Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Front Cardiovasc Med ; 11: 1290703, 2024.
Article in English | MEDLINE | ID: mdl-38361585

ABSTRACT

Background: Estrogen and progesterone levels undergo changes throughout the menstrual cycle. Existing literature regarding the effect of menstrual phases on cardiovascular and autonomic regulation during central hypovolemia is contradictory. Aims and study: This study aims to explore the influence of menstrual phases on cardiovascular and autonomic responses in both resting and during the central hypovolemia induced by lower body negative pressure (LBNP). This is a companion paper, in which data across the menstrual phases from healthy young females, whose results are reported in Shankwar et al. (2023), were further analysed. Methods: The study protocol consisted of three phases: (1) 30 min of supine rest; (2) 16 min of four LBNP levels; and (3) 5 min of supine recovery. Hemodynamic and autonomic responses (assessed via heart rate variability, HRV) were measured before-, during-, and after-LBNP application using Task Force Monitor® (CNSystems, Graz, Austria). Blood was also collected to measure estrogen and progesterone levels. Results: In this companion paper, we have exclusively assessed 14 females from the previous study (Shankwar et al., 2023): 8 in the follicular phase of the menstrual cycle (mean age 23.38 ± 3.58 years, height 166.00 ± 5.78 cm, weight 57.63 ± 5.39 kg and BMI of 20.92 ± 1.96 25 kg/m2) and 6 in the luteal phase (mean age 22.17 ± 1.33 years, height 169.83 ± 5.53 cm, weight 62.00 ± 7.54 kg and BMI of 21.45 ± 2.63 kg/m2). Baseline estrogen levels were significantly different from the follicular phase as compared to the luteal phase: (33.59 pg/ml, 108.02 pg/ml, respectively, p < 0.01). Resting hemodynamic variables showed no difference across the menstrual phases. However, females in the follicular phase showed significantly lower resting values of low-frequency (LF) band power (41.38 ± 11.75 n.u. and 58.47 ± 14.37 n.u., p = 0.01), but higher resting values of high frequency (HF) band power (58.62 ± 11.75 n.u. and 41.53 ± 14.37 n.u., p = 0.01), as compared to females in the luteal phase. During hypovolemia, the LF and HF band powers changed only in the follicular phase F(1, 7) = 77.34, p < 0.0001 and F(1, 7) = 520.06, p < 0.0001, respectively. Conclusions: The menstrual phase had an influence on resting autonomic variables, with higher sympathetic activity being observed during the luteal phase. Central hypovolemia leads to increased cardiovascular and autonomic responses, particularly during the luteal phase of the menstrual cycle, likely due to higher estrogen levels and increased sympathetic activity.

2.
Sci Rep ; 13(1): 19258, 2023 11 07.
Article in English | MEDLINE | ID: mdl-37935771

ABSTRACT

Older individuals experience cardiovascular dysfunction during extended bedridden hospital or care home stays. Bed rest is also used as a model to simulate accelerated vascular deconditioning occurring during spaceflight. This study investigates changes in retinal microcirculation during a ten-day bed rest protocol. Ten healthy young males (22.9 ± 4.7 years; body mass index: 23.6 ± 2.5 kg·m-2) participated in a strictly controlled repeated-measures bed rest study lasting ten days. High-resolution images were obtained using a hand-held fundus camera at baseline, daily during the 10 days of bed rest, and 1 day after re-ambulation. Retinal vessel analysis was performed using a semi-automated software system to obtain metrics for retinal arteriolar and venular diameters, central retinal artery equivalent and central retinal vein equivalent, respectively. Data analysis employed a mixed linear model. At the end of the bed rest period, a significant decrease in retinal venular diameter was observed, indicated by a significantly lower central retinal vein equivalent (from 226.1 µm, CI 8.90, to 211.4 µm, CI 8.28, p = .026), while no significant changes in central retinal artery equivalent were noted. Prolonged bed rest confinement resulted in a significant (up to 6.5%) reduction in retinal venular diameter. These findings suggest that the changes in retinal venular diameter during bedrest may be attributed to plasma volume losses and reflect overall (cardio)-vascular deconditioning.


Subject(s)
Retinal Artery , Retinal Vein , Male , Humans , Bed Rest/adverse effects , Retinal Vessels/diagnostic imaging , Retinal Artery/diagnostic imaging , Retinal Vein/diagnostic imaging , Fluorescein Angiography
3.
Biology (Basel) ; 12(9)2023 Sep 11.
Article in English | MEDLINE | ID: mdl-37759623

ABSTRACT

INTRODUCTION: Lower body negative pressure (LBNP) is routinely used to induce central hypovolemia. LBNP leads to a shift in blood to the lower extremities. While the effects of LBNP on physiological responses and large arteries have been widely reported, there is almost no literature regarding how these cephalad fluid shifts affect the microvasculature. The present study evaluated the changes in retinal microcirculation parameters induced by LBNP in both males and females. METHODOLOGY: Forty-four participants were recruited for the present study. The retinal measurements were performed at six time points during the LBNP protocol. To prevent the development of cardiovascular collapse (syncope) in the healthy participants, graded LBNP until a maximum of -40 mmHg was applied. A non-mydriatic, hand-held Optomed Aurora retinal camera was used to capture the retinal images. MONA Reva software (version 2.1.1) was used to analyze the central retinal arterial and venous diameter changes during the LBNP application. Repeated measures ANOVAs, including sex as the between-subjects factor and the grade of the LBNP as the within-subjects factor, were performed. RESULTS: No significant changes in retinal microcirculation were observed between the evaluated time points or across the sexes. CONCLUSIONS: Graded LBNP application did not lead to changes in the retinal microvasculature across the sexes. The present study is the first in the given area that attempted to capture the changes in retinal microcirculation caused by central hypovolemia during LBNP. However, further research is needed with higher LBNP levels, including those that can induce pre-fainting (presyncope), to fully understand how retinal microcirculation adapts during complete cardiovascular collapse (e.g., during hypovolemic shock) and/or during severe hemorrhage.

4.
Front Cardiovasc Med ; 10: 1211774, 2023.
Article in English | MEDLINE | ID: mdl-37719984

ABSTRACT

Introduction: Lower body negative pressure (LBNP) eliminates the impact of weight-bearing muscles on venous return, as well as the vestibular component of cardiovascular and autonomic responses. We evaluated the hemodynamic and autonomic responses to central hypovolemia, induced by LBNP in both males and females. Methodology: A total of 44 participants recruited in the study. However, 9 participants did not complete the study protocol. Data from the remaining 35 participants were analysed, 18 males (25.28 ± 3.61 years, 181.50 ± 7.43 cm height, 74.22 ± 9.16 kg weight) and 17 females (22.41 ± 2.73 years, 167.41 ± 6.29 cm height, 59.06 ± 6.91 kg weight). During the experimental protocol, participants underwent three phases, which included 30 min of supine rest, four 4 min intervals of stepwise increases in LBNP from -10 mmHg to -40 mmHg, and 5 min of supine recovery. Throughout the protocol, hemodynamic variables such as blood pressure, heart rate, stroke index, cardiac index, and total peripheral resistance index were continuously monitored. Autonomic variables were calculated from heart rate variability measures, using low and high-frequency spectra, as indicators of sympathetic and parasympathetic activity, respectively. Results: At rest, males exhibited higher systolic (118.56 ± 9.59 mmHg and 110.03 ± 10.88 mmHg, p < 0.05) and mean arterial (89.70 ± 6.86 and 82.65 ± 9.78, p < 0.05) blood pressure as compared to females. Different levels of LBNP altered hemodynamic variables in both males and females: heart rate [F(1,16) = 677.46, p < 0.001], [F(1,16) = 550.87, p < 0.001]; systolic blood pressures [F(1,14) = 3,186.77, p < 0.001], [F(1,17) = 1,345.61, p < 0.001]; diastolic blood pressure [F(1,16) = 1,669.458, p < 0.001], [F(1,16) = 1,127.656, p < 0.001]; mean arterial pressures [F(1,16) = 2,330.44, p < 0.001], [F(1,16) = 1,815.68, p < 0.001], respectively. The increment in heart rates during LBNP was significantly different between both males and females (p = 0.025). The low and high-frequency powers were significantly different for males and females (p = 0.002 and p = 0.001, respectively), with the females having a higher increase in low-frequency spectral power. Conclusions and future directions: Cardiovascular activity and autonomic function at rest are influenced by gender. During LBNP application, hemodynamic and autonomic responses differed between genders. These gender-based differences in responses during central hypovolemia could potentially be attributed to the lower sympathetic activity in females. With an increasing number of female crew members in space missions, it is important to understand the role sex-steroid hormones play in the regulation of cardiovascular and autonomic activity, at rest and during LBNP.

5.
Microvasc Res ; 150: 104588, 2023 11.
Article in English | MEDLINE | ID: mdl-37468091

ABSTRACT

BACKGROUND: The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) affects the cardiovascular system. The current study investigated changes in heart rate (HR), blood pressure (BP), pulse wave velocity (PWV), and microcirculation in patients recovering from Coronavirus disease 2019 (COVID-19) infection. METHODOLOGY: Out of 43 initially contacted COVID-19 patients, 35 (30 males, 5 females; age: 60 ± 10 years; and body mass index (BMI): 31.8 ± 4.9) participated in this study. Participants were seen on two occasions after hospital discharge; the baseline measurements were collected, either on the day of hospital discharge if a negative PCR test was obtained, or on the 10th day after hospitalization if the PCR test was positive. The second measurements were done 60 days after hospitalization. The vascular measurements were performed using the VICORDER® device and a retinal blood vessel image analysis. RESULTS: A significant increase in systolic BP (SBP) (from 142 mmHg, SD: 15, to 150 mmHg, SD: 19, p = 0.041), reduction in HR (from 76 bpm, SD: 15, to 69 bpm, SD: 11, p = 0.001), and narrower central retinal vein equivalent (CRVE) (from 240.94 µm, SD: 16.05, to 198.05 µm, SD: 17.36, p = 0.013) were found. Furthermore, the trends of increasing PWV (from 11 m/s, SD: 3, to 12 m/s, SD: 3, p = 0.095) and decreasing CRAE (from 138.87 µm, SD: 12.19, to 136.77 µm, SD: 13.19, p = 0.068) were recorded. CONCLUSION: The present study investigated cardiovascular changes following COVID-19 infection at two-time points after hospital discharge (baseline measurements and 60 days post-hospitalization). Significant changes were found in systolic blood pressure, heart rate, and microvasculature indicating that vascular adaptations may be ongoing even weeks after hospitalization from COVID-19 infection. Future studies could involve conducting additional interim assessments during the active infection and post-infection periods.


Subject(s)
COVID-19 , Hypertension , Vascular Stiffness , Male , Female , Humans , Middle Aged , Aged , Pilot Projects , Pulse Wave Analysis , Microcirculation , Vascular Stiffness/physiology , SARS-CoV-2 , Blood Pressure/physiology
6.
J Clin Med ; 12(6)2023 Mar 13.
Article in English | MEDLINE | ID: mdl-36983231

ABSTRACT

(1) Background: Studies have reported the effectiveness of light therapy in various medical conditions. Our pilot study aimed to assess the effect of Maharishi light therapy (MLT) on physiological parameters, such as the heart rate (HR), HR variability (HRV), blood pressure (BP), BP variability (BPV), and the retinal microvasculature of healthy participants; (2) Methodology: Thirty (14 males and 16 females) healthy, non-smoking participants between 23 and 71 years old (46 ± 18 years) were included in this randomized crossover study. Each participant was tested with a placebo (using LED light) and gem lights, 24 h apart. Hemodynamic parameters were recorded during the session, and 24 h heart rate and BP levels were assessed via mobile devices. Retinal vascular responses were captured with fundus images and the subsequent analysis of retinal vessel widths. A linear model, using repeated measures ANOVA, was used to compare the responses across the sexes and to assess the effect of the MLT; (3) Results: Changes in the central retinal artery equivalent (CRAE) (p < 0.001) and central retinal vein equivalent (CRVE) (p = 0.002) parameters were observed. CRAE and CRVE decreased under MLT and increased under the placebo condition from before to after. However, the baseline values of the participants already differed significantly before the application of any therapy, and the variation in the retinal vessel diameters was already large in the baseline measurements. This suggests that the observed effect results may only reflect naturally occurring fluctuations in the microcirculation and not the effect of MLT. Furthermore, no significant effects were observed in any other investigated parameters; (4) Conclusion: Our study with healthy participants finds significant changes in retinal parameters, but the biological variation in the baseline measurements was large to begin with. This suggests that the observed effect results only reflect naturally occurring fluctuations in the microcirculation and not the effect of MLT. However, in the future, larger studies in which MLT is applied for longer periods and/or in patients with different diseases could discover the physiological impacts of this type of therapy.

7.
Biomedicines ; 10(11)2022 Oct 31.
Article in English | MEDLINE | ID: mdl-36359289

ABSTRACT

The incidence of thrombosis increases with aging. We investigated the coagulatory/haemostatic system across the ages and tested the hypothesis that older persons have a hypercoagulable state compared to younger persons at rest, and that standing up (orthostasis) leads to greater changes in coagulation in older persons. In total, 22 older and 20 young participants performed a 6 min sit-to-stand test (orthostatic challenge). Blood was collected prior to and at the end of standing and haemostatic profiling was performed via thrombelastometry (TEM), calibrated automated thrombogram (CAT) and standard coagulation assays. At baseline, three CAT-derived values indicated enhanced capability to generate thrombin in older participants. However, other measured parameters did not suggest a hypercoagulable state in older participants: prolonged TEM-derived coagulation times (295 vs. 209 s, medians, p = 0.0025) and prothrombin times (103 vs. 114%, medians, p = 0.0087), as well as lower TF levels (440 vs. 672 pg/mL, medians, p = 0.0245) and higher t-PA levels (7.3 vs. 3.8 ng/mL, medians, p = 0.0002), indicative of enhanced fibrinolytic capability, were seen. Younger participants were more sensitive to the orthostatic challenge: CAT-derived endogenous thrombin potentials (ETPs) were only increased in the young (1337 to 1350 nM.min, medians, p = 0.0264) and shortening of PTs was significantly higher in the young vs. older participants (p = 0.0242). Our data suggest that the increased thrombosis propensity in older persons is not primarily attributable to a hyperactive coagulation cascade but may be due to other pathologies associated with aging.

8.
J Clin Med ; 11(20)2022 Oct 18.
Article in English | MEDLINE | ID: mdl-36294463

ABSTRACT

BACKGROUND: Cardiovascular diseases are the world's number one cause of death, with exceeding psychosocial stress load being considered a major risk factor. A stress management technique that has repeatedly shown positive effects on the cardiovascular system is the Transcendental Meditation (TM) technique. The present pilot study aimed to investigate the potential effect of TM on the recovery of cardiac patients. OBJECTIVES: We hypothesized that practicing TM in patients undergoing a 4-week cardiac rehabilitation program augments the recovery of cardiovascular parameters and reduces skeletal muscle tone after rehabilitation. METHODS: Twenty cardiac patients were recruited and randomly assigned to either the control or the TM group. Cardiovascular parameters were assessed with the Task Force Monitor (TFM) and skeletal muscle contractile properties by Tensiomyography during a sit-stand test, performed at the beginning and end of a 4-week in-patient rehabilitation program. RESULTS: Systolic blood pressure (SBP) was significantly lower after 4 weeks of cardiac rehabilitation, while the RR-interval (RRI) significantly increased. At the skeletal muscle level, the contraction time and maximal displacement increased, though only in the gastrocnemius medialis and biceps femoris muscles and not in vastus lateralis. Group interactions were not observed for hemodynamic parameters nor for muscle contractile properties. DISCUSSION: Although significant improvements in hemodynamic and muscular parameters were observed after 4 weeks of rehabilitation, we could not provide evidence that TM improved rehabilitation after 4 weeks. TM may unfold its effects on the cardiovascular system in the longer term. Hence, future studies should comprise a long-term follow-up.

SELECTION OF CITATIONS
SEARCH DETAIL