Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
1.
Nat Commun ; 15(1): 2990, 2024 Apr 06.
Article in English | MEDLINE | ID: mdl-38582801

ABSTRACT

The formation of extracellular DNA traps (ETosis) is a first response mechanism by specific immune cells following exposure to microbes. Initially characterized in vertebrate neutrophils, cells capable of ETosis have been discovered recently in diverse non-vertebrate taxa. To assess the conservation of ETosis between evolutionarily distant non-vertebrate phyla, we observed and quantified ETosis using the model ctenophore Mnemiopsis leidyi and the oyster Crassostrea gigas. Here we report that ctenophores - thought to have diverged very early from the metazoan stem lineage - possess immune-like cells capable of phagocytosis and ETosis. We demonstrate that both Mnemiopsis and Crassostrea immune cells undergo ETosis after exposure to diverse microbes and chemical agents that stimulate ion flux. We thus propose that ETosis is an evolutionarily conserved metazoan defense against pathogens.


Subject(s)
Ctenophora , Extracellular Traps , Animals , Ctenophora/genetics , Neutrophils
2.
J Immunol ; 212(11): 1680-1692, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38607278

ABSTRACT

Plasmacytoid dendritic cells (pDCs) are strongly implicated as a major source of IFN-I in systemic lupus erythematosus (SLE), triggered through TLR-mediated recognition of nucleic acids released from dying cells. However, relatively little is known about how TLR signaling and IFN-I production are regulated in pDCs. In this article, we describe a role for integrin αvß3 in regulating TLR responses and IFN-I production by pDCs in mouse models. We show that αv and ß3-knockout pDCs produce more IFN-I and inflammatory cytokines than controls when stimulated through TLR7 and TLR9 in vitro and in vivo. Increased cytokine production was associated with delayed acidification of endosomes containing TLR ligands, reduced LC3 conjugation, and increased TLR signaling. This dysregulated TLR signaling results in activation of B cells and promotes germinal center (GC) B cell and plasma cell expansion. Furthermore, in a mouse model of TLR7-driven lupus-like disease, deletion of αvß3 from pDCs causes accelerated autoantibody production and pathology. We therefore identify a pDC-intrinsic role for αvß3 in regulating TLR signaling and preventing activation of autoreactive B cells. Because αvß3 serves as a receptor for apoptotic cells and cell debris, we hypothesize that this regulatory mechanism provides important contextual cues to pDCs and functions to limit responses to self-derived nucleic acids.


Subject(s)
Autoimmunity , Dendritic Cells , Integrin alphaVbeta3 , Lupus Erythematosus, Systemic , Mice, Knockout , Signal Transduction , Toll-Like Receptor 7 , Animals , Mice , Dendritic Cells/immunology , Integrin alphaVbeta3/immunology , Integrin alphaVbeta3/metabolism , Autoimmunity/immunology , Toll-Like Receptor 7/immunology , Toll-Like Receptor 7/metabolism , Toll-Like Receptor 7/genetics , Lupus Erythematosus, Systemic/immunology , Signal Transduction/immunology , Mice, Inbred C57BL , Cytokines/metabolism , Cytokines/immunology , Toll-Like Receptor 9/immunology , Toll-Like Receptor 9/metabolism , B-Lymphocytes/immunology , Autoantibodies/immunology , Membrane Glycoproteins/immunology , Membrane Glycoproteins/metabolism , Lymphocyte Activation/immunology , Disease Models, Animal
3.
Elife ; 122024 Mar 22.
Article in English | MEDLINE | ID: mdl-38517935

ABSTRACT

Large transcellular pores elicited by bacterial mono-ADP-ribosyltransferase (mART) exotoxins inhibiting the small RhoA GTPase compromise the endothelial barrier. Recent advances in biophysical modeling point toward membrane tension and bending rigidity as the minimal set of mechanical parameters determining the nucleation and maximal size of transendothelial cell macroaperture (TEM) tunnels induced by bacterial RhoA-targeting mART exotoxins. We report that cellular depletion of caveolin-1, the membrane-embedded building block of caveolae, and depletion of cavin-1, the master regulator of caveolae invaginations, increase the number of TEMs per cell. The enhanced occurrence of TEM nucleation events correlates with a reduction in cell height due to the increase in cell spreading and decrease in cell volume, which, together with the disruption of RhoA-driven F-actin meshwork, favor membrane apposition for TEM nucleation. Strikingly, caveolin-1 specifically controls the opening speed of TEMs, leading to their dramatic 5.4-fold larger widening. Consistent with the increase in TEM density and width in siCAV1 cells, we record a higher lethality in CAV1 KO mice subjected to a catalytically active mART exotoxin targeting RhoA during staphylococcal bloodstream infection. Combined theoretical modeling with independent biophysical measurements of plasma membrane bending rigidity points toward a specific contribution of caveolin-1 to membrane stiffening in addition to the role of cavin-1/caveolin-1-dependent caveolae in the control of membrane tension homeostasis.


Subject(s)
Caveolin 1 , Endothelial Cells , Animals , Mice , Caveolae/metabolism , Caveolin 1/metabolism , Cell Membrane/metabolism , Endothelial Cells/metabolism , Exotoxins/metabolism
4.
Sci Immunol ; 9(91): eabq6541, 2024 Jan 05.
Article in English | MEDLINE | ID: mdl-38181093

ABSTRACT

Pore-forming toxins (PFTs) are the largest class of bacterial toxins and contribute to virulence by triggering host cell death. Vertebrates also express endogenous pore-forming proteins that induce cell death as part of host defense. To mitigate damage and promote survival, cells mobilize membrane repair mechanisms to neutralize and counteract pores, but how these pathways are activated is poorly understood. Here, we use a transposon-based gene activation screen to discover pathways that counteract the cytotoxicity of the archetypal PFT Staphylococcus aureus α-toxin. We identify the endolysosomal protein LITAF as a mediator of cellular resistance to PFT-induced cell death that is active against both bacterial toxins and the endogenous pore, gasdermin D, a terminal effector of pyroptosis. Activation of the ubiquitin ligase NEDD4 by potassium efflux mobilizes LITAF to recruit the endosomal sorting complexes required for transport (ESCRT) machinery to repair damaged membrane. Cells lacking LITAF, or carrying naturally occurring disease-associated mutations of LITAF, are highly susceptible to pore-induced death. Notably, LITAF-mediated repair occurs at endosomal membranes, resulting in expulsion of damaged membranes as exosomes, rather than through direct excision of pores from the surface plasma membrane. These results identify LITAF as a key effector that links sensing of cellular damage to repair.


Subject(s)
Bacterial Toxins , Pyroptosis , Animals , Cell Death , Cell Membrane , Endosomes
5.
Adv Sci (Weinh) ; 10(30): e2302249, 2023 10.
Article in English | MEDLINE | ID: mdl-37658522

ABSTRACT

Super-resolution optical imaging tools are crucial in microbiology to understand the complex structures and behavior of microorganisms such as bacteria, fungi, and viruses. However, the capabilities of these tools, particularly when it comes to imaging pathogens and infected tissues, remain limited. MicroMagnify (µMagnify) is developed, a nanoscale multiplexed imaging method for pathogens and infected tissues that are derived from an expansion microscopy technique with a universal biomolecular anchor. The combination of heat denaturation and enzyme cocktails essential is found for robust cell wall digestion and expansion of microbial cells and infected tissues without distortion. µMagnify efficiently retains biomolecules suitable for high-plex fluorescence imaging with nanoscale precision. It demonstrates up to eightfold expansion with µMagnify on a broad range of pathogen-containing specimens, including bacterial and fungal biofilms, infected culture cells, fungus-infected mouse tone, and formalin-fixed paraffin-embedded human cornea infected by various pathogens. Additionally, an associated virtual reality tool is developed to facilitate the visualization and navigation of complex 3D images generated by this method in an immersive environment allowing collaborative exploration among researchers worldwide. µMagnify is a valuable imaging platform for studying how microbes interact with their host systems and enables the development of new diagnosis strategies against infectious diseases.


Subject(s)
Bacteria , Microscopy , Humans , Animals , Mice , Microscopy/methods , Optical Imaging
7.
Res Sq ; 2023 Mar 06.
Article in English | MEDLINE | ID: mdl-36945526

ABSTRACT

Super-resolution optical imaging tools are crucial in microbiology to understand the complex structures and behavior of microorganisms such as bacteria, fungi, and viruses. However, the capabilities of these tools, particularly when it comes to imaging pathogens and infected tissues, remain limited. We developed µMagnify, a nanoscale multiplexed imaging method for pathogens and infected tissues that are derived from an expansion microscopy technique with a universal biomolecular anchor. We formulated an enzyme cocktail specifically designed for robust cell wall digestion and expansion of microbial cells without distortion while efficiently retaining biomolecules suitable for high-plex fluorescence imaging with nanoscale precision. Additionally, we developed an associated virtual reality tool to facilitate the visualization and navigation of complex three-dimensional images generated by this method in an immersive environment allowing collaborative exploration among researchers around the world. µMagnify is a valuable imaging platform for studying how microbes interact with their host systems and enables development of new diagnosis strategies against infectious diseases.

8.
Cells ; 11(23)2022 Dec 01.
Article in English | MEDLINE | ID: mdl-36497137

ABSTRACT

The engagement of B cells with surface-tethered antigens triggers the formation of an immune synapse (IS), where the local secretion of lysosomes can facilitate antigen uptake. Lysosomes intersect with other intracellular processes, such as Toll-like Receptor (TLR) signaling and autophagy coordinating immune responses. However, the crosstalk between these processes and antigen presentation remains unclear. Here, we show that TLR stimulation induces autophagy in B cells and decreases their capacity to extract and present immobilized antigens. We reveal that TLR stimulation restricts lysosome repositioning to the IS by triggering autophagy-dependent degradation of GEF-H1, a Rho GTP exchange factor required for stable lysosome recruitment at the synaptic membrane. GEF-H1 degradation is not observed in B cells that lack αV integrins and are deficient in TLR-induced autophagy. Accordingly, these cells show efficient antigen extraction in the presence of TLR stimulation, confirming the role of TLR-induced autophagy in limiting antigen extraction. Overall, our results suggest that resources associated with autophagy regulate TLR and BCR-dependent functions, which can finetune antigen uptake by B cells. This work helps to understand the mechanisms by which B cells are activated by surface-tethered antigens in contexts of subjacent inflammation before antigen recognition, such as sepsis.


Subject(s)
B-Lymphocytes , Receptors, Antigen, B-Cell , Receptors, Antigen, B-Cell/metabolism , Antigens/metabolism , Toll-Like Receptors/metabolism , Autophagy , Antigens, Surface/metabolism , Rho Guanine Nucleotide Exchange Factors/metabolism
9.
J Oral Maxillofac Surg ; 80(7): 1238-1253, 2022 07.
Article in English | MEDLINE | ID: mdl-35439437

ABSTRACT

PURPOSE: Platelet concentrate generation protocols have undergone several modifications in recent years; in light of these new developments, this study review aims to evaluate the effects of platelet-rich fibrin (PRF) and the new centrifugation protocols, advanced platelet-rich fibrin (A-PRF), and leukocyte platelet-rich fibrin (L-PRF), after extraction of impacted mandibular third molar. Specifically, we assessed pain control, edema, trismus, and soft tissue healing, and also measured the degree of periodontal regeneration adjacent to the second molar. METHODS: PubMed, MEDLINE, EMBASE, Web of Science, Virtual health library (BVS), and Cochrane Library were searched up to Julye 2021; randomized controlled studies were included. This report followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement and PICO (population, intervention, comparison, outcome) questions. This review has been registered at the International Prospective Register of Ongoing Systematic Reviews (PROSPERO) under the number CRD42019136701. The risk of bias screening and data extraction was performed according to the guidelines recommended by Cochrane. The quantitative analysis was performed using RevMan version 5.4. RESULTS: Of 17 studies included in the systematic review, 11 were eligible for the meta-analysis. The use of L-PRF was not associated with better soft tissue healing at day 7. (standard mean difference = -0.70; 95% confidence interval, -3.50 to 2.10; Z = 0.49; P = .62; heterogeneity = 0.00001; I2 = 97%). With L-PRF, qualitative analysis revealed better pocket depth and insertion level, and also better pain control at 1 and 3 days. With A-PRF, a lower consumption of analgesics was observed than with L-PRF. With both A-PRF and L-PRF, better control of edema (but not trismus) was observed. CONCLUSIONS: The use of L-PRF and A-PRF allows better control of pain and edema compared with the use of standard PRF protocols, but neither has an effect on trismus. The PRF and L-PRF protocols improve soft tissue healing, although not to a statistically significant degree; however, they could improve probing depth at the third month after third molar surgery.


Subject(s)
Platelet-Rich Fibrin , Tooth, Impacted , Centrifugation , Clinical Protocols , Edema/prevention & control , Humans , Molar, Third/surgery , Pain , Postoperative Complications/prevention & control , Tooth Extraction/adverse effects , Tooth, Impacted/complications , Tooth, Impacted/surgery , Trismus/prevention & control
10.
Science ; 370(6513): 241-247, 2020 10 09.
Article in English | MEDLINE | ID: mdl-32855215

ABSTRACT

Recent outbreaks of Ebola virus (EBOV) and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have exposed our limited therapeutic options for such diseases and our poor understanding of the cellular mechanisms that block viral infections. Using a transposon-mediated gene-activation screen in human cells, we identify that the major histocompatibility complex (MHC) class II transactivator (CIITA) has antiviral activity against EBOV. CIITA induces resistance by activating expression of the p41 isoform of invariant chain CD74, which inhibits viral entry by blocking cathepsin-mediated processing of the Ebola glycoprotein. We further show that CD74 p41 can block the endosomal entry pathway of coronaviruses, including SARS-CoV-2. These data therefore implicate CIITA and CD74 in host defense against a range of viruses, and they identify an additional function of these proteins beyond their canonical roles in antigen presentation.


Subject(s)
Antigens, Differentiation, B-Lymphocyte/physiology , Betacoronavirus/physiology , Coronavirus Infections/immunology , Ebolavirus/physiology , Hemorrhagic Fever, Ebola/immunology , Histocompatibility Antigens Class II/physiology , Host-Pathogen Interactions/immunology , Nuclear Proteins/physiology , Pneumonia, Viral/immunology , Trans-Activators/physiology , Virus Internalization , Antigens, Differentiation, B-Lymphocyte/genetics , COVID-19 , Cell Line, Tumor , Coronavirus Infections/virology , DNA Transposable Elements , Endosomes/virology , Genetic Testing , Hemorrhagic Fever, Ebola/virology , Histocompatibility Antigens Class II/genetics , Host-Pathogen Interactions/genetics , Humans , Nuclear Proteins/genetics , Pandemics , Pneumonia, Viral/virology , SARS-CoV-2 , Trans-Activators/genetics , Transcription, Genetic
11.
J Mol Biol ; 430(21): 4028-4035, 2018 10 19.
Article in English | MEDLINE | ID: mdl-29949752

ABSTRACT

ConfocalVR is a virtual reality (VR) application created to improve the ability of researchers to study the complexity of cell architecture. Confocal microscopes take pictures of fluorescently labeled proteins or molecules at different focal planes to create a stack of two-dimensional images throughout the specimen. Current software applications reconstruct the three-dimensional (3D) image and render it as a two-dimensional projection onto a computer screen where users need to rotate the image to expose the full 3D structure. This process is mentally taxing, breaks down if you stop the rotation, and does not take advantage of the eye's full field of view. ConfocalVR exploits consumer-grade VR systems to fully immerse the user in the 3D cellular image. In this virtual environment, the user can (1) adjust image viewing parameters without leaving the virtual space, (2) reach out and grab the image to quickly rotate and scale the image to focus on key features, and (3) interact with other users in a shared virtual space enabling real-time collaborative exploration and discussion. We found that immersive VR technology allows the user to rapidly understand cellular architecture and protein or molecule distribution. We note that it is impossible to understand the value of immersive visualization without experiencing it first hand, so we encourage readers to get access to a VR system, download this software, and evaluate it for yourself. The ConfocalVR software is available for download at http://www.confocalvr.com, and is free for nonprofits.


Subject(s)
Microscopy, Confocal , Software , Virtual Reality , Databases, Factual , Image Processing, Computer-Assisted , Imaging, Three-Dimensional , Microscopy, Confocal/methods
12.
Mol Biol Cell ; 2017 Aug 09.
Article in English | MEDLINE | ID: mdl-28794268

ABSTRACT

The endothelium serves as a protective semipermeable barrier in blood vessels and lymphatic vessels. Leukocytes and pathogens can pass directly through the endothelium by opening holes in endothelial cells, known as transcellular tunnels, which are formed by contact and self-fusion of the apical and basal plasma membranes. Here we test the hypothesis that the actin cytoskeleton is the primary barrier to transcellular tunnel formation using a combination of atomic force microscopy and fluorescence microscopy of live cells. We find that localized mechanical forces are sufficient to induce the formation of transcellular tunnels in HUVECs. When HUVECs are exposed to the bacterial toxin EDIN, which can induce spontaneous transcellular tunnels, less mechanical work is required to form tunnels due to the reduced cytoskeletal stiffness and thickness of these cells, similar to the effects of a ROCK inhibitor. We also observe actin enrichment in response to mechanical indentation that is reduced in cells exposed to the bacterial toxin. Our study shows that the actin cytoskeleton of endothelial cells provides both passive and active resistance against transcellular tunnel formation, serving as a mechanical barrier that can be overcome by mechanical force as well as disruption of the cytoskeleton.

13.
Nat Commun ; 8: 15839, 2017 06 23.
Article in English | MEDLINE | ID: mdl-28643776

ABSTRACT

Transendothelial cell macroaperture (TEM) tunnels control endothelium barrier function and are triggered by several toxins from pathogenic bacteria that provoke vascular leakage. Cellular dewetting theory predicted that a line tension of uncharacterized origin works at TEM boundaries to limit their widening. Here, by conducting high-resolution microscopy approaches we unveil the presence of an actomyosin cable encircling TEMs. We develop a theoretical cellular dewetting framework to interpret TEM physical parameters that are quantitatively determined by laser ablation experiments. This establishes the critical role of ezrin and non-muscle myosin II (NMII) in the progressive implementation of line tension. Mechanistically, fluorescence-recovery-after-photobleaching experiments point for the upstream role of ezrin in stabilizing actin filaments at the edges of TEMs, thereby favouring their crosslinking by NMIIa. Collectively, our findings ascribe to ezrin and NMIIa a critical function of enhancing line tension at the cell boundary surrounding the TEMs by promoting the formation of an actomyosin ring.


Subject(s)
Actomyosin/metabolism , Cytoskeletal Proteins/metabolism , Nonmuscle Myosin Type IIA/metabolism , Actin Cytoskeleton/chemistry , Actin Cytoskeleton/genetics , Actin Cytoskeleton/metabolism , Actomyosin/chemistry , Actomyosin/genetics , Cytoskeletal Proteins/chemistry , Cytoskeletal Proteins/genetics , Human Umbilical Vein Endothelial Cells/chemistry , Human Umbilical Vein Endothelial Cells/metabolism , Humans , Nonmuscle Myosin Type IIA/chemistry , Nonmuscle Myosin Type IIA/genetics , Surface Tension
14.
Nat Commun ; 7: 10917, 2016 Mar 11.
Article in English | MEDLINE | ID: mdl-26965188

ABSTRACT

Integrin signalling triggers cytoskeletal rearrangements, including endocytosis and exocytosis of integrins and other membrane proteins. In addition to recycling integrins, this trafficking can also regulate intracellular signalling pathways. Here we describe a role for αv integrins in regulating Toll-like receptor (TLR) signalling by modulating intracellular trafficking. We show that deletion of αv or ß3 causes increased B-cell responses to TLR stimulation in vitro, and αv-conditional knockout mice have elevated antibody responses to TLR-ligand-associated antigens. αv regulates TLR signalling by promoting recruitment of the autophagy component LC3 (microtubule-associated proteins 1 light chain 3) to TLR-containing endosomes, which is essential for progression from NF-κB to IRF signalling, and ultimately for traffic to lysosomes where signalling is terminated. Disruption of LC3 recruitment leads to prolonged NF-κB signalling and increased B-cell proliferation and antibody production. This work identifies a previously unrecognized role for αv and the autophagy components LC3 and atg5 in regulating TLR signalling and B-cell immunity.


Subject(s)
B-Lymphocytes/immunology , Integrin alphaV/immunology , Microtubule-Associated Proteins/immunology , Protein Transport/immunology , Toll-Like Receptors/immunology , Animals , Autophagy , Autophagy-Related Protein 5 , Blotting, Western , Cell Proliferation , Enzyme-Linked Immunosorbent Assay , Flow Cytometry , In Vitro Techniques , Integrin alphaV/genetics , Integrin beta3/genetics , Mice , Mice, Knockout , Microscopy, Confocal , Signal Transduction/immunology
15.
Cytoskeleton (Hoboken) ; 72(10): 542-56, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26403219

ABSTRACT

It remains a challenge to decode the molecular basis of the long-term actin cytoskeleton rearrangements that are governed by the reprogramming of gene expression. Bacillus anthracis lethal toxin (LT) inhibits mitogen-activated protein kinase (MAPK) signaling, thereby modulating gene expression, with major consequences for actin cytoskeleton organization and the loss of endothelial barrier function. Using a laser ablation approach, we characterized the contractile and tensile mechanical properties of LT-induced stress fibers. These actin cables resist pulling forces that are transmitted at cell-matrix interfaces and at cell-cell discontinuous adherens junctions. We report that treating the cells with trichostatin A (TSA), a broad range inhibitor of histone deacetylases (HDACs), or with MS-275, which targets HDAC1, 2 and 3, induces stress fibers. LT decreased the cellular levels of HDAC1, 2 and 3 and reduced the global HDAC activity in the nucleus. Both the LT and TSA treatments induced Rnd3 expression, which is required for the LT-mediated induction of actin stress fibers. Furthermore, we reveal that treating the LT-intoxicated cells with garcinol, an inhibitor of histone acetyl-transferases (HATs), disrupts the stress fibers and limits the monolayer barrier dysfunctions. These data demonstrate the importance of modulating the flux of protein acetylation in order to control actin cytoskeleton organization and the endothelial cell monolayer barrier.


Subject(s)
Actins/chemistry , Antigens, Bacterial/chemistry , Bacillus anthracis/chemistry , Bacterial Toxins/chemistry , Histones/chemistry , Stress Fibers/chemistry , Acetylation , Adherens Junctions , Cell Communication , Cell Nucleus/metabolism , Endothelial Cells/cytology , Gene Expression Regulation , Human Umbilical Vein Endothelial Cells , Humans , Hydroxamic Acids/chemistry , Light , Microscopy, Fluorescence , Tensile Strength
16.
Cell Host Microbe ; 14(3): 227-9, 2013 Sep 11.
Article in English | MEDLINE | ID: mdl-24034608

ABSTRACT

Cholera toxin (CT) is the factor responsible for watery diarrhea associated with Vibrio cholerae infection. In this issue, Guichard et al. (2013) report that CT compromises intestinal epithelium barrier function via cyclic AMP (cAMP)-induced disruption of Rab11- and exocyst-dependent delivery of endocytic recycling cargo to cell-cell junctions.


Subject(s)
Cholera Toxin/metabolism , Epithelial Cells/physiology , Exosomes/drug effects , Host-Pathogen Interactions , Tight Junction Proteins/antagonists & inhibitors , Tight Junctions/physiology , Vibrio cholerae/physiology , Animals , Humans
17.
PLoS One ; 7(10): e46964, 2012.
Article in English | MEDLINE | ID: mdl-23056543

ABSTRACT

It is of interest to define bacterial toxin biochemical properties to use them as molecular-syringe devices in order to deliver enzymatic activities into host cells. Binary toxins of the AB(7/8)-type are among the most potent and specialized bacterial protein toxins. The B subunits oligomerize to form a pore that binds with high affinity host cell receptors and the enzymatic A subunit. This allows the endocytosis of the complex and subsequent injection of the A subunit into the cytosol of the host cells. Here we report that the addition of an N-terminal His(6)-tag to different proteins increased their binding affinity to the protective antigen (PA) PA(63)-channels, irrespective if they are related (C2I) or unrelated (gpJ, EDIN) to the AB(7/8)-family of toxins. His(6)-EDIN exhibited voltage-dependent increase of the stability constant for binding by a factor of about 25 when the trans-side corresponding to the cell interior was set to -70 mV. Surprisingly, the C. botulinum toxin C2II-channel did not share this feature of PA(63). Cell-based experiments demonstrated that addition of an N-terminal His(6)-tag promoted also intoxication of endothelial cells by C2I or EDIN via PA(63). Our results revealed that addition of His(6)-tags to several factors increase their binding properties to PA(63) and enhance the property to intoxicate cells.


Subject(s)
Antigens, Bacterial/chemistry , Antigens, Bacterial/metabolism , Bacterial Toxins/chemistry , Bacterial Toxins/metabolism , Histidine , Peptide Fragments/chemistry , Peptide Fragments/metabolism , Antigens, Bacterial/genetics , Bacterial Proteins/genetics , Bacterial Toxins/genetics , Electric Conductivity , Human Umbilical Vein Endothelial Cells/cytology , Human Umbilical Vein Endothelial Cells/metabolism , Humans , Lipid Bilayers/metabolism , Porosity , Protein Binding , Protein Transport , Viper Venoms/metabolism
18.
Phys Rev Lett ; 108(21): 218105, 2012 May 25.
Article in English | MEDLINE | ID: mdl-23003307

ABSTRACT

Pathogenic bacteria can cross from blood vessels to host tissues by opening transendothelial cell macroapertures (TEMs). To induce TEM opening, bacteria intoxicate endothelial cells with proteins that disrupt the contractile cytoskeletal network. Cell membrane tension is no longer resisted by contractile fibers, leading to the opening of TEMs. Here we model the opening of TEMs as a new form of dewetting. While liquid dewetting is irreversible, we show that cellular dewetting is transient. Our model predicts the minimum radius for hole nucleation, the maximum TEM size, and the dynamics of TEM opening, in good agreement with experimental data. The physical model is then coupled with biological experimental data to reveal that the protein missing in metastasis (MIM) controls the line tension at the rim of the TEM and opposes its opening.


Subject(s)
Human Umbilical Vein Endothelial Cells/metabolism , Human Umbilical Vein Endothelial Cells/ultrastructure , Models, Biological , Bacterial Proteins/pharmacology , Cell Membrane/chemistry , Cell Membrane/drug effects , Cell Membrane/metabolism , Cell Membrane/ultrastructure , Human Umbilical Vein Endothelial Cells/chemistry , Human Umbilical Vein Endothelial Cells/microbiology , Humans , Microscopy, Fluorescence/methods , Recombinant Proteins/pharmacology , Wettability
19.
J Cell Sci ; 125(Pt 18): 4241-52, 2012 Sep 15.
Article in English | MEDLINE | ID: mdl-22641690

ABSTRACT

In culture, cell confluence generates signals that commit actively growing keratinocytes to exit the cell cycle and differentiate to form a stratified epithelium. Using a comparative proteomic approach, we studied this 'confluence switch' and identified a new pathway triggered by cell confluence that regulates basement membrane (BM) protein composition by suppressing the uPA-uPAR-plasmin pathway. Indeed, confluence triggers adherens junction maturation and enhances TGF-ß and activin A activity, resulting in increased deposition of PAI-1 and perlecan in the BM. Extracellular matrix (ECM)-accumulated PAI-1 suppresses the uPA-uPAR-plasmin pathway and further enhances perlecan deposition by inhibiting its plasmin-dependent proteolysis. We show that perlecan deposition in the ECM strengthens cell adhesion, inhibits keratinocyte motility and promotes additional accumulation of PAI-1 in the ECM at confluence. In agreement, during wound-healing, perlecan concentrates at the wound-margin, where BM matures to stabilize keratinocyte adhesion. Our results demonstrate that confluence-dependent signaling orchestrates not only growth inhibition and differentiation, but also controls ECM proteolysis and BM formation. These data suggest that uncontrolled integration of confluence-dependent signaling, might favor skin disorders, including tumorigenesis, not only by promoting cell hyperproliferation, but also by altering protease activity and deposition of ECM components.


Subject(s)
Extracellular Matrix/metabolism , Fibrinolysin/metabolism , Keratinocytes/metabolism , Proteolysis , Signal Transduction , Activins/metabolism , Adherens Junctions/metabolism , Animals , Basement Membrane/metabolism , Cell Adhesion , Cell Differentiation , Cell Movement , Cell Proliferation , Down-Regulation , Feedback, Physiological , Heparan Sulfate Proteoglycans/metabolism , Humans , Keratinocytes/pathology , Mice , Plasminogen/metabolism , Plasminogen Activator Inhibitor 1/metabolism , Protein Binding , Proteomics , Receptors, Urokinase Plasminogen Activator/genetics , Receptors, Urokinase Plasminogen Activator/metabolism , Transforming Growth Factor beta/metabolism , Urokinase-Type Plasminogen Activator/genetics , Urokinase-Type Plasminogen Activator/metabolism , Wound Healing
20.
Dev Cell ; 21(5): 959-65, 2011 Nov 15.
Article in English | MEDLINE | ID: mdl-22036506

ABSTRACT

Rac1 small GTPase controls essential aspects of cell biology and is a direct target of numerous bacterial virulence factors. The CNF1 toxin of pathogenic Escherichia coli addresses Rac1 to ubiquitin-proteasome system (UPS). We report the essential role of the tumor suppressor HACE1, a HECT-domain containing E3 ubiquitin-ligase, in the targeting of Rac1 to UPS. HACE1 binds preferentially GTP-bound Rac1 and catalyzes its polyubiquitylation. HACE1 expression increases the ubiquitylation of Rac1, when the GTPase is activated by point mutations or by the GEF-domain of Dbl. RNAi-mediated depletion of HACE1 blocks the ubiquitylation of active Rac1 and increases GTP-bound Rac1 cellular levels. HACE1 antagonizes cell isotropic spreading, a hallmark of Rac1 activation, and is required for endothelial cell monolayer invasion by bacteria. Together, these data establish the role of the HACE1 E3 ubiquitin-ligase in controlling Rac1 ubiquitylation and activity.


Subject(s)
Biocatalysis , Ubiquitin-Protein Ligases/metabolism , Ubiquitination , rac1 GTP-Binding Protein/metabolism , Animals , CHO Cells , Cells, Cultured , Cricetinae , HEK293 Cells , Humans , Proteasome Endopeptidase Complex/metabolism , Ubiquitin/metabolism , Ubiquitin-Protein Ligases/biosynthesis
SELECTION OF CITATIONS
SEARCH DETAIL
...