasm Proteins/metabolism , Phosphorylation , Protein Binding , Receptor Tyrosine Kinase-like Orphan Receptors/metabolism , Receptors, Platelet-Derived Growth Factor/metabolism , Signal Transduction , Ubiquitination
11.
Cancer Cell ; 39(4): 509-528.e20, 2021 04 12.
Article in English | MEDLINE | ID: mdl-33577785

ABSTRACT

Glioblastoma (GBM) is the most aggressive nervous system cancer. Understanding its molecular pathogenesis is crucial to improving diagnosis and treatment. Integrated analysis of genomic, proteomic, post-translational modification and metabolomic data on 99 treatment-naive GBMs provides insights to GBM biology. We identify key phosphorylation events (e.g., phosphorylated PTPN11 and PLCG1) as potential switches mediating oncogenic pathway activation, as well as potential targets for EGFR-, TP53-, and RB1-altered tumors. Immune subtypes with distinct immune cell types are discovered using bulk omics methodologies, validated by snRNA-seq, and correlated with specific expression and histone acetylation patterns. Histone H2B acetylation in classical-like and immune-low GBM is driven largely by BRDs, CREBBP, and EP300. Integrated metabolomic and proteomic data identify specific lipid distributions across subtypes and distinct global metabolic changes in IDH-mutated tumors. This work highlights biological relationships that could contribute to stratification of GBM patients for more effective treatment.


Subject(s)
Brain Neoplasms/metabolism , Glioblastoma/genetics , Glioblastoma/metabolism , Protein Tyrosine Phosphatase, Non-Receptor Type 11/metabolism , Proteogenomics , Brain Neoplasms/pathology , Computational Biology/methods , Glioblastoma/pathology , Humans , Metabolomics/methods , Mutation/genetics , Phospholipase C gamma/genetics , Phospholipase C gamma/metabolism , Phosphorylation/physiology , Protein Tyrosine Phosphatase, Non-Receptor Type 11/genetics , Proteogenomics/methods , Proteomics/methods
12.
Cancer Res Commun ; 1(1): 1-16, 2021 10.
Article in English | MEDLINE | ID: mdl-35528192

ABSTRACT

A comprehensive constellation of somatic non-silent mutations and copy number (CN) variations in ocular adnexa marginal zone lymphoma (OAMZL) is unknown. By utilizing whole-exome sequencing in 69 tumors we define the genetic landscape of OAMZL. Mutations and CN changes in CABIN1 (30%), RHOA (26%), TBL1XR1 (22%), and CREBBP (17%) and inactivation of TNFAIP3 (26%) were among the most common aberrations. Candidate cancer driver genes cluster in the B-cell receptor (BCR), NFkB, NOTCH and NFAT signaling pathways. One of the most commonly altered genes is CABIN1, a calcineurin inhibitor acting as a negative regulator of the NFAT and MEF2B transcriptional activity. CABIN1 deletions enhance BCR-stimulated NFAT and MEF2B transcriptional activity, while CABIN1 mutations enhance only MEF2B transcriptional activity by impairing binding of mSin3a to CABIN1. Our data provide an unbiased identification of genetically altered genes that may play a role in the molecular pathogenesis of OAMZL and serve as therapeutic targets.


Subject(s)
Eye Neoplasms , Lymphoma, B-Cell, Marginal Zone , Humans , Lymphoma, B-Cell, Marginal Zone/genetics , Eye Neoplasms/genetics , Mutation/genetics , Signal Transduction/genetics , NF-kappa B/genetics , MEF2 Transcription Factors/genetics
13.
Semin Cancer Biol ; 68: 132-142, 2021 01.
Article in English | MEDLINE | ID: mdl-31904426

ABSTRACT

Knowledge of the underpinnings of cancer initiation, progression and metastasis has increased exponentially in recent years. Advanced "omics" coupled with machine learning and artificial intelligence (deep learning) methods have helped elucidate targets and pathways critical to those processes that may be amenable to pharmacologic modulation. However, the current anti-cancer therapeutic armamentarium continues to lag behind. As the cost of developing a new drug remains prohibitively expensive, repurposing of existing approved and investigational drugs is sought after given known safety profiles and reduction in the cost barrier. Notably, successes in oncologic drug repurposing have been infrequent. Computational in-silico strategies have been developed to aid in modeling biological processes to find new disease-relevant targets and discovering novel drug-target and drug-phenotype associations. Machine and deep learning methods have especially enabled leaps in those successes. This review will discuss these methods as they pertain to cancer biology as well as immunomodulation for drug repurposing opportunities in oncologic diseases.


Subject(s)
Antineoplastic Agents/therapeutic use , Computational Biology/methods , Deep Learning , Drug Discovery , Drug Repositioning/methods , Machine Learning , Neoplasms/drug therapy , Animals , Artificial Intelligence , Humans
14.
Cell Rep Med ; 1(7): 100128, 2020 10 20.
Article in English | MEDLINE | ID: mdl-33205077

ABSTRACT

The approval of the first kinase inhibitor, Gleevec, ushered in a paradigm shift for oncological treatment-the use of genomic data for targeted, efficacious therapies. Since then, over 48 additional small-molecule kinase inhibitors have been approved, solidifying the case for kinases as a highly druggable and attractive target class. Despite the role deregulated kinase activity plays in cancer, only 8% of the kinome has been effectively "drugged." Moreover, 24% of the 634 human kinases are understudied. We have developed a comprehensive scoring system that utilizes differential gene expression, pathological parameters, overall survival, and mutational hotspot analysis to rank and prioritize clinically relevant kinases across 17 solid tumor cancers from The Cancer Genome Atlas. We have developed the clinical kinase index (CKI) app (http://cki.ccs.miami.edu) to facilitate interactive analysis of all kinases in each cancer. Collectively, we report that understudied kinases have potential clinical value as biomarkers or drug targets that warrant further study.


Subject(s)
Antineoplastic Agents/metabolism , Neoplasm Proteins/genetics , Neoplasms/drug therapy , Protein Kinase Inhibitors/metabolism , Protein Kinases/genetics , Small Molecule Libraries/metabolism , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Drug Discovery , Gene Dosage , Gene Expression Regulation, Neoplastic , Humans , Molecular Targeted Therapy , Mutation , Neoplasm Proteins/antagonists & inhibitors , Neoplasm Proteins/metabolism , Neoplasms/genetics , Neoplasms/mortality , Neoplasms/pathology , Protein Binding , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/pharmacology , Protein Kinases/metabolism , Research Design , Signal Transduction , Small Molecule Libraries/chemistry , Small Molecule Libraries/pharmacology , Software , Survival Analysis
15.
Cell ; 183(7): 1962-1985.e31, 2020 12 23.
Article in English | MEDLINE | ID: mdl-33242424

ABSTRACT

We report a comprehensive proteogenomics analysis, including whole-genome sequencing, RNA sequencing, and proteomics and phosphoproteomics profiling, of 218 tumors across 7 histological types of childhood brain cancer: low-grade glioma (n = 93), ependymoma (32), high-grade glioma (25), medulloblastoma (22), ganglioglioma (18), craniopharyngioma (16), and atypical teratoid rhabdoid tumor (12). Proteomics data identify common biological themes that span histological boundaries, suggesting that treatments used for one histological type may be applied effectively to other tumors sharing similar proteomics features. Immune landscape characterization reveals diverse tumor microenvironments across and within diagnoses. Proteomics data further reveal functional effects of somatic mutations and copy number variations (CNVs) not evident in transcriptomics data. Kinase-substrate association and co-expression network analysis identify important biological mechanisms of tumorigenesis. This is the first large-scale proteogenomics analysis across traditional histological boundaries to uncover foundational pediatric brain tumor biology and inform rational treatment selection.


Subject(s)
Brain Neoplasms/genetics , Brain Neoplasms/pathology , Proteogenomics , Brain Neoplasms/immunology , Child , DNA Copy Number Variations/genetics , Gene Expression Regulation, Neoplastic , Gene Regulatory Networks , Genome, Human , Glioma/genetics , Glioma/pathology , Humans , Lymphocytes, Tumor-Infiltrating/immunology , Mutation/genetics , Neoplasm Grading , Neoplasm Recurrence, Local/pathology , Phosphoproteins/metabolism , Phosphorylation , RNA, Messenger/genetics , RNA, Messenger/metabolism , Transcriptome/genetics
16.
Nucleic Acids Res ; 48(D1): D431-D439, 2020 01 08.
Article in English | MEDLINE | ID: mdl-31701147

ABSTRACT

The Library of Integrated Network-Based Cellular Signatures (LINCS) is an NIH Common Fund program with the goal of generating a large-scale and comprehensive catalogue of perturbation-response signatures by utilizing a diverse collection of perturbations across many model systems and assay types. The LINCS Data Portal (LDP) has been the primary access point for the compendium of LINCS data and has been widely utilized. Here, we report the first major update of LDP (http://lincsportal.ccs.miami.edu/signatures) with substantial changes in the data architecture and APIs, a completely redesigned user interface, and enhanced curated metadata annotations to support more advanced, intuitive and deeper querying, exploration and analysis capabilities. The cornerstone of this update has been the decision to reprocess all high-level LINCS datasets and make them accessible at the data point level enabling users to directly access and download any subset of signatures across the entire library independent from the originating source, project or assay. Access to the individual signatures also enables the newly implemented signature search functionality, which utilizes the iLINCS platform to identify conditions that mimic or reverse gene set queries. A newly designed query interface enables global metadata search with autosuggest across all annotations associated with perturbations, model systems, and signatures.


Subject(s)
Cell Biology , Databases, Factual , Clinical Trials as Topic , Computational Biology , Data Curation , Humans , Information Storage and Retrieval , Metadata , National Institutes of Health (U.S.) , United States , User-Computer Interface
17.
Nat Commun ; 10(1): 3028, 2019 07 10.
Article in English | MEDLINE | ID: mdl-31292434

ABSTRACT

Cerebellar neuronal progenitors undergo a series of divisions before irreversibly exiting the cell cycle and differentiating into neurons. Dysfunction of this process underlies many neurological diseases including ataxia and the most common pediatric brain tumor, medulloblastoma. To better define the pathways controlling the most abundant neuronal cells in the mammalian cerebellum, cerebellar granule cell progenitors (GCPs), we performed RNA-sequencing of GCPs exiting the cell cycle. Time-series modeling of GCP cell cycle exit identified downregulation of activity of the epigenetic reader protein Brd4. Brd4 binding to the Gli1 locus is controlled by Casein Kinase 1δ (CK1 δ)-dependent phosphorylation during GCP proliferation, and decreases during GCP cell cycle exit. Importantly, conditional deletion of Brd4 in vivo in the developing cerebellum induces cerebellar morphological deficits and ataxia. These studies define an essential role for Brd4 in cerebellar granule cell neurogenesis and are critical for designing clinical trials utilizing Brd4 inhibitors in neurological indications.


Subject(s)
Cerebellar Ataxia/genetics , Cerebellar Cortex/growth & development , Neural Stem Cells/physiology , Neurogenesis/physiology , Nuclear Proteins/metabolism , Transcription Factors/metabolism , Animals , Animals, Newborn , Casein Kinase Idelta , Cell Cycle/physiology , Cell Differentiation/physiology , Cell Proliferation/physiology , Cerebellar Ataxia/pathology , Cerebellar Cortex/cytology , Cerebellar Cortex/pathology , Disease Models, Animal , Down-Regulation , Humans , Mice , Mice, Knockout , Neurons/physiology , Nuclear Proteins/genetics , Phosphorylation/physiology , Primary Cell Culture , Transcription Factors/genetics , Zinc Finger Protein GLI1/metabolism
18.
Cancers (Basel) ; 11(3)2019 Mar 13.
Article in English | MEDLINE | ID: mdl-30871215

ABSTRACT

Glioblastoma (GBM) has a dismal prognosis and successful elimination of GBM stem cells (GSCs) is a high-priority as these cells are responsible for tumor regrowth following therapy and ultimately patient relapse. Natural products and their derivatives continue to be a source for the development of effective anticancer drugs and have been shown to effectively target pathways necessary for cancer stem cell self-renewal and proliferation. We generated a series of curcumin inspired bis-chalcones and examined their effect in multiple patient-derived GSC lines. Of the 19 compounds synthesized, four analogs robustly induced GSC death in six separate GSC lines, with a half maximal inhibitory concentration (IC50) ranging from 2.7⁻5.8 µM and significantly reduced GSC neurosphere formation at sub-cytotoxic levels. Structural analysis indicated that the presence of a methoxy group at position 3 of the lateral phenylic appendages was important for activity. Pathway and drug connectivity analysis of gene expression changes in response to treatment with the most active bis-chalcone 4j (the 3,4,5 trimethoxy substituted analog) suggested that the mechanism of action was the induction of endoplasmic reticulum (ER) stress and unfolded protein response (UPR) mediated cell death. This was confirmed by Western blot analysis in which 4j induced robust increases in CHOP, p-jun and caspase 12. The UPR is believed to play a significant role in GBM pathogenesis and resistance to therapy and as such represents a promising therapeutic target.

20.
Nucleic Acids Res ; 47(D1): D963-D970, 2019 01 08.
Article in English | MEDLINE | ID: mdl-30371892

ABSTRACT

DrugCentral is a drug information resource (http://drugcentral.org) open to the public since 2016 and previously described in the 2017 Nucleic Acids Research Database issue. Since the 2016 release, 103 new approved drugs were updated. The following new data sources have been included: Food and Drug Administration (FDA) Adverse Event Reporting System (FAERS), FDA Orange Book information, L1000 gene perturbation profile distance/similarity matrices and estimated protonation constants. New and existing entries have been updated with the latest information from scientific literature, drug labels and external databases. The web interface has been updated to display and query new data. The full database dump and data files are available for download from the DrugCentral website.


Subject(s)
Databases, Pharmaceutical , Drug Approval/statistics & numerical data , Drug-Related Side Effects and Adverse Reactions , Gene Expression/drug effects , Pharmaceutical Preparations/classification , Proteins/classification
SELECTION OF CITATIONS
SEARCH DETAIL
...