Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 2 de 2
1.
J Med Internet Res ; 26: e44948, 2024 May 08.
Article En | MEDLINE | ID: mdl-38718385

BACKGROUND: Monitoring of gait patterns by insoles is popular to study behavior and activity in the daily life of people and throughout the rehabilitation process of patients. Live data analyses may improve personalized prevention and treatment regimens, as well as rehabilitation. The M-shaped plantar pressure curve during the stance phase is mainly defined by the loading and unloading slope, 2 maxima, 1 minimum, as well as the force during defined periods. When monitoring gait continuously, walking uphill or downhill could affect this curve in characteristic ways. OBJECTIVE: For walking on a slope, typical changes in the stance phase curve measured by insoles were hypothesized. METHODS: In total, 40 healthy participants of both sexes were fitted with individually calibrated insoles with 16 pressure sensors each and a recording frequency of 100 Hz. Participants walked on a treadmill at 4 km/h for 1 minute in each of the following slopes: -20%, -15%, -10%, -5%, 0%, 5%, 10%, 15%, and 20%. Raw data were exported for analyses. A custom-developed data platform was used for data processing and parameter calculation, including step detection, data transformation, and normalization for time by natural cubic spline interpolation and force (proportion of body weight). To identify the time-axis positions of the desired maxima and minimum among the available extremum candidates in each step, a Gaussian filter was applied (σ=3, kernel size 7). Inconclusive extremum candidates were further processed by screening for time plausibility, maximum or minimum pool filtering, and monotony. Several parameters that describe the curve trajectory were computed for each step. The normal distribution of data was tested by the Kolmogorov-Smirnov and Shapiro-Wilk tests. RESULTS: Data were normally distributed. An analysis of variance with the gait parameters as dependent and slope as independent variables revealed significant changes related to the slope for the following parameters of the stance phase curve: the mean force during loading and unloading, the 2 maxima and the minimum, as well as the loading and unloading slope (all P<.001). A simultaneous increase in the loading slope, the first maximum and the mean loading force combined with a decrease in the mean unloading force, the second maximum, and the unloading slope is characteristic for downhill walking. The opposite represents uphill walking. The minimum had its peak at horizontal walking and values dropped when walking uphill and downhill alike. It is therefore not a suitable parameter to distinguish between uphill and downhill walking. CONCLUSIONS: While patient-related factors, such as anthropometrics, injury, or disease shape the stance phase curve on a longer-term scale, walking on slopes leads to temporary and characteristic short-term changes in the curve trajectory.


Foot , Gait , Pressure , Walking , Humans , Male , Female , Cross-Sectional Studies , Walking/physiology , Adult , Foot/physiology , Gait/physiology , Young Adult , Biomechanical Phenomena
2.
Front Bioeng Biotechnol ; 11: 1110099, 2023.
Article En | MEDLINE | ID: mdl-36873371

The analysis of gait patterns and plantar pressure distributions via insoles is increasingly used to monitor patients and treatment progress, such as recovery after surgeries. Despite the popularity of pedography, also known as baropodography, characteristic effects of anthropometric and other individual parameters on the trajectory of the stance phase curve of the gait cycle have not been previously reported. We hypothesized characteristic changes of age, body height, body weight, body mass index and handgrip strength on the plantar pressure curve trajectory during gait in healthy participants. Thirty-seven healthy women and men with an average age of 43.65 ± 17.59 years were fitted with Moticon OpenGO insoles equipped with 16 pressure sensors each. Data were recorded at a frequency of 100 Hz during walking at 4 km/h on a level treadmill for 1 minute. Data were processed via a custom-made step detection algorithm. The loading and unloading slopes as well as force extrema-based parameters were computed and characteristic correlations with the targeted parameters were identified via multiple linear regression analysis. Age showed a negative correlation with the mean loading slope. Body height correlated with Fmeanload and the loading slope. Body weight and the body mass index correlated with all analyzed parameters, except the loading slope. In addition, handgrip strength correlated with changes in the second half of the stance phase and did not affect the first half, which is likely due to stronger kick-off. However, only up to 46% of the variability can be explained by age, body weight, height, body mass index and hand grip strength. Thus, further factors must affect the trajectory of the gait cycle curve that were not considered in the present analysis. In conclusion, all analyzed measures affect the trajectory of the stance phase curve. When analyzing insole data, it might be useful to correct for the factors that were identified by using the regression coefficients presented in this paper.

...