Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
EMBO J ; 41(23): e110595, 2022 12 01.
Article in English | MEDLINE | ID: mdl-36305367

ABSTRACT

Mammalian SWI/SNF/BAF chromatin remodeling complexes influence cell lineage determination. While the contribution of these complexes to neural progenitor cell (NPC) proliferation and differentiation has been reported, little is known about the transcriptional profiles that determine neurogenesis or gliogenesis. Here, we report that BCL7A is a modulator of the SWI/SNF/BAF complex that stimulates the genome-wide occupancy of the ATPase subunit BRG1. We demonstrate that BCL7A is dispensable for SWI/SNF/BAF complex integrity, whereas it is essential to regulate Notch/Wnt pathway signaling and mitochondrial bioenergetics in differentiating NPCs. Pharmacological stimulation of Wnt signaling restores mitochondrial respiration and attenuates the defective neurogenic patterns observed in NPCs lacking BCL7A. Consistently, treatment with an enhancer of mitochondrial biogenesis, pioglitazone, partially restores mitochondrial respiration and stimulates neuronal differentiation of BCL7A-deficient NPCs. Using conditional BCL7A knockout mice, we reveal that BCL7A expression in NPCs and postmitotic neurons is required for neuronal plasticity and supports behavioral and cognitive performance. Together, our findings define the specific contribution of BCL7A-containing SWI/SNF/BAF complexes to mitochondria-driven NPC commitment, thereby providing a better understanding of the cell-intrinsic transcriptional processes that connect metabolism, neuronal morphogenesis, and cognitive flexibility.


Subject(s)
Cell Differentiation , Microfilament Proteins , Neural Stem Cells , Animals , Mice , Adenosine Triphosphatases/metabolism , Chromatin Assembly and Disassembly , Energy Metabolism , Mitochondria/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Microfilament Proteins/metabolism , Neural Stem Cells/cytology
2.
Mol Metab ; 61: 101503, 2022 07.
Article in English | MEDLINE | ID: mdl-35452878

ABSTRACT

OBJECTIVE: Mitochondrial "retrograde" signaling may stimulate organelle biogenesis as a compensatory adaptation to aberrant activity of the oxidative phosphorylation (OXPHOS) system. To maintain energy-consuming processes in OXPHOS deficient cells, alternative metabolic pathways are functionally coupled to the degradation, recycling and redistribution of biomolecules across distinct intracellular compartments. While transcriptional regulation of mitochondrial network expansion has been the focus of many studies, the molecular mechanisms promoting mitochondrial maintenance in energy-deprived cells remain poorly investigated. METHODS: We performed transcriptomics, quantitative proteomics and lifespan assays to identify pathways that are mechanistically linked to mitochondrial network expansion and homeostasis in Caenorhabditis elegans lacking the mitochondrial calcium uptake protein 1 (MICU-1/MICU1). To support our findings, we carried out biochemical and image analyses in mammalian cells and mouse-derived tissues. RESULTS: We report that micu-1(null) mutations impair the OXPHOS system and promote C. elegans longevity through a transcriptional program that is independent of the mitochondrial calcium uniporter MCU-1/MCU and the essential MCU regulator EMRE-1/EMRE. We identify sphingosine phosphate lyase SPL-1/SGPL1 and the ATFS-1-target HOPS complex subunit VPS-39/VPS39 as critical lifespan modulators of micu-1(null) mutant animals. Cross-species investigation indicates that SGPL1 upregulation stimulates VPS39 recruitment to the mitochondria, thereby enhancing mitochondria-lysosome contacts. Consistently, VPS39 downregulation compromises mitochondrial network maintenance and basal autophagic flux in MICU1 deficient cells. In mouse-derived muscles, we show that VPS39 recruitment to the mitochondria may represent a common signature associated with altered OXPHOS system. CONCLUSIONS: Our findings reveal a previously unrecognized SGPL1/VPS39 axis that stimulates intracellular organelle interactions and sustains autophagy and mitochondrial homeostasis in OXPHOS deficient cells.


Subject(s)
Aldehyde-Lyases , Autophagy-Related Proteins , Calcium-Binding Proteins , Mitochondria , Mitochondrial Membrane Transport Proteins , Vesicular Transport Proteins , Aldehyde-Lyases/metabolism , Animals , Autophagy-Related Proteins/metabolism , Caenorhabditis elegans , Caenorhabditis elegans Proteins/metabolism , Calcium-Binding Proteins/genetics , Calcium-Binding Proteins/metabolism , Mice , Mitochondria/metabolism , Mitochondrial Membrane Transport Proteins/metabolism , Oxidative Phosphorylation , Vesicular Transport Proteins/metabolism
3.
Cell Rep Methods ; 1(1): 100002, 2021 05 24.
Article in English | MEDLINE | ID: mdl-35474694

ABSTRACT

Mitochondria sustain the energy demand of the cell. The composition and functional state of the mitochondrial oxidative phosphorylation system are informative indicators of organelle bioenergetic capacity. Here, we describe a highly sensitive and reproducible method for a single-cell quantification of mitochondrial CI- and CIV-containing respiratory supercomplexes (CI∗CIV-SCs) as an alternative means of assessing mitochondrial respiratory chain integrity. We apply a proximity ligation assay (PLA) and stain CI∗CIV-SCs in fixed human and mouse brains, tumorigenic cells, induced pluripotent stem cells (iPSCs) and iPSC-derived neural precursor cells (NPCs), and neurons. Spatial visualization of CI∗CIV-SCs enables the detection of mitochondrial lesions in various experimental models, including complex tissues undergoing degenerative processes. We report that comparative assessments of CI∗CIV-SCs facilitate the quantitative profiling of even subtle mitochondrial variations by overcoming the confounding effects that mixed cell populations have on other measurements. Together, our PLA-based analysis of CI∗CIV-SCs is a sensitive and complementary technique for detecting cell-type-specific mitochondrial perturbations in fixed materials.


Subject(s)
Electron Transport Complex IV , Neural Stem Cells , Mice , Animals , Humans , Electron Transport Complex IV/metabolism , Neural Stem Cells/metabolism , Mitochondria/metabolism , Mitochondrial Membranes/metabolism , Oxidative Phosphorylation
4.
Mol Metab ; 13: 10-23, 2018 07.
Article in English | MEDLINE | ID: mdl-29780003

ABSTRACT

OBJECTIVE: Mutations in the AIFM1 gene have been identified in recessive X-linked mitochondrial diseases. Functional and molecular consequences of these pathogenic AIFM1 mutations have been poorly studied in vivo. METHODS/RESULTS: Here we provide evidence that the disease-associated apoptosis-inducing factor (AIF) deletion arginine 201 (R200 in rodents) causes pathology in knockin mice. Within a few months, posttranslational loss of the mutant AIF protein induces severe myopathy associated with a lower number of cytochrome c oxidase-positive muscle fibers. At a later stage, Aifm1 (R200 del) knockin mice manifest peripheral neuropathy, but they do not show neurodegenerative processes in the cerebellum, as observed in age-matched hypomorphic Harlequin (Hq) mutant mice. Quantitative proteomic and biochemical data highlight common molecular signatures of mitochondrial diseases, including aberrant folate-driven one-carbon metabolism and sustained Akt/mTOR signaling. CONCLUSION: Our findings indicate metabolic defects and distinct tissue-specific vulnerability due to a disease-causing AIFM1 mutation, with many pathological hallmarks that resemble those seen in patients.


Subject(s)
Apoptosis Inducing Factor/genetics , Muscular Diseases/genetics , Animals , Apoptosis Inducing Factor/physiology , Gene Knock-In Techniques , Mice , Mitochondria , Mitochondrial Diseases , Muscle Fibers, Skeletal/physiology , Mutation , Peripheral Nervous System Diseases/genetics , Peripheral Nervous System Diseases/physiopathology , Proteomics
SELECTION OF CITATIONS
SEARCH DETAIL