Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 15 de 15
1.
Psychoneuroendocrinology ; 164: 107021, 2024 Jun.
Article En | MEDLINE | ID: mdl-38492349

Animal studies have shown that pregnancy is associated with neural adaptations that promote maternal care. The hypothalamus represents a central structure of the mammalian maternal brain and hormonal priming of specific hypothalamic nuclei plays a key role in the induction and expression of maternal behavior. In humans, we have previously demonstrated that becoming a mother involves changes in grey matter anatomy, primarily in association areas of the cerebral cortex. In the current study, we investigated whether pregnancy renders anatomical changes in the hypothalamus. Using an advanced delineation technique, five hypothalamic substructures were defined in longitudinal MRI scans of 107 women extracted from two prospective pre-conception cohort studies, including 50 women who were scanned before and after pregnancy and 57 nulliparous control women scanned at a similar time interval. We showed that becoming a mother is associated with volume reductions in the anterior-superior, superior tuberal and posterior hypothalamus. In addition, these structural changes related to hormonal levels during pregnancy and specific aspects of self-reported maternal behavior in late pregnancy, including maternal-fetal attachment and nesting behavior. These findings show that pregnancy leads to changes in hypothalamic anatomy and suggest that these contribute to the development of maternal behavior in humans, supporting the conservation of key aspects of maternal brain circuitry and their role in maternal behavior across species.


Brain , Maternal Behavior , Animals , Humans , Pregnancy , Female , Prospective Studies , Mothers , Hypothalamus, Posterior , Mammals
2.
J Neuroendocrinol ; 35(7): e13266, 2023 07.
Article En | MEDLINE | ID: mdl-37094082

Pregnancy is associated with prominent structural changes in brain areas involved in Theory of Mind (ToM), pointing to the possibility of modifications in ToM-related behavior and brain responses in parents. We performed a systematic review screening for studies that examined ToM in pregnant and/or early postpartum parents. The evaluation of the included 12 studies allowed us to construct an overview of ToM changes during pregnancy and postpartum as well as other associated factors, such as oxytocin, mental health, and parental behavior. Four studies examined ToM changes by comparing pregnant/early postpartum parents with nulliparous parents or prepregnancy measures. They reported no differences between groups measured with a self-report questionnaire but found group differences using an experimental approach. The results from the summarized studies further suggest a mediatory role of oxytocin between ToM and certain parental behavior. In addition, while no link between postpartum depression and ToM was observed, findings do point to an association between depressive and remote maternal behavior and anxious attachment style and ToM abilities in pregnant participants. Research findings regarding the interaction of ToM with both parity and maternal attachment to the fetus are ambivalent. Overall, research on this topic is scarce, limiting our ability to draw firm conclusions and stressing the need for further research on this topic. This review presents an overview of research findings on ToM and associated factors in pregnancy and the postpartum period and discusses directions for future research.


Depression, Postpartum , Theory of Mind , Pregnancy , Female , Humans , Oxytocin , Theory of Mind/physiology , Postpartum Period/psychology , Maternal Behavior/physiology
3.
J Cereb Blood Flow Metab ; 43(5): 778-790, 2023 05.
Article En | MEDLINE | ID: mdl-36606595

Recanalization therapy after acute ischemic stroke enables restoration of cerebral perfusion. However, a significant subset of patients has poor outcome, which may be caused by disruption of cerebral energy metabolism. To assess changes in glucose metabolism subacutely and chronically after recanalization, we applied two complementary imaging techniques, fluorodeoxyglucose (FDG) positron emission tomography (PET) and deuterium (2H) metabolic imaging (DMI), after 60-minute transient middle cerebral artery occlusion (tMCAO) in C57BL/6 mice. Glucose uptake, measured with FDG PET, was reduced at 48 hours after tMCAO and returned to baseline value after 11 days. DMI revealed effective glucose supply as well as elevated lactate production and reduced glutamate/glutamine synthesis in the lesion area at 48 hours post-tMCAO, of which the extent was dependent on stroke severity. A further decrease in oxidative metabolism was evident after 11 days. Immunohistochemistry revealed significant glial activation in and around the lesion, which may play a role in the observed metabolic profiles. Our findings indicate that imaging (altered) active glucose metabolism in and around reperfused stroke lesions can provide substantial information on (secondary) pathophysiological changes in post-ischemic brain tissue.


Ischemic Stroke , Stroke , Animals , Mice , Deuterium/metabolism , Pilot Projects , Fluorodeoxyglucose F18/metabolism , Ischemic Stroke/pathology , Mice, Inbred C57BL , Brain/blood supply , Positron-Emission Tomography , Infarction, Middle Cerebral Artery/pathology , Glucose/metabolism
4.
Nat Commun ; 13(1): 6931, 2022 11 22.
Article En | MEDLINE | ID: mdl-36414622

While animal studies have demonstrated a unique reproduction-related neuroplasticity, little is known on the effects of pregnancy on the human brain. Here we investigated whether pregnancy is associated with changes to resting state brain activity, white matter microstructure, neural metabolite concentrations and grey matter architecture using a comprehensive pre-conception cohort study. We show that pregnancy leads to selective and robust changes in neural architecture and neural network organization, which are most pronounced in the Default Mode Network. These neural changes correlated with pregnancy hormones, primarily third-trimester estradiol, while no associations were found with other factors such as osmotic effects, stress and sleep. Furthermore, the changes related to measures of maternal-fetal bonding, nesting behavior and the physiological responsiveness to infant cues, and predicted measures of mother-infant bonding and bonding impairments. These findings suggest there are selective pregnancy-related modifications in brain structure and function that may facilitate peripartum maternal processes of key relevance to the mother-infant dyad.


White Matter , Animals , Infant , Pregnancy , Female , Humans , White Matter/diagnostic imaging , Gray Matter/diagnostic imaging , Cohort Studies , Brain/physiology , Brain Mapping
5.
Psychopharmacology (Berl) ; 239(8): 2457-2470, 2022 Aug.
Article En | MEDLINE | ID: mdl-35419637

RATIONALE: Compulsivity often develops during childhood and is associated with elevated glutamate levels within the frontostriatal system. This suggests that anti-glutamatergic drugs, like memantine, may be an effective treatment. OBJECTIVE: Our goal was to characterize the acute and chronic effect of memantine treatment on compulsive behavior and frontostriatal network structure and function in an adolescent rat model of compulsivity. METHODS: Juvenile Sprague-Dawley rats received repeated quinpirole, resulting in compulsive checking behavior (n = 32; compulsive) or saline injections (n = 32; control). Eight compulsive and control rats received chronic memantine treatment, and eight compulsive and control rats received saline treatment for seven consecutive days between the 10th and 12th quinpirole/saline injection. Compulsive checking behavior was assessed, and structural and functional brain connectivity was measured with diffusion MRI and resting-state fMRI before and after treatment. The other rats received an acute single memantine (compulsive: n = 12; control: n = 12) or saline injection (compulsive: n = 4; control: n = 4) during pharmacological MRI after the 12th quinpirole/saline injection. An additional group of rats received a single memantine injection after a single quinpirole injection (n = 8). RESULTS: Memantine treatment did not affect compulsive checking nor frontostriatal structural and functional connectivity in the quinpirole-induced adolescent rat model. While memantine activated the frontal cortex in control rats, no significant activation responses were measured after single or repeated quinpirole injections. CONCLUSIONS: The lack of a memantine treatment effect in quinpirole-induced compulsive adolescent rats may be partly explained by the interaction between glutamatergic and dopaminergic receptors in the brain, which can be evaluated with functional MRI.


Memantine , Obsessive-Compulsive Disorder , Animals , Compulsive Behavior/chemically induced , Compulsive Behavior/drug therapy , Disease Models, Animal , Dopamine Agonists/pharmacology , Memantine/pharmacology , Obsessive-Compulsive Disorder/chemically induced , Obsessive-Compulsive Disorder/drug therapy , Quinpirole/pharmacology , Rats , Rats, Long-Evans , Rats, Sprague-Dawley
6.
J Neurosci Res ; 100(5): 1182-1190, 2022 05.
Article En | MEDLINE | ID: mdl-31769534

Eating disorders and obesity form a major health problem in Western Society. To be able to provide adequate treatment and prevention, it is necessary to understand the neural mechanisms underlying the development of eating disorders and obesity. Specific brain networks have been shown to be involved in feeding behavior. We therefore hypothesized that functional connectivity in neural networks involved in feeding behavior is dependent on the status of homeostatic energy balance, thus on being hungry or satiated. To test our hypothesis, we measured functional connectivity and amplitudes of neural signals within neural networks in relation to food intake and sucrose tasting in rats. Therefore, 16 male Wistar rats, of which eight were food-restricted and eight were satiated, underwent resting-state functional magnetic resonance imaging (rs-fMRI) at 9.4 T. Subsequently, half of these animals underwent a sucrose tasting procedure followed by a second rs-fMRI scan. Functional connectivity and amplitude of low-frequency signal fluctuations were statistically analyzed in a linear mixed model. Although we did not detect a significant effect of food intake on functional connectivity before sucrose tasting, there was a trend toward interaction between group (satiated vs. hungry) and treatment (sucrose tasting). Functional connectivity between feeding-related regions tended to decrease stronger upon sucrose tasting in satiated rats as compared to food-restricted rats. Furthermore, rs-fMRI signal amplitudes decreased stronger upon sucrose tasting in satiated rats, as compared to food-restricted rats. These findings indicate that food intake and sucrose tasting can affect functional network organization, which may explain the specific patterns in feeding behavior.


Brain Mapping , Sucrose , Animals , Brain , Brain Mapping/methods , Diet , Eating , Magnetic Resonance Imaging , Male , Obesity , Rats , Rats, Wistar , Sucrose/pharmacology
7.
Neurorehabil Neural Repair ; 35(11): 1010-1019, 2021 11.
Article En | MEDLINE | ID: mdl-34546138

Background. Recovery of motor function after stroke appears to be related to the integrity of axonal connections in the corticospinal tract (CST) and corpus callosum, which may both be affected after cortical stroke. Objective. In the present study, we aimed to elucidate the relationship of changes in measures of the CST and transcallosal tract integrity, with the interhemispheric functional connectivity and sensorimotor performance after experimental cortical stroke. Methods. We conducted in vivo diffusion magnetic resonance imaging (MRI), resting-state functional MRI, and behavior testing in twenty-five male Sprague Dawley rats recovering from unilateral photothrombotic stroke in the sensorimotor cortex. Twenty-three healthy rats served as controls. Results. A reduction in the number of reconstructed fibers, a lower fractional anisotropy, and higher radial diffusivity in the ipsilesional but intact CST, reflected remote white matter degeneration. In contrast, transcallosal tract integrity remained preserved. Functional connectivity between the ipsi- and contralesional forelimb regions of the primary somatosensory cortex significantly reduced at week 8 post-stroke. Comparably, usage of the stroke-affected forelimb was normal at week 28, following significant initial impairment between day 1 and week 8 post-stroke. Conclusions. Our study shows that post-stroke motor recovery is possible despite degeneration in the CST and may be supported by intact neuronal communication between hemispheres.


Corpus Callosum/pathology , Motor Activity/physiology , Pyramidal Tracts/pathology , Recovery of Function/physiology , Sensorimotor Cortex/pathology , Stroke/pathology , White Matter/pathology , Animals , Behavior, Animal/physiology , Corpus Callosum/diagnostic imaging , Corpus Callosum/physiopathology , Diffusion Tensor Imaging , Disease Models, Animal , Male , Neural Pathways/diagnostic imaging , Neural Pathways/pathology , Neural Pathways/physiopathology , Pyramidal Tracts/diagnostic imaging , Pyramidal Tracts/physiopathology , Rats , Rats, Sprague-Dawley , Sensorimotor Cortex/diagnostic imaging , Sensorimotor Cortex/physiopathology
8.
J Neurosci Res ; 99(5): 1377-1389, 2021 05.
Article En | MEDLINE | ID: mdl-33511664

Transcranial direct current stimulation (tDCS) is a noninvasive brain stimulation technique implicated as a promising adjunct therapy to improve motor function through the neuromodulation of brain networks. Particularly bilateral tDCS, which affects both hemispheres, may yield stronger effects on motor learning than unilateral stimulation. Therefore, the aim of this exploratory study was to develop an experimental model for simultaneous magnetic resonance imaging (MRI) and bilateral tDCS in rats, to measure instant and resultant effects of tDCS on network activity and connectivity. Naïve, male Sprague-Dawley rats were divided into a tDCS (n = 7) and sham stimulation group (n = 6). Functional MRI data were collected during concurrent bilateral tDCS over the sensorimotor cortex, while resting-state functional MRI and perfusion MRI were acquired directly before and after stimulation. Bilateral tDCS induced a hemodynamic activation response, reflected by a bilateral increase in blood oxygenation level-dependent signal in different cortical areas, including the sensorimotor regions. Resting-state functional connectivity within the cortical sensorimotor network decreased after a first stimulation session but increased after a second session, suggesting an interaction between multiple tDCS sessions. Perfusion MRI revealed no significant changes in cerebral blood flow after tDCS. Our exploratory study demonstrates successful application of an MRI-compatible bilateral tDCS setup in an animal model. Our results indicate that bilateral tDCS can locally modulate neuronal activity and connectivity, which may underlie its therapeutic potential.


Nerve Net/diagnostic imaging , Nerve Net/physiology , Sensorimotor Cortex/diagnostic imaging , Sensorimotor Cortex/physiology , Transcranial Direct Current Stimulation/methods , Animals , Cerebral Cortex/physiology , Magnetic Resonance Imaging/methods , Male , Nerve Net/blood supply , Rats , Rats, Sprague-Dawley , Sensorimotor Cortex/blood supply
9.
Neuroscience ; 474: 94-99, 2021 10 15.
Article En | MEDLINE | ID: mdl-33493618

Altered brain metabolism contributes to pathophysiology in cerebrovascular and neurodegenerative diseases such as stroke and Alzheimer's disease. Current clinical tools to study brain metabolism rely on positron emission tomography (PET) requiring specific hardware and radiotracers, or magnetic resonance spectroscopy (MRS) involving technical complexity. In this review we highlight deuterium metabolic imaging (DMI) as a novel translational technique for assessment of brain metabolism, with examples from brain tumor and stroke studies. DMI is an MRS-based method that enables detection of deuterated substrates, such as glucose, and their metabolic products, such as lactate, glutamate and glutamine. It provides additional detail of downstream metabolites compared to analogous approaches like fluorodeoxyglucose (FDG)-PET, and can be implemented and executed on clinical and preclinical MR systems. We foresee that DMI, with future improvements in spatial and temporal resolutions, holds promise to become a valuable MR imaging (MRI) method for non-invasive mapping of glucose uptake and its downstream metabolites in healthy and diseased brain.


Brain , Magnetic Resonance Imaging , Brain/diagnostic imaging , Deuterium , Fluorodeoxyglucose F18 , Magnetic Resonance Spectroscopy , Positron-Emission Tomography
10.
Eur Neuropsychopharmacol ; 33: 58-70, 2020 04.
Article En | MEDLINE | ID: mdl-32151497

Obsessive-compulsive disorder (OCD) is increasingly considered to be a neurodevelopmental disorder. However, despite insights in neural substrates of OCD in adults, less is known about mechanisms underlying compulsivity during brain development in children and adolescents. Therefore, we developed an adolescent rat model of compulsive checking behavior and investigated developmental changes in structural and functional measures in the frontostriatal circuitry. Five-weeks old Sprague Dawley rats were subcutaneously injected with quinpirole (n = 21) or saline (n = 20) twice a week for five weeks. Each injection was followed by placement in the middle of an open field table, and compulsive behavior was quantified as repeated checking behavior. Anatomical, resting-state functional and diffusion MRI at 4.7T were conducted before the first and after the last quinpirole/saline injection to measure regional volumes, functional connectivity and structural integrity in the brain, respectively. After consecutive quinpirole injections, adolescent rats demonstrated clear checking behavior and repeated travelling between two open-field zones. MRI measurements revealed an increase of regional volumes within the frontostriatal circuits and an increase in fractional anisotropy (FA) in white matter areas during maturation in both experimental groups. Quinpirole-injected rats showed a larger developmental increase in FA values in the internal capsule and forceps minor compared to control rats. Our study points toward a link between development of compulsive behavior and altered white matter maturation in quinpirole-injected adolescent rats, in line with observations in pediatric patients with compulsive phenotypes. This novel animal model provides opportunities to investigate novel treatments and underlying mechanisms for patients with early-onset OCD specifically.


Brain/growth & development , Dopamine Agonists , Obsessive-Compulsive Disorder/diagnostic imaging , Obsessive-Compulsive Disorder/psychology , Quinpirole , Animals , Behavior, Animal , Brain Mapping , Diffusion Magnetic Resonance Imaging , Grooming , Internal Capsule/diagnostic imaging , Locomotion , Magnetic Resonance Imaging , Nerve Net/diagnostic imaging , Obsessive-Compulsive Disorder/chemically induced , Rats , Rats, Long-Evans , Rats, Sprague-Dawley , White Matter/diagnostic imaging
11.
Sci Rep ; 10(1): 56, 2020 01 09.
Article En | MEDLINE | ID: mdl-31919379

An improved understanding of the structure-function relationship in the brain is necessary to know to what degree structural connectivity underpins abnormal functional connectivity seen in disorders. We integrated high-field resting-state fMRI-based functional connectivity with high-resolution macro-scale diffusion-based and meso-scale neuronal tracer-based structural connectivity, to obtain an accurate depiction of the structure-function relationship in the rat brain. Our main goal was to identify to what extent structural and functional connectivity strengths are correlated, macro- and meso-scopically, across the cortex. Correlation analyses revealed a positive correspondence between functional and macro-scale diffusion-based structural connectivity, but no significant correlation between functional connectivity and meso-scale neuronal tracer-based structural connectivity. Zooming in on individual connections, we found strong functional connectivity in two well-known resting-state networks: the sensorimotor and default mode network. Strong functional connectivity within these networks coincided with strong short-range intrahemispheric structural connectivity, but with weak heterotopic interhemispheric and long-range intrahemispheric structural connectivity. Our study indicates the importance of combining measures of connectivity at distinct hierarchical levels to accurately determine connectivity across networks in the healthy and diseased brain. Although characteristics of the applied techniques may affect where structural and functional networks (dis)agree, distinct structure-function relationships across the brain could also have a biological basis.


Brain/physiology , Connectome/methods , Algorithms , Animals , Brain/diagnostic imaging , Image Processing, Computer-Assisted , Magnetic Resonance Imaging , Male , Rats , Rats, Wistar
12.
Neurobiol Dis ; 126: 23-35, 2019 06.
Article En | MEDLINE | ID: mdl-30086387

Neural network changes during aging may contribute to vulnerability and resilience to brain lesions in age-related neurological disorders, such as stroke. However, the relationship between age-related neural network features and stroke outcome is unknown. Therefore, we assessed structural and functional network status in young adult and aged rat brain, and measured the effects of simulated stroke lesions. Eleven rats underwent diffusion-weighted MRI and resting-state functional MRI at young adult age (post-natal day 88) and old age (between post-natal day 760 and 880). Structural and functional brain network features were calculated from graph-based network analysis. We performed three lesion simulations based on the brain injury pattern in frequently applied rodent stroke models, i.e. a small cortical lesion, a subcortical lesion, or a large cortical plus subcortical lesion, for which we computationally removed the involved network regions. Global network characteristics, i.e. integration and segregation, were not significantly different between the two age groups. However, we detected local differences in structural and functional networks between young adult and old rats, mainly reflected by shifts of hub regions. Stroke lesion simulations induced significant global and local network changes, characterized by lower efficiency and shifts of hub regions in structural and functional networks, which was most evident after a large cortical plus subcortical lesion. Functional and structural hub region shifts after lesion simulations differed between young adult and aged rats. Our lesion simulation study demonstrates that age-dependent brain network status affects structural and functional network reorganization after stroke, particularly involving hub shifts, which may influence functional outcome. Computational lesion studies offer a cheap and simple alternative to empirical studies and can complement or guide more complicated experimental studies in animal models and patients.


Brain/physiopathology , Models, Neurological , Nerve Net/physiopathology , Stroke/physiopathology , Age Factors , Animals , Male , Rats , Rats, Wistar
13.
J Cereb Blood Flow Metab ; 39(2): 189-209, 2019 02.
Article En | MEDLINE | ID: mdl-30375267

The mammalian brain is composed of densely connected and interacting regions, which form structural and functional networks. An improved understanding of the structure-function relation is crucial to understand the structural underpinnings of brain function and brain plasticity after injury. It is currently unclear how functional connectivity strength relates to structural connectivity strength. We obtained an overview of recent papers that report on correspondences between quantitative functional and structural connectivity measures in the mammalian brain. We included network studies in which functional connectivity was measured with resting-state fMRI, and structural connectivity with either diffusion-weighted MRI or neuronal tract tracers. Twenty-seven of the 28 included studies showed a positive structure-function relationship. Large inter-study variations were found comparing functional connectivity strength with either quantitative diffusion-based (correlation coefficient (r) ranges: 0.18-0.82) or neuronal tracer-based structural connectivity measures (r = 0.24-0.74). Two functional datasets demonstrated lower structure-function correlations with neuronal tracer-based (r = 0.22 and r = 0.30) than with diffusion-based measures (r = 0.49 and r = 0.65). The robust positive quantitative structure-function relationship supports the hypothesis that structural connectivity provides the hardware from which functional connectivity emerges. However, methodological differences between the included studies complicate the comparison across studies, which emphasize the need for validation and standardization in brain structure-function studies.


Connectome , Diffusion Magnetic Resonance Imaging , Magnetic Resonance Imaging , Models, Neurological , Neuronal Plasticity/physiology , Adult , Animals , Female , Humans , Male
14.
Front Neuroinform ; 13: 78, 2019.
Article En | MEDLINE | ID: mdl-32038217

Animal whole-brain functional magnetic resonance imaging (fMRI) provides a non-invasive window into brain activity. A collection of associated methods aims to replicate observations made in humans and to identify the mechanisms underlying the distributed neuronal activity in the healthy and disordered brain. Animal fMRI studies have developed rapidly over the past years, fueled by the development of resting-state fMRI connectivity and genetically encoded neuromodulatory tools. Yet, comparisons between sites remain hampered by lack of standardization. Recently, we highlighted that mouse resting-state functional connectivity converges across centers, although large discrepancies in sensitivity and specificity remained. Here, we explore past and present trends within the animal fMRI community and highlight critical aspects in study design, data acquisition, and post-processing operations, that may affect the results and influence the comparability between studies. We also suggest practices aimed to promote the adoption of standards within the community and improve between-lab reproducibility. The implementation of standardized animal neuroimaging protocols will facilitate animal population imaging efforts as well as meta-analysis and replication studies, the gold standards in evidence-based science.

15.
J Neurol Neurosurg Psychiatry ; 87(12): 1354-1360, 2016 12.
Article En | MEDLINE | ID: mdl-27756805

BACKGROUND: In patients with a C9orf72 repeat expansion (C9+), a neuroimaging phenotype with widespread structural cerebral changes has been found. We aimed to investigate the specificity of this neuroimaging phenotype in patients with amyotrophic lateral sclerosis (ALS). METHODS: 156 C9- and 14 C9+ patients with ALS underwent high-resolution T1-weighted MRI; a subset (n=126) underwent diffusion-weighted imaging. Cortical thickness, subcortical volumes and white matter integrity were compared between C9+ and C9- patients. Using elastic net logistic regression, a model defining the neuroimaging phenotype of C9+ was determined and applied to C9- patients with ALS. RESULTS: C9+ patients showed cortical thinning outside the precentral gyrus, extending to the bilateral pars opercularis, fusiform, lingual, isthmus-cingulate and superior parietal cortex, and smaller volumes of the right hippocampus and bilateral thalamus, and reduced white matter integrity of the inferior and superior longitudinal fasciculus compared with C9- patients (p<0.05). Among 128 C9- patients, we detected a subgroup of 27 (21%) with a neuroimaging phenotype congruent to C9+ patients, while 101 (79%) C9- patients showed cortical thinning restricted to the primary motor cortex. C9- patients with a 'C9+' neuroimaging phenotype had lower performance on the frontal assessment battery, compared with other C9- patients with ALS (p=0.004). CONCLUSIONS: This study shows that widespread structural brain involvement is not limited to C9+ patients, but also presents in a subgroup of C9- patients with ALS and relates to cognitive deficits. Our neuroimaging findings reveal an intermediate phenotype that may provide insight into the complex relationship between genetic factors and clinical characteristics.


Amyotrophic Lateral Sclerosis/genetics , DNA Repeat Expansion/genetics , RNA-Binding Proteins/genetics , Adult , Aged , Amyotrophic Lateral Sclerosis/diagnostic imaging , Brain/diagnostic imaging , Dominance, Cerebral/physiology , Female , Humans , Image Interpretation, Computer-Assisted , Male , Middle Aged , Phenotype , Reference Values
...