Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Cell Death Dis ; 12(6): 538, 2021 05 25.
Article in English | MEDLINE | ID: mdl-34035216

ABSTRACT

Removal of apoptotic cells by phagocytes (also called efferocytosis) is a crucial process for tissue homeostasis. Professional phagocytes express a plethora of surface receptors enabling them to sense and engulf apoptotic cells, thus avoiding persistence of dead cells and cellular debris and their consequent effects. Dysregulation of efferocytosis is thought to lead to secondary necrosis and associated inflammation and immune activation. Efferocytosis in primarily murine macrophages and dendritic cells has been shown to require TAM RTKs, with MERTK and AXL being critical for clearance of apoptotic cells. The functional role of human orthologs, especially the exact contribution of each individual receptor is less well studied. Here we show that human macrophages differentiated in vitro from iPSC-derived precursor cells express both AXL and MERTK and engulf apoptotic cells. TAM RTK agonism by the natural ligand growth-arrest specific 6 (GAS6) significantly enhanced such efferocytosis. Using a newly-developed mouse model of kinase-dead MERTK, we demonstrate that MERTK kinase activity is essential for efferocytosis in peritoneal macrophages in vivo. Moreover, human iPSC-derived macrophages treated in vitro with blocking antibodies or small molecule inhibitors recapitulated this observation. Hence, our results highlight a conserved MERTK function between mice and humans, and the critical role of its kinase activity in homeostatic efferocytosis.


Subject(s)
Macrophages/physiology , Phagocytosis/physiology , c-Mer Tyrosine Kinase/metabolism , Animals , Cell Differentiation , Cells, Cultured , HEK293 Cells , Humans , Induced Pluripotent Stem Cells/drug effects , Induced Pluripotent Stem Cells/physiology , Intercellular Signaling Peptides and Proteins/physiology , Ligands , Macrophages/drug effects , Mice , Mice, Knockout , Phagocytosis/drug effects , Phagocytosis/genetics , Phosphatidylserines/pharmacology , c-Mer Tyrosine Kinase/agonists , c-Mer Tyrosine Kinase/genetics
2.
Front Immunol ; 12: 635615, 2021.
Article in English | MEDLINE | ID: mdl-33777025

ABSTRACT

Circulating CD11c+ B cells are a key phenomenon in certain types of autoimmunity but have also been described in the context of regular immune responses (i.e., infections, vaccination). Using mass cytometry to profile 46 different markers on individual immune cells, we systematically initially confirmed the presence of increased CD11c+ B cells in the blood of systemic lupus erythematosus (SLE) patients. Notably, significant differences in the expression of CD21, CD27, and CD38 became apparent between CD11c- and CD11c+ B cells. We observed direct correlation of the frequency of CD21-CD27- B cells and CD21-CD38- B cells with CD11c+ B cells, which were most pronounced in SLE compared to primary Sjögren's syndrome patients (pSS) and healthy donors (HD). Thus, CD11c+ B cells resided mainly within memory subsets and were enriched in CD27-IgD-, CD21-CD27-, and CD21-CD38- B cell phenotypes. CD11c+ B cells from all donor groups (SLE, pSS, and HD) showed enhanced CD69, Ki-67, CD45RO, CD45RA, and CD19 expression, whereas the membrane expression of CXCR5 and CD21 were diminished. Notably, SLE CD11c+ B cells showed enhanced expression of the checkpoint molecules CD86, PD1, PDL1, CD137, VISTA, and CTLA-4 compared to HD. The substantial increase of CD11c+ B cells with a CD21- phenotype co-expressing distinct activation and checkpoint markers, points to a quantitative increased alternate (extrafollicular) B cell activation route possibly related to abnormal immune regulation as seen under the striking inflammatory conditions of SLE which shows a characteristic PD-1/PD-L1 upregulation.


Subject(s)
Autoimmunity , B-Lymphocytes/immunology , CD11c Antigen/blood , Flow Cytometry , Immunophenotyping , Lupus Erythematosus, Systemic/immunology , Lymphocyte Activation , Sjogren's Syndrome/immunology , ADP-ribosyl Cyclase 1/blood , B-Lymphocytes/metabolism , B7-H1 Antigen/blood , Biomarkers/blood , Case-Control Studies , Humans , Lupus Erythematosus, Systemic/blood , Lupus Erythematosus, Systemic/diagnosis , Membrane Glycoproteins/blood , Phenotype , Programmed Cell Death 1 Receptor/blood , Receptors, Complement 3d/blood , Sjogren's Syndrome/blood , Sjogren's Syndrome/diagnosis , Tumor Necrosis Factor Receptor Superfamily, Member 7/blood
SELECTION OF CITATIONS
SEARCH DETAIL