Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Injury ; 47(8): 1608-12, 2016 Aug.
Article in English | MEDLINE | ID: mdl-27297706

ABSTRACT

INTRODUCTION: Mobile C-arm imaging is commonly used in operating rooms worldwide. Especially in orthopaedic surgery, intraoperative C-arms are used on a daily basis. Because of new minimally-invasive surgical procedures a development in intraoperative imaging is required. The purpose of this article is investigate if the choice of mobile C-arms with flat panel detector technology (Siemens Cios Alpha and Ziehm Vision RFD) influences image quality and dose using standard, commercially available test devices. MATERIALS AND METHODS: For a total of four clinical application settings, two zoom formats, and all dose levels provided, the transmission dose was measured and representative images were recorded for each test device. The data was scored by four observers to assess low contrast and spatial resolution performance. The results were converted to a relative image quality figure allowing for a direct image quality and dose comparison of the two systems. RESULTS: For one test device, the Cios Alpha system achieved equivalent (within the inter-observer standard error) or better low contrast resolution scores at significantly lower dose levels, while the results of the other test device suggested that both systems achieved similar image quality at the same dose. The Cios Alpha system achieved equivalent or better spatial resolution at significantly lower dose for all application settings except for Cardiac, where a comparable spatial resolution was achieved at the same dose. CONCLUSION: The correct choice of a mobile C-arm is very important, because it can lead to a reduction of the intraoperative radiation dose without negative effects on image quality. This can be a big advantage to reduce intraoperative radiation not only for the patient but also for the entire OR-team.


Subject(s)
Fluoroscopy/instrumentation , Monitoring, Intraoperative/instrumentation , Orthopedic Procedures , Radiation Dosage , Radiographic Image Interpretation, Computer-Assisted/instrumentation , X-Rays , Dose-Response Relationship, Radiation , Equipment Design , Humans , Intraoperative Period , Quality Control , Signal-To-Noise Ratio
2.
Nat Commun ; 3: 1276, 2012.
Article in English | MEDLINE | ID: mdl-23232406

ABSTRACT

Diffractive imaging with free-electron lasers allows structure determination from ensembles of weakly scattering identical nanoparticles. The ultra-short, ultra-bright X-ray pulses provide snapshots of the randomly oriented particles frozen in time, and terminate before the onset of structural damage. As signal strength diminishes for small particles, the synthesis of a three-dimensional diffraction volume requires simultaneous involvement of all data. Here we report the first application of a three-dimensional spatial frequency correlation analysis to carry out this synthesis from noisy single-particle femtosecond X-ray diffraction patterns of nearly identical samples in random and unknown orientations, collected at the Linac Coherent Light Source. Our demonstration uses unsupported test particles created via aerosol self-assembly, and composed of two polystyrene spheres of equal diameter. The correlation analysis avoids the need for orientation determination entirely. This method may be applied to the structural determination of biological macromolecules in solution.

3.
Nature ; 486(7404): 513-7, 2012 Jun 27.
Article in English | MEDLINE | ID: mdl-22739316

ABSTRACT

The morphology of micrometre-size particulate matter is of critical importance in fields ranging from toxicology to climate science, yet these properties are surprisingly difficult to measure in the particles' native environment. Electron microscopy requires collection of particles on a substrate; visible light scattering provides insufficient resolution; and X-ray synchrotron studies have been limited to ensembles of particles. Here we demonstrate an in situ method for imaging individual sub-micrometre particles to nanometre resolution in their native environment, using intense, coherent X-ray pulses from the Linac Coherent Light Source free-electron laser. We introduced individual aerosol particles into the pulsed X-ray beam, which is sufficiently intense that diffraction from individual particles can be measured for morphological analysis. At the same time, ion fragments ejected from the beam were analysed using mass spectrometry, to determine the composition of single aerosol particles. Our results show the extent of internal dilation symmetry of individual soot particles subject to non-equilibrium aggregation, and the surprisingly large variability in their fractal dimensions. More broadly, our methods can be extended to resolve both static and dynamic morphology of general ensembles of disordered particles. Such general morphology has implications in topics such as solvent accessibilities in proteins, vibrational energy transfer by the hydrodynamic interaction of amino acids, and large-scale production of nanoscale structures by flame synthesis.


Subject(s)
Aerosols/analysis , Aerosols/chemistry , Fractals , Mass Spectrometry , Motion , Soot/analysis , Soot/chemistry , Amino Acids/chemistry , Electrons , Lasers , Nanoparticles , Particle Size , Proteins/chemistry , Solvents/chemistry , Vibration , X-Ray Diffraction
4.
Opt Express ; 20(12): 13501-12, 2012 Jun 04.
Article in English | MEDLINE | ID: mdl-22714377

ABSTRACT

The emergence of femtosecond diffractive imaging with X-ray lasers has enabled pioneering structural studies of isolated particles, such as viruses, at nanometer length scales. However, the issue of missing low frequency data significantly limits the potential of X-ray lasers to reveal sub-nanometer details of micrometer-sized samples. We have developed a new technique of dark-field coherent diffractive imaging to simultaneously overcome the missing data issue and enable us to harness the unique contrast mechanisms available in dark-field microscopy. Images of airborne particulate matter (soot) up to two microns in length were obtained using single-shot diffraction patterns obtained at the Linac Coherent Light Source, four times the size of objects previously imaged in similar experiments. This technique opens the door to femtosecond diffractive imaging of a wide range of micrometer-sized materials that exhibit irreproducible complexity down to the nanoscale, including airborne particulate matter, small cells, bacteria and gold-labeled biological samples.


Subject(s)
Electrons , Imaging, Three-Dimensional/methods , Lasers , Computer Simulation , Microscopy, Electron, Transmission , Soot/analysis , Time Factors , X-Rays
SELECTION OF CITATIONS
SEARCH DETAIL
...