Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 36
Filter
Add more filters











Publication year range
1.
Mol Ther ; 32(6): 1701-1720, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38549375

ABSTRACT

Leukoencephalopathy with vanishing white matter (VWM) is a progressive incurable white matter disease that most commonly occurs in childhood and presents with ataxia, spasticity, neurological degeneration, seizures, and premature death. A distinctive feature is episodes of rapid neurological deterioration provoked by stressors such as infection, seizures, or trauma. VWM is caused by autosomal recessive mutations in one of five genes that encode the eukaryotic initiation factor 2B complex, which is necessary for protein translation and regulation of the integrated stress response. The majority of mutations are in EIF2B5. Astrocytic dysfunction is central to pathophysiology, thereby constituting a potential therapeutic target. Herein we characterize two VWM murine models and investigate astrocyte-targeted adeno-associated virus serotype 9 (AAV9)-mediated EIF2B5 gene supplementation therapy as a therapeutic option for VWM. Our results demonstrate significant rescue in body weight, motor function, gait normalization, life extension, and finally, evidence that gene supplementation attenuates demyelination. Last, the greatest rescue results from a vector using a modified glial fibrillary acidic protein (GFAP) promoter-AAV9-gfaABC(1)D-EIF2B5-thereby supporting that astrocytic targeting is critical for disease correction. In conclusion, we demonstrate safety and early efficacy through treatment with a translatable astrocyte-targeted gene supplementation therapy for a disease that has no cure.


Subject(s)
Astrocytes , Dependovirus , Disease Models, Animal , Eukaryotic Initiation Factor-2B , Genetic Therapy , Genetic Vectors , Leukoencephalopathies , Animals , Dependovirus/genetics , Mice , Leukoencephalopathies/therapy , Leukoencephalopathies/genetics , Leukoencephalopathies/etiology , Genetic Therapy/methods , Genetic Vectors/genetics , Genetic Vectors/administration & dosage , Astrocytes/metabolism , Astrocytes/pathology , Eukaryotic Initiation Factor-2B/genetics , Eukaryotic Initiation Factor-2B/metabolism , Glial Fibrillary Acidic Protein/metabolism , Glial Fibrillary Acidic Protein/genetics , Humans
2.
Front Pediatr ; 12: 1326886, 2024.
Article in English | MEDLINE | ID: mdl-38357503

ABSTRACT

Background: Mitchell syndrome is a rare, neurodegenerative disease caused by an ACOX1 gain-of-function mutation (c.710A>G; p.N237S), with fewer than 20 reported cases. Affected patients present with leukodystrophy, seizures, and hearing loss. ACOX1 serves as the rate-limiting enzyme in peroxisomal beta-oxidation of very long-chain fatty acids. The N237S substitution has been shown to stabilize the active ACOX1 dimer, resulting in dysregulated enzymatic activity, increased oxidative stress, and glial damage. Mitchell syndrome lacks a vertebrate model, limiting insights into the pathophysiology of ACOX1-driven white matter damage and neuroinflammatory insults. Methods: We report a patient presenting with rapidly progressive white matter damage and neurological decline, who was eventually diagnosed with an ACOX1 N237S mutation through whole genome sequencing. We developed a zebrafish model of Mitchell syndrome using transient ubiquitous overexpression of the human ACOX1 N237S variant tagged with GFP. We assayed zebrafish behavior, oligodendrocyte numbers, expression of white matter and inflammatory transcripts, and analysis of peroxisome counts. Results: The patient experienced progressive leukodystrophy and died 2 years after presentation. The transgenic zebrafish showed a decreased swimming ability, which was restored with the reactive microglia-targeted antioxidant dendrimer-N-acetyl-cysteine conjugate. The mutants showed no effect on oligodendrocyte counts but did display activation of the integrated stress response (ISR). Using a novel SKL-targeted mCherry reporter, we found that mutants had reduced density of peroxisomes. Conclusions: We developed a vertebrate (zebrafish) model of Mitchell syndrome using transient ubiquitous overexpression of the human ACOX1 N237S variant. The transgenic mutants exhibited motor impairment and showed signs of activated ISR, but interestingly, there were no changes in oligodendrocyte counts. However, the mutants exhibited a deficiency in the number of peroxisomes, suggesting a possible shared mechanism with the Zellweger spectrum disorders.

3.
Front Neurosci ; 18: 1275744, 2024.
Article in English | MEDLINE | ID: mdl-38352041

ABSTRACT

Vanishing white matter (VWM) is a devastating autosomal recessive leukodystrophy, resulting in neurological deterioration and premature death, and without curative treatment. Pathogenic hypomorphic variants in subunits of the eukaryotic initiation factor 2B (eIF2B) cause VWM. eIF2B is required for regulating the integrated stress response (ISR), a physiological response to cellular stress. In patients' central nervous system, reduced eIF2B activity causes deregulation of the ISR. In VWM mouse models, the extent of ISR deregulation correlates with disease severity. One approach to restoring eIF2B activity is by inhibition of GSK3ß, a kinase that phosphorylates eIF2B and reduces its activity. Lithium, an inhibitor of GSK3ß, is thus expected to stimulate eIF2B activity and ameliorate VWM symptoms. The effects of lithium were tested in zebrafish and mouse VWM models. Lithium improved motor behavior in homozygous eif2b5 mutant zebrafish. In lithium-treated 2b4he2b5ho mutant mice, a paradoxical increase in some ISR transcripts was found. Furthermore, at the dosage tested, lithium induced significant polydipsia in both healthy controls and 2b4he2b5ho mutant mice and did not increase the expression of other markers of lithium efficacy. In conclusion, lithium is not a drug of choice for further development in VWM based on the limited or lack of efficacy and significant side-effect profile.

4.
Biotechnol Rep (Amst) ; 40: e00814, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37840570

ABSTRACT

Electroporation is regularly used to deliver agents into cells, including transgenic materials, but it is not used for mutating zebrafish embryos due to the lack of suitable systems, information on appropriate operating parameters, and the challenges posed by the protective chorion. Here, a novel method for gene delivery in zebrafish embryos was developed by combining microinjection into the space between the chorion and the embryo followed by electroporation. This method eliminates the need for chorion removal and injecting into the space between the chorion and embryo eliminates the need for finding and identifying key cell locations before performing an injection, making the process much simpler and more automatable. We also developed a microfluidic electroporation system and optimized electric pulse parameters for transgenesis of embryos. The study provided a novel method for gene delivery in zebrafish embryos that can be potentially implemented in a high throughput transgenesis or mutagenesis system.

5.
Micromachines (Basel) ; 15(1)2023 Dec 26.
Article in English | MEDLINE | ID: mdl-38258168

ABSTRACT

Zebrafish have emerged as a useful model for biomedical research and have been used in environmental toxicology studies. However, the presence of the chorion during the embryo stage limits cellular exposure to toxic elements and creates the possibility of a false-negative or reduced sensitivity in fish embryo toxicity testing (FET). This paper presents the use of electroporation as a technique to improve the delivery of toxic elements inside the chorion, increasing the exposure level of the toxins at an early embryo stage (<3 h post-fertilization). A custom-made electroporation device with the required electrical circuitry has been developed to position embryos between electrodes that provide electrical pulses to expedite the entry of molecules inside the chorion. The optimized parameters facilitate material entering into the chorion without affecting the survival rate of the embryos. The effectiveness of the electroporation system is demonstrated using Trypan blue dye and gold nanoparticles (AuNPs, 20-40 nm). Our results demonstrate the feasibility of controlling the concentration of dye and nanoparticles delivered inside the chorion by optimizing the electrical parameters, including pulse width, pulse number, and amplitude. Next, we tested silver nanoparticles (AgNPs, 10 nm), a commonly used toxin that can lower mortality, affect heart rate, and cause phenotypic defects. We found that electroporation of AgNPs reduces the exposure time required for toxicity testing from 4 days to hours. Electroporation for FET can provide rapid entry of potential toxins into zebrafish embryos, reducing the time required for toxicity testing and drug delivery experiments.

6.
Semin Thromb Hemost ; 48(3): 288-300, 2022 Apr.
Article in English | MEDLINE | ID: mdl-34942669

ABSTRACT

Tissue plasminogen activator's (tPA) fibrinolytic function in the vasculature is well-established. This specific role for tPA in the vasculature, however, contrasts with its pleiotropic activities in the central nervous system. Numerous physiological and pathological functions have been attributed to tPA in the central nervous system, including neurite outgrowth and regeneration; synaptic and spine plasticity; neurovascular coupling; neurodegeneration; microglial activation; and blood-brain barrier permeability. In addition, multiple substrates, both plasminogen-dependent and -independent, have been proposed to be responsible for tPA's action(s) in the central nervous system. This review aims to dissect a subset of these different functions and the different molecular mechanisms attributed to tPA in the context of learning and memory. We start from the original research that identified tPA as an immediate-early gene with a putative role in synaptic plasticity to what is currently known about tPA's role in a learning and memory disorder, Alzheimer's disease. We specifically focus on studies demonstrating tPA's involvement in the clearance of amyloid-ß and neurovascular coupling. In addition, given that tPA has been shown to regulate blood-brain barrier permeability, which is perturbed in Alzheimer's disease, this review also discusses tPA-mediated vascular dysfunction and possible alternative mechanisms of action for tPA in Alzheimer's disease pathology.


Subject(s)
Alzheimer Disease , Tissue Plasminogen Activator , Alzheimer Disease/drug therapy , Humans , Neuronal Plasticity
7.
J Clin Invest ; 131(8)2021 04 15.
Article in English | MEDLINE | ID: mdl-33690217

ABSTRACT

X-linked adrenoleukodystrophy (ALD) is a progressive neurodegenerative disease caused by mutations in ABCD1, the peroxisomal very long-chain fatty acid (VLCFA) transporter. ABCD1 deficiency results in accumulation of saturated VLCFAs. A drug screen using a phenotypic motor assay in a zebrafish ALD model identified chloroquine as the top hit. Chloroquine increased expression of stearoyl-CoA desaturase-1 (scd1), the enzyme mediating fatty acid saturation status, suggesting that a shift toward monounsaturated fatty acids relieved toxicity. In human ALD fibroblasts, chloroquine also increased SCD1 levels and reduced saturated VLCFAs. Conversely, pharmacological inhibition of SCD1 expression led to an increase in saturated VLCFAs, and CRISPR knockout of scd1 in zebrafish mimicked the motor phenotype of ALD zebrafish. Importantly, saturated VLCFAs caused ER stress in ALD fibroblasts, whereas monounsaturated VLCFA did not. In parallel, we used liver X receptor (LXR) agonists to increase SCD1 expression, causing a shift from saturated toward monounsaturated VLCFA and normalizing phospholipid profiles. Finally, Abcd1-/y mice receiving LXR agonist in their diet had VLCFA reductions in ALD-relevant tissues. These results suggest that metabolic rerouting of saturated to monounsaturated VLCFAs may alleviate lipid toxicity, a strategy that may be beneficial in ALD and other peroxisomal diseases in which VLCFAs play a key role.


Subject(s)
Adrenoleukodystrophy/enzymology , Chloroquine/pharmacology , Gene Expression Regulation, Enzymologic/drug effects , Liver X Receptors/agonists , Stearoyl-CoA Desaturase/biosynthesis , Zebrafish Proteins/metabolism , ATP Binding Cassette Transporter, Subfamily D, Member 1/genetics , ATP Binding Cassette Transporter, Subfamily D, Member 1/metabolism , Adrenoleukodystrophy/drug therapy , Adrenoleukodystrophy/genetics , Animals , Cell Line , Fatty Acids/metabolism , Humans , Liver X Receptors/genetics , Liver X Receptors/metabolism , Mice , Mice, Knockout , Mutation , Stearoyl-CoA Desaturase/genetics , Zebrafish , Zebrafish Proteins/genetics
8.
Elife ; 92020 12 10.
Article in English | MEDLINE | ID: mdl-33300869

ABSTRACT

Vanishing white matter disease (VWM) is a severe leukodystrophy of the central nervous system caused by mutations in subunits of the eukaryotic initiation factor 2B complex (eIF2B). Current models only partially recapitulate key disease features, and pathophysiology is poorly understood. Through development and validation of zebrafish (Danio rerio) models of VWM, we demonstrate that zebrafish eif2b mutants phenocopy VWM, including impaired somatic growth, early lethality, effects on myelination, loss of oligodendrocyte precursor cells, increased apoptosis in the CNS, and impaired motor swimming behavior. Expression of human EIF2B2 in the zebrafish eif2b2 mutant rescues lethality and CNS apoptosis, demonstrating conservation of function between zebrafish and human. In the mutants, intron 12 retention leads to expression of a truncated eif2b5 transcript. Expression of the truncated eif2b5 in wild-type larva impairs motor behavior and activates the ISR, suggesting that a feed-forward mechanism in VWM is a significant component of disease pathophysiology.


Subject(s)
Disease Models, Animal , Eukaryotic Initiation Factor-2B/genetics , Eukaryotic Initiation Factor-2B/metabolism , Leukoencephalopathies/genetics , Leukoencephalopathies/metabolism , Animals , Humans , Leukoencephalopathies/physiopathology , Mutation , Stress, Physiological/physiology , Zebrafish
9.
eNeuro ; 7(1)2020.
Article in English | MEDLINE | ID: mdl-32001551

ABSTRACT

Hypoxic injury to the developing human brain is a complication of premature birth and is associated with long-term impairments of motor function. Disruptions of axon and synaptic connectivity have been linked to developmental hypoxia, but the fundamental mechanisms impacting motor function from altered connectivity are poorly understood. We investigated the effects of hypoxia on locomotor development in zebrafish. We found that developmental hypoxia resulted in decreased spontaneous swimming behavior in larva, and that this motor impairment persisted into adulthood. In evaluation of the diencephalic dopaminergic neurons, which regulate early development of locomotion and constitute an evolutionarily conserved component of the vertebrate dopaminergic system, hypoxia caused a decrease in the number of synapses from the descending dopaminergic diencephalospinal tract (DDT) to spinal cord motor neurons. Moreover, dopamine signaling from the DDT was coupled jointly to motor neuron synaptogenesis and to locomotor development. Together, these results demonstrate the developmental processes regulating early locomotor development and a requirement for dopaminergic projections and motor neuron synaptogenesis. Our findings suggest new insights for understanding the mechanisms leading to motor disability from hypoxic injury of prematurity.


Subject(s)
Disabled Persons , Motor Disorders , Adult , Animals , Dopamine , Female , Humans , Hypoxia , Motor Neurons , Pregnancy , Zebrafish
10.
eNeuro ; 5(4)2018.
Article in English | MEDLINE | ID: mdl-30090852

ABSTRACT

Tissue plasminogen activator (tPA) is an immediate-early gene important for regulating physiological processes like synaptic plasticity and neurovascular coupling. It has also been implicated in several pathological processes including blood-brain barrier (BBB) permeability, seizure progression, and stroke. These varied reports suggest that tPA is a pleiotropic mediator whose actions are highly compartmentalized in space and time. The specific localization of tPA, therefore, can provide useful information about its function. Accordingly, the goal of this study was to provide a detailed characterization of tPA's regional, cellular, and subcellular localization in the brain. To achieve this, two new transgenic mouse lines were utilized: (1) a PlatßGAL reporter mouse, which houses the ß-galactosidase gene in the tPA locus and (2) a tPABAC-Cerulean mouse, which has a cerulean-fluorescent protein fused in-frame to the tPA C-terminus. Using these two transgenic reporters, we show that while tPA is expressed throughout most regions of the adult murine brain, it appears to be preferentially targeted to fiber tracts in the limbic system. In the hippocampus, confocal microscopy revealed tPA-Cerulean (tPA-Cer) puncta localized to giant mossy fiber boutons (MFBs) and astrocytes in stratum lucidum. With amplification of the tPA-Cer signal, somatically localized tPA was also observed in the stratum oriens (SO)/alveus layer of both CA1 and CA3 subfields. Coimmunostaining of tPA-Cer and interneuronal markers indicates that these tPA-positive cell bodies belong to a subclass of somatostatin (SST)/oriens-lacunosum moleculare (O-LM) interneurons. Together, these data imply that tPA's localization is differentially regulated, suggesting that its neuromodulatory effects may be compartmentalized and specialized to cell type.


Subject(s)
Astrocytes/metabolism , CA1 Region, Hippocampal/metabolism , CA3 Region, Hippocampal/metabolism , Gene Expression/physiology , Interneurons/metabolism , Mossy Fibers, Hippocampal/metabolism , Protein Transport/physiology , Somatostatin/metabolism , Tissue Plasminogen Activator/metabolism , Animals , CA1 Region, Hippocampal/diagnostic imaging , CA3 Region, Hippocampal/diagnostic imaging , Mice , Mice, Inbred C57BL , Mice, Transgenic , Microscopy, Confocal
11.
eNeuro ; 5(2)2018.
Article in English | MEDLINE | ID: mdl-29766040

ABSTRACT

Axon guidance in vertebrates is controlled by genetic cascades as well as by intrinsic activity-dependent refinement of connections. Midline axon crossing is one of the best studied pathfinding models and is fundamental to the establishment of bilaterally symmetric nervous systems. However, it is not known whether crossing requires intrinsic activity in axons, and what controls that activity. Further, a mechanism linking neuronal activity and gene expression has not been identified for axon pathfinding. Using embryonic zebrafish, we found that the NMDA receptor (NMDAR) NR1.1 subunit (grin1a) is expressed in commissural axons. Pharmacological inhibition of grin1a, hypoxia exposure reduction of grin1a expression, or CRISPR knock-down of grin1a leads to defects in midline crossing. Inhibition of neuronal activity phenocopies the effects of grin1a loss on midline crossing. By combining pharmacological inhibition of the NMDAR with optogenetic stimulation to precisely restore neuronal activity, we observed rescue of midline crossing. This suggests that the NMDAR controls pathfinding by an activity-dependent mechanism. We further show that the NMDAR may act, via modulating activity, on the transcription factor arxa (mammalian Arx), a known regulator of midline pathfinding. These findings uncover a novel role for the NMDAR in controlling activity to regulate commissural pathfinding and identify arxa as a key link between the genetic and activity-dependent regulation of midline axon guidance.


Subject(s)
Axons/physiology , Central Nervous System/embryology , Gene Expression Regulation, Developmental/physiology , Receptors, N-Methyl-D-Aspartate/physiology , Animals , Animals, Genetically Modified , Embryo, Nonmammalian , Hypoxia/metabolism , Receptors, N-Methyl-D-Aspartate/metabolism , Zebrafish , Zebrafish Proteins
12.
PLoS One ; 13(3): e0193180, 2018.
Article in English | MEDLINE | ID: mdl-29543903

ABSTRACT

Zebrafish are a valuable model organism in biomedical research. Their rapid development, ability to model human diseases, utility for testing genetic variants identified from next-generation sequencing, amenity to CRISPR mutagenesis, and potential for therapeutic compound screening, has led to their wide-spread adoption in diverse fields of study. However, their power for large-scale screens is limited by the absence of automated genotyping tools for live animals. This constrains potential drug screen options, limits analysis of embryonic and larval phenotypes, and requires raising additional animals to adulthood to ensure obtaining an animal of the desired genotype. Our objective was to develop an automated system that would rapidly obtain cells and DNA from zebrafish embryos and larvae for genotyping, and that would keep the animals alive. We describe the development, testing, and validation of a zebrafish embryonic genotyping device, termed "ZEG" (Zebrafish Embryo Genotyper). Using microfluidic harmonic oscillation of the animal on a roughened glass surface, the ZEG is able to obtain genetic material (cells and DNA) for use in genotyping, from 24 embryos or larvae simultaneously in less than 10 minutes. Loading and unloading of the ZEG is performed manually with a standard pipette tip or transfer pipette. The obtained genetic material is amplified by PCR and can be used for subsequent analysis including sequencing, gel electrophoresis, or high-resolution melt-analysis. Sensitivity of genotyping and survival of animals are both greater than 90%. There are no apparent effects on body morphology, development, or motor behavior tests. In summary, the ZEG device enables rapid genotyping of live zebrafish embryos and larvae, and animals are available for downstream applications, testing, or raising.


Subject(s)
Automation , Cell Separation/methods , Genotyping Techniques/methods , Microfluidic Analytical Techniques/methods , Zebrafish/embryology , Zebrafish/genetics , Animals
13.
Data Brief ; 15: 562-566, 2017 Dec.
Article in English | MEDLINE | ID: mdl-29071293

ABSTRACT

Secondary phosphorylation develops in myocytes expressing phospho-mimetic cardiac troponin I (cTnI) but it is not known whether multiple substitutions (e.g. cTnISDTD and cTnIS4D) cause preferential phosphorylation of the remaining endogenous or the phospho-mimetic cTnI in intact myocytes. Western analysis was performed to determine whether the FLAG/total cTnI ratios are similar for phosphorylated versus total cTnI in myocytes expressing phospho-mimetic cTnI with Asp(D) substitutions at S43/45 plus S23/24 (cTnIS4D) or T144 (cTnISDTD). Representative Western analysis of phosphorylated S23/24 (p-S23/24) and S150 (p-S150) are presented along with re-probes using an antibody which detects all cTnI (MAB1691 Ab). The level of p-S150 also is compared to results obtained using single S43D and/or S45D phospho-mimetic substitutions. These results are discussed in more detail in Lang et al. [1].

14.
Hum Mol Genet ; 26(18): 3600-3614, 2017 09 15.
Article in English | MEDLINE | ID: mdl-28911205

ABSTRACT

X-linked adrenoleukodystrophy (ALD) is a devastating inherited neurodegenerative disease caused by defects in the ABCD1 gene and affecting peripheral and central nervous system myelin. ABCD1 encodes a peroxisomal transmembrane protein required for very long chain fatty acid (VLCFA) metabolism. We show that zebrafish (Danio rerio) Abcd1 is highly conserved at the amino acid level with human ABCD1, and during development is expressed in homologous regions including the central nervous system and adrenal glands. We used TALENs to generate five zebrafish abcd1 mutant allele lines introducing premature stop codons in exon 1, as well as obtained an abcd1 allele from the Zebrafish Mutation Project carrying a point mutation in a splice donor site. Similar to patients with ALD, zebrafish abcd1 mutants have elevated VLCFA levels. Interestingly, we found that CNS development of the abcd1 mutants is disrupted, with hypomyelination in the spinal cord, abnormal patterning and decreased numbers of oligodendrocytes, and increased cell death. By day of life five abcd1 mutants demonstrate impaired motor function, and overall survival to adulthood of heterozygous and homozygous mutants is decreased. Expression of human ABCD1 in oligodendrocytes rescued apoptosis in the abcd1 mutant. In summary, we have established a zebrafish model of ALD that recapitulates key features of human disease pathology and which reveals novel features of underlying disease pathogenesis.


Subject(s)
ATP Binding Cassette Transporter, Subfamily D, Member 1/metabolism , Adrenoleukodystrophy/genetics , ATP Binding Cassette Transporter, Subfamily D, Member 1/genetics , ATP-Binding Cassette Transporters/genetics , Adrenoleukodystrophy/metabolism , Alleles , Animals , Cells, Cultured , Disease Models, Animal , Exons , Fatty Acids/genetics , Fatty Acids/metabolism , Genetic Diseases, X-Linked/genetics , Genetic Diseases, X-Linked/metabolism , Humans , Mutation , Myelin Sheath/genetics , Myelin Sheath/metabolism , Oligodendroglia/metabolism , Zebrafish
15.
Acta Neuropathol ; 134(4): 585-604, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28725968

ABSTRACT

Treatment of acute ischemic stroke with the thrombolytic tissue plasminogen activator (tPA) can significantly improve neurological outcomes; however, thrombolytic therapy is associated with an increased risk of intra-cerebral hemorrhage (ICH). Previously, we demonstrated that during stroke tPA acting on the parenchymal side of the neurovascular unit (NVU) can increase blood-brain barrier (BBB) permeability and ICH through activation of latent platelet-derived growth factor-CC (PDGF-CC) and signaling by the PDGF receptor-α (PDGFRα). However, in vitro, activation of PDGF-CC by tPA is very inefficient and the mechanism of PDGF-CC activation in the NVU is not known. Here, we show that the integrin Mac-1, expressed on brain microglia/macrophages (denoted microglia throughout), acts together with the endocytic receptor LRP1 in the NVU to promote tPA-mediated activation of PDGF-CC. Mac-1-deficient mice (Mac-1-/-) are protected from tPA-induced BBB permeability but not from permeability induced by intracerebroventricular injection of active PDGF-CC. Immunofluorescence analysis demonstrates that Mac-1, LRP1, and the PDGFRα all localize to the NVU of arterioles, and following middle cerebral artery occlusion (MCAO) Mac-1-/- mice show significantly less PDGFRα phosphorylation, BBB permeability, and infarct volume compared to wild-type mice. Bone-marrow transplantation studies indicate that resident CD11b+ cells, but not bone-marrow-derived leukocytes, mediate the early activation of PDGF-CC by tPA after MCAO. Finally, using a model of thrombotic stroke with late thrombolysis, we show that wild-type mice have an increased incidence of spontaneous ICH following thrombolysis with tPA 5 h after MCAO, whereas Mac-1-/- mice are resistant to the development of ICH even with late tPA treatment. Together, these results indicate that Mac-1 and LRP1 act as co-factors for the activation of PDGF-CC by tPA in the NVU, and suggest a novel mechanism for tightly regulating PDGFRα signaling in the NVU and controlling BBB permeability.


Subject(s)
Blood-Brain Barrier/metabolism , Brain Ischemia/metabolism , Capillary Permeability/physiology , Lymphokines/metabolism , Microglia/metabolism , Platelet-Derived Growth Factor/metabolism , Stroke/metabolism , Animals , Arterioles/drug effects , Arterioles/metabolism , Arterioles/pathology , Blood-Brain Barrier/drug effects , Blood-Brain Barrier/pathology , Bone Marrow Cells/metabolism , Bone Marrow Cells/pathology , Brain Ischemia/drug therapy , Brain Ischemia/pathology , CD11b Antigen/metabolism , Capillary Permeability/drug effects , Cells, Cultured , Cerebral Hemorrhage/chemically induced , Cerebral Hemorrhage/metabolism , Cerebral Hemorrhage/pathology , Disease Models, Animal , Female , Fibrinolytic Agents/adverse effects , Fibrinolytic Agents/pharmacology , Leukocytes/metabolism , Leukocytes/pathology , Low Density Lipoprotein Receptor-Related Protein-1 , Macrophage-1 Antigen/genetics , Macrophage-1 Antigen/metabolism , Male , Mice, Inbred C57BL , Mice, Transgenic , Microglia/pathology , Receptors, LDL/metabolism , Stroke/drug therapy , Stroke/pathology , Tissue Plasminogen Activator/adverse effects , Tissue Plasminogen Activator/pharmacology , Tumor Suppressor Proteins/metabolism
16.
Arch Biochem Biophys ; 627: 1-9, 2017 08 01.
Article in English | MEDLINE | ID: mdl-28587770

ABSTRACT

Increased protein kinase C (PKC) activity is associated with heart failure, and can target multiple cardiac troponin I (cTnI) residues in myocytes, including S23/24, S43/45 and T144. In earlier studies, cTnI-S43D and/or -S45D augmented S23/24 and T144 phosphorylation, which suggested there is communication between clusters. This communication is now explored by evaluating the impact of phospho-mimetic cTnI S43/45D combined with S23/24D (cTnIS4D) or T144D (cTnISDTD). Gene transfer of epitope-tagged cTnIS4D and cTnISDTD into adult cardiac myocytes progressively replaced endogenous cTnI. Partial replacement with cTnISDTD or cTnIS4D accelerated the time to peak (TTP) shortening and time to 50% re-lengthening (TTR50%) on day 2, but peak shortening was only diminished by cTnIS4D. Extensive cTnIS4D replacement continued to accelerate TTP, and decrease shortening amplitude, while TTR50% returned to baseline levels on day 4. In contrast, cTnISDTD modestly reduced shortening amplitude and continued to accelerate myocyte TTP and TTR50%. These results indicate cTnIS43/45 communicates with S23/24 and T144, with S23/24 exacerbating and T144 attenuating the S43/45D-dependent functional deficit. In addition, more severe functional alterations in cTnIS4D myocytes were accompanied by higher levels of secondary phosphorylation compared to cTnISDTD. These results suggest that secondary phosphorylation helps to maintain steady-state contractile function during chronic cTnI phosphorylation at PKC sites.


Subject(s)
Myocytes, Cardiac/cytology , Protein Kinase C/metabolism , Troponin I/metabolism , Animals , Cells, Cultured , Myocardial Contraction , Myocytes, Cardiac/metabolism , Phosphorylation , Rats , Sarcomeres/metabolism
17.
BMC Genomics ; 17: 334, 2016 05 04.
Article in English | MEDLINE | ID: mdl-27146468

ABSTRACT

BACKGROUND: Despite the fundamental biological importance and clinical relevance of characterizing the effects of chronic hypoxia exposure on central nervous system (CNS) development, the changes in gene expression from hypoxia are unknown. It is not known if there are unifying principles, properties, or logic in the response of the developing CNS to hypoxic exposure. Here, we use the small vertebrate zebrafish (Danio rerio) to study the effects of hypoxia on connectivity gene expression across development. We perform transcriptional profiling at high temporal resolution to systematically determine and then experimentally validate the response of CNS connectivity genes to hypoxia exposure. RESULTS: We characterized mRNA changes during development, comparing the effects of chronic hypoxia exposure at different time-points. We focused on changes in expression levels of a subset of 1270 genes selected for their roles in development of CNS connectivity, including axon pathfinding and synapse formation. We found that the majority of CNS connectivity genes were unaffected by hypoxia. However, for a small subset of genes hypoxia significantly affected their gene expression profiles. In particular, hypoxia appeared to affect both the timing and levels of expression, including altering expression of interacting gene pairs in a fashion that would potentially disrupt normal function. CONCLUSIONS: Overall, our study identifies the response of CNS connectivity genes to hypoxia exposure during development. While for most genes hypoxia did not significantly affect expression, for a subset of genes hypoxia changed both levels and timing of expression. Importantly, we identified that some genes with interacting proteins, for example receptor/ligand pairs, had dissimilar responses to hypoxia that would be expected to interfere with their function. The observed dysynchrony of gene expression could impair the development of normal CNS connectivity maps.


Subject(s)
Connectome/methods , Gene Expression Profiling/methods , Gene Regulatory Networks , Hypoxia, Brain/genetics , Zebrafish/embryology , Animals , Gene Expression Regulation, Developmental , Hypoxia, Brain/veterinary , Sequence Analysis, RNA , Zebrafish/genetics , Zebrafish Proteins/genetics
18.
Arch Biochem Biophys ; 601: 42-7, 2016 07 01.
Article in English | MEDLINE | ID: mdl-26869200

ABSTRACT

A phospho-null Ala substitution at protein kinase C (PKC)-targeted cardiac troponin I (cTnI) S43/45 reduces myocyte and cardiac contractile function. The goal of the current study was to test whether cTnIS43/45N is an alternative, functionally conservative substitution in cardiac myocytes. Partial and more extensive endogenous cTnI replacement was similar at 2 and 4 days after gene transfer, respectively, for epitope-tagged cTnI and cTnIS43/45N. This replacement did not significantly change thin filament stoichiometry. In functional studies, there were no significant changes in the amplitude and/or rates of contractile shortening and re-lengthening after this partial (2 days) and extensive (4 days) replacement with cTnIS43/45N. The cTnIS43/45N substitution also was not associated with adaptive changes in the myocyte Ca(2+) transient or in phosphorylation of the protein kinase A and C-targeted cTnIS23/24 site. These results provide evidence that cTnIS43/45N is a functionally conservative substitution, and may be appropriate for use as a phospho-null in rodent models designed for studies on PKC modulation of cardiac performance.


Subject(s)
Myocardium/metabolism , Myocytes, Cardiac/metabolism , Protein Kinase C/metabolism , Troponin I/metabolism , Amino Acid Substitution , Animals , Calcium/chemistry , Calcium/metabolism , Epitopes/chemistry , Gene Transfer Techniques , Mutagenesis, Site-Directed , Myocardial Contraction , Phosphorylation , Rats , Rats, Sprague-Dawley , Sarcomeres/metabolism , Signal Transduction , Troponin I/genetics
19.
Sci Rep ; 6: 18734, 2016 Jan 05.
Article in English | MEDLINE | ID: mdl-26728131

ABSTRACT

Tools for genetically-determined visualization of synaptic circuits and interactions are necessary to build connectomics of the vertebrate brain and to screen synaptic properties in neurological disease models. Here we develop a transgenic FingR (fibronectin intrabodies generated by mRNA display) technology for monitoring synapses in live zebrafish. We demonstrate FingR labeling of defined excitatory and inhibitory synapses, and show FingR applicability for dissecting synapse dynamics in normal and disease states. Using our system we show that chronic hypoxia, associated with neurological defects in preterm birth, affects dopaminergic neuron synapse number depending on the developmental timing of hypoxia.


Subject(s)
Neurons/metabolism , Synapses/metabolism , Animals , Animals, Genetically Modified , Cell Tracking , Fibronectins/genetics , Fluorescent Antibody Technique , Gene Expression , Gene Order , Genes, Reporter , Genetic Vectors/genetics , Hypoxia/metabolism , Immunohistochemistry , Zebrafish
20.
Proteomics Clin Appl ; 10(5): 585-96, 2016 05.
Article in English | MEDLINE | ID: mdl-26756417

ABSTRACT

PURPOSE: A goal of this study was to identify and investigate previously unrecognized components of the remodeling process in the progression to heart failure by comparing protein expression in ischemic failing (F) and nonfailing (NF) human hearts. EXPERIMENTAL DESIGN: Protein expression differences were investigated using multidimensional protein identification and validated by Western analysis. This approach detected basal lamina (BL) remodeling, and further studies analyzed samples for evidence of structural BL remodeling. A rat model of pressure overload (PO) was studied to determine whether nonischemic stressors also produce BL remodeling and impact cellular adhesion. RESULTS: Differential protein expression of collagen IV, laminin α2, and nidogen-1 indicated BL remodeling develops in F versus NF hearts Periodic disruption of cardiac myocyte BL accompanied this process in F, but not NF heart. The rat PO myocardium also developed BL remodeling and compromised myocyte adhesion compared to sham controls. CONCLUSIONS AND CLINICAL RELEVANCE: Differential protein expression and evidence of structural and functional BL alterations develop during heart failure. The compromised adhesion associated with this remodeling indicates a high potential for dysfunctional cellular integrity and tethering in failing myocytes. Therapeutically targeting BL remodeling could slow or prevent the progression of heart disease.


Subject(s)
Basement Membrane/metabolism , Collagen Type IV/genetics , Heart Failure/diagnosis , Laminin/genetics , Membrane Glycoproteins/genetics , Myocardial Ischemia/diagnosis , Aged , Animals , Basement Membrane/pathology , Collagen Type IV/metabolism , Disease Models, Animal , Gene Expression Profiling , Gene Expression Regulation , Heart Failure/genetics , Heart Failure/metabolism , Heart Failure/pathology , Humans , Laminin/metabolism , Membrane Glycoproteins/metabolism , Middle Aged , Myocardial Ischemia/genetics , Myocardial Ischemia/metabolism , Myocardial Ischemia/pathology , Myocardium/metabolism , Myocardium/pathology , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , Primary Cell Culture , Rats , Rats, Sprague-Dawley
SELECTION OF CITATIONS
SEARCH DETAIL