Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Transl Med ; 11(517)2019 11 06.
Article in English | MEDLINE | ID: mdl-31694927

ABSTRACT

Nonclinical rodent and nonrodent toxicity models used to support clinical trials of candidate drugs may produce discordant results or fail to predict complications in humans, contributing to drug failures in the clinic. Here, we applied microengineered Organs-on-Chips technology to design a rat, dog, and human Liver-Chip containing species-specific primary hepatocytes interfaced with liver sinusoidal endothelial cells, with or without Kupffer cells and hepatic stellate cells, cultured under physiological fluid flow. The Liver-Chip detected diverse phenotypes of liver toxicity, including hepatocellular injury, steatosis, cholestasis, and fibrosis, and species-specific toxicities when treated with tool compounds. A multispecies Liver-Chip may provide a useful platform for prediction of liver toxicity and inform human relevance of liver toxicities detected in animal studies to better determine safety and human risk.


Subject(s)
Drug-Related Side Effects and Adverse Reactions/pathology , Lab-On-A-Chip Devices , Liver/pathology , Animals , Biomarkers/metabolism , Chemical and Drug Induced Liver Injury/pathology , Dogs , Humans , Kupffer Cells/metabolism , Liver/injuries , Liver Diseases/pathology , Phenotype , Rats , Reproducibility of Results , Risk Factors , Species Specificity
2.
Int J Hyg Environ Health ; 220(4): 659-672, 2017 06.
Article in English | MEDLINE | ID: mdl-28396010

ABSTRACT

The elderly constitute a significant, potentially sensitive, subpopulation within the general population, which must be taken into account when performing risk assessments including determining an acceptable daily exposure (ADE) for the purpose of a cleaning validation. Known differences in the pharmacokinetics of drugs between young adults (who are typically the subjects recruited into clinical trials) and the elderly are potential contributors affecting the interindividual uncertainty factor (UFH) component of the ADE calculation. The UFH values were calculated for 206 drugs for young adult and elderly groups separately and combined (with the elderly assumed to be a sensitive subpopulation) from published studies where the pharmacokinetics of the young adult and elderly groups were directly compared. Based on the analysis presented here, it is recommended to use a default UFH value of 10 for worker populations (which are assumed to be approximately equivalent to the young adult groups) where no supporting pharmacokinetic data exist, while it is recommended to use a default UFH value of 15 for the general population, to take the elderly into consideration when calculating ADE values. The underlying reasons for the large differences between the exposures in the young adult and elderly subjects for the 10 compounds which show the greatest separation are different in almost every case, involving the OCT2 transporter, glucuronidation, hydrolysis, CYP1A2, CYP2A6, CYP2C19, CYP2D6, CYP3A4 or CYP3A5. Therefore, there is no consistent underlying mechanism which appears responsible for the largest differences in pharmacokinetic parameters between young adult and elderly subjects.


Subject(s)
Aging/metabolism , Pharmacokinetics , Aged , Aged, 80 and over , Cytochrome P-450 Enzyme System/metabolism , Female , Humans , Male , Middle Aged , Organic Cation Transporter 2/metabolism , Risk Assessment , Uncertainty , Young Adult
3.
Regul Toxicol Pharmacol ; 79 Suppl 1: S67-78, 2016 Aug.
Article in English | MEDLINE | ID: mdl-27224509

ABSTRACT

The purpose of this paper is to describe the use of toxicokinetic (TK) and toxicodynamic (TD) data in setting acceptable daily exposure (ADE) values and occupational exposure limits (OELs). Use of TK data can provide a more robust exposure limit based on a rigorous evaluation of systemic internal dose. Bioavailability data assist in extrapolating across different routes of exposure to be protective for route-based differences of exposure. Bioaccumulation data enable extrapolation to chronic exposures when the point of departure (PoD) is from a short-term critical study. Applied in the context of chemical-specific adjustment factors (CSAFs), TK data partially replace traditional default adjustment factors for interspecies extrapolation (extrapolation from studies conducted in animals to humans) and intraspecies variability (to account for human population variability). Default adjustments of 10-fold each for interspecies and intraspecies extrapolation are recommended in several guidelines, although some organization recommend other values. Such default factors may overestimate variability for many APIs, while not being sufficiently protective for variability with other APIs. For this reason, the use of chemical specific TK and TD data are preferred. Making full use of existing TK and TD data reduces underlying uncertainties, increases transparency, and ensures that resulting ADEs reflect the best available science.


Subject(s)
Drug Industry , No-Observed-Adverse-Effect Level , Occupational Exposure/prevention & control , Occupational Health , Pharmaceutical Preparations , Toxicokinetics , Animals , Area Under Curve , Drug Industry/legislation & jurisprudence , Drug Industry/standards , Guidelines as Topic , Half-Life , Health Policy , Humans , Metabolic Clearance Rate , Models, Biological , Occupational Exposure/adverse effects , Occupational Exposure/legislation & jurisprudence , Occupational Exposure/standards , Occupational Health/legislation & jurisprudence , Occupational Health/standards , Pharmaceutical Preparations/classification , Pharmaceutical Preparations/standards , Policy Making , Risk Assessment , Species Specificity , Toxicity Tests
4.
Clin Exp Pharmacol Physiol ; 33(4): 320-6, 2006 Apr.
Article in English | MEDLINE | ID: mdl-16620295

ABSTRACT

1. Antagonists of the V(2) vasopressin (AVP) receptor are aquaretic agents, inhibiting water resorption without stimulating electrolyte excretion. In this set of experiments, a novel V(2) receptor antagonist, RWJ-351647, was characterized in vitro and in vivo. 2. RWJ-351647 displaced (3)H-AVP binding from cloned human V(2) and V(1A) receptors with Ki values of 1 nmol/L and 24 nmol/L. In assays using transfected HEK293 cells expressing either human or rat V(2) receptors, RWJ-351647 inhibited AVP-induced cAMP accumulation with Ki values of 3 nmol/L and 6 nmol/L, respectively. 3. RWJ-351647 was very selective in binding assays and showed only weak functional antagonist activity at either the cloned human V(1B) and oxytocin receptors or the human platelet V(1A) receptor. No agonist activity was seen with the compound at any receptor. 4. Pharmacokinetic studies in rats showed RWJ-351647 to be 41.9% bioavailable after a single oral administration. After repeated daily dosing over 5 days, the oral bioavailability remained at 43.9% with no change in the compound peak plasma levels or clearance rate. 5. In efficacy studies, RWJ-351647 increased urine output and decreased urine osmolality with oral doses as low as 0.1 mg/kg and 1.0 mg/kg in rats and cynomolgus monkeys, respectively. In a multiple dose study in primates, RWJ-351647 maintained a consistent aquaretic effect over 10 days without increasing sodium or potassium excretion. 6. In summary, RWJ-351647 was shown to be a selective and potent V(2) receptor antagonist with sustainable aquaretic activity in both rats and primates. The preclinical data suggest that RWJ-351647 is a potent and effective aquaretic agent with potential for use in diseases characterized by water retention.


Subject(s)
Antidiuretic Hormone Receptor Antagonists , Benzodiazepines/pharmacology , Animals , Benzodiazepines/pharmacokinetics , Cell Line , Female , Hematocrit , Humans , Macaca fascicularis , Male , Osmolar Concentration , Rats , Rats, Sprague-Dawley , Receptors, Oxytocin/drug effects , Water-Electrolyte Balance/drug effects
5.
Epilepsy Res ; 63(2-3): 103-12, 2005 Feb.
Article in English | MEDLINE | ID: mdl-15715969

ABSTRACT

Topiramate (TPM) is a broad-spectrum antiepileptic drug with various mechanisms of action including an inhibitory effect on some isozymes of carbonic anhydrase (CA). Binding to CA-I and CA-II, which are highly concentrated in erythrocytes, may affect drug pharmacokinetics. Consequently, the objectives of this study were: (a) to comparatively assess TPM pharmacokinetics in healthy subjects, based on plasma and whole blood data, by simultaneously measuring TPM concentrations in plasma and whole blood following different therapeutic doses; (b) to rigorously establish the affinity of TPM for CA-I and CA-II in order to gain insight into how binding to these isozymes in erythrocytes influences TPM pharmacokinetics. TPM (100, 200 and 400 mg, single dose) was given in a randomized three-way crossover design to 27 healthy subjects and the drug concentrations in plasma and whole blood were simultaneously measured for 168 h after dosing. The pharmacokinetics of TPM in plasma was linear, but TPM clearance from whole blood increased with increasing dose. At low therapeutic concentrations, the blood-to-plasma ratio for TPM decreased from 8 to 2 as its concentration increased, indicating a substantial and saturable binding of TPM to erythrocytes. The kinetics (dissociation binding constant -Kd and maximum binding rate -Bmax) of the binding of TPM to erythrocytes was determined from the measured concentrations of TPM in whole blood and plasma. This analysis indicated the existence of two binding sites with Kd values of 0.54 and 140 microM, and Bmax values of 22 and 124 micromol/L of erythrocyte volume, respectively. These Bmax values are similar to literature values for the molar concentration of human CA-II (14-25 micromol/L) and CA-I (115-125 micromol/L). TPM inhibition constant (Ki) values for the inhibition of purified human CA obtained using assays based on CO2 hydration or 4-nitrophenylacetate hydrolysis were 0.62 and 0.49 microM for CA-II, and 91 and 93 microM for CA-I. The results of these studies indicate that virtually all of the binding of TPM to erythrocytes is attributable to CA-I and CA-II. Because CA-I and CA-II are highly concentrated in erythrocytes, a large portion of TPM in whole blood is bound and serves as a depot. This contributes to the lower oral clearance (CL/F), apparent volume of distribution (Vss/F) and longer half-life (t(1/2)) that TPM has in blood compared to the CL/F, Vss/F and t(1/2), estimated from plasma data. The difference between TPM blood and plasma pharmacokinetics was more profound at low doses (< or = 100 mg/day).


Subject(s)
Anticonvulsants/blood , Anticonvulsants/pharmacokinetics , Carbonic Anhydrases/physiology , Fructose/analogs & derivatives , Fructose/blood , Fructose/pharmacokinetics , Plasma/metabolism , Adolescent , Adult , Carbon Dioxide/metabolism , Carbonic Anhydrase Inhibitors/pharmacology , Cross-Over Studies , Dose-Response Relationship, Drug , Drug Administration Routes , Humans , Male , Nitrobenzoates/metabolism , Protein Binding , Topiramate
6.
Antimicrob Agents Chemother ; 46(4): 996-1004, 2002 Apr.
Article in English | MEDLINE | ID: mdl-11897581

ABSTRACT

Several cyclopentane inhibitors of influenza virus neuraminidase that have inhibitory activities in tissue culture similar to those of zanamivir and oseltamivir have recently been described. These new inhibitors have been examined for efficacy against a virulent H3N2 influenza virus when administered orally to infected ferrets. Preliminary studies indicated that oral administration of BCX-1923, BCX-1827, or BCX-1812 (RWJ-270201) at a dose of 5 or 25 mg/kg of body weight was active in ferrets in reducing respiratory and constitutional signs and symptoms, but these antivirals affected virus titers in the upper and lower respiratory tracts only marginally. Of the three compounds, BCX-1812 seemed to be the most efficacious and was examined further at higher doses of 30 and 100 mg/kg. These doses significantly reduced peak virus titers in nasal washes and total virus shedding as measured by areas under the curve. Virus titers in lung homogenates were also reduced compared to those in controls, but the difference was not statistically significant. As was observed with BCX-1812 at lower doses, the nasal inflammatory cellular response, fever, and nasal signs were reduced while ferret activity was not, with activity remaining similar to uninfected animals.


Subject(s)
Antiviral Agents/pharmacology , Cyclopentanes/pharmacology , Enzyme Inhibitors/pharmacology , Ferrets/physiology , Influenza A virus/drug effects , Neuraminidase/antagonists & inhibitors , Orthomyxoviridae Infections/drug therapy , Acetamides/pharmacology , Acids, Carbocyclic , Animals , Antiviral Agents/pharmacokinetics , Area Under Curve , Body Temperature , Cell Count , Cyclopentanes/pharmacokinetics , Enzyme Inhibitors/pharmacokinetics , Guanidines , Half-Life , Hemagglutination Inhibition Tests , Lung/microbiology , Male , Nasal Cavity/cytology , Nasal Cavity/virology , Orthomyxoviridae Infections/pathology , Orthomyxoviridae Infections/virology , Oseltamivir
SELECTION OF CITATIONS
SEARCH DETAIL
...