Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters










Publication year range
1.
J Pharm Biomed Anal ; 249: 116381, 2024 Oct 15.
Article in English | MEDLINE | ID: mdl-39067280

ABSTRACT

Fluorouracil is among the most used antimetabolite drugs for the chemotherapeutic treatment of various types of gastrointestinal malignancies. Dihydropyrimidine dehydrogenase (DPYD) genotyping prior to fluorouracil treatment is considered standard practice in most European countries. Yet, current pre-therapeutic DPYD genotyping procedures do not identify all dihydropyrimidine dehydrogenase (DPD)-deficient patients. Alternatively, DPD activity can be estimated by determining the DPD phenotype by quantification of plasma concentrations of the endogenous uracil and thymine concentrations and their respective metabolites dihydrouracil (DHU) and dihydrothymine (DHT). Liquid chromatography - mass spectrometry (LC-MS) detection is currently considered as the most adequate method for quantification of low-molecular weight molecules, although the sample preparation method is highly critical for analytical outcome. It was hypothesized that during protein precipitation, the recovery of the molecule of interest highly depends on the choice of precipitation agent and the extent of protein binding in plasma. In this work, the effect of protein precipitation using acetonitrile (ACN) compared to strong acid perchloric acid (PCA) on the recovery of uracil, thymine, DHU and DHT is demonstrated. Upon the analysis of plasma samples, PCA precipitation showed higher concentrations of uracil and thymine as compared to ACN precipitation. Using ultrafiltration, it was shown that uracil and thymine are significantly (60-65 %) bound to proteins compared to DHU and DHT. This shows that before harmonized cut-off levels of DPD phenotyping can be applied in clinical practice, the analytical methodology requires extensive further optimization.


Subject(s)
Dihydrouracil Dehydrogenase (NADP) , Phenotype , Protein Binding , Thymine , Uracil , Thymine/metabolism , Uracil/analogs & derivatives , Uracil/metabolism , Uracil/blood , Dihydrouracil Dehydrogenase (NADP)/metabolism , Dihydrouracil Dehydrogenase (NADP)/genetics , Humans , Chromatography, Liquid/methods , Fluorouracil/metabolism , Fluorouracil/blood , Genotype , Dihydropyrimidine Dehydrogenase Deficiency/metabolism , Tandem Mass Spectrometry/methods
2.
J Pharm Biomed Anal ; 221: 115027, 2022 Nov 30.
Article in English | MEDLINE | ID: mdl-36099723

ABSTRACT

Establishing dihydropyrimidine dehydrogenase (DPD) activity is highly important in determining the correct starting dose of fluoropyrimidines such as 5-fluorouracil and capecitabine. The concentration ratio of endogenous uracil with its metabolite dihydrouracil (DHU) is a well-known parameter that is linked to DPD activity. Concentration ratios such as thymine over its DPD-converted metabolite dihydrothymine (DHT) is less described and may serve as an alternative diagnostic biomarker for DPD activity. In this study, we describe the development and validation of an ultra-high performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) assay for the quantification of uracil, DHU, thymine, and DHT in human plasma. In addition, stability experiments were performed. Uracil and thymine were quantified up to 80.0 ng/mL and DHU and DHT up to 800 ng/mL. Intra- and inter-assay precision were maximum 8.0 % and 7.6 %. respectively. Also, recovery was adequate and significant matrix-effects and carry-over were excluded. Stability experiments showed that uracil concentrations increased with 27-52 % when stored for 1 or 2 h at ambient temperatures compared to cold storage. Thymine, DHU, and DHT concentrations remained stable, thymine after 1 h in plasma excluded, showing the DHT:T ratio might be a more robust marker for DPD activity than DHU:U. In conclusion, we present here a novel assay capable of quantifying uracil, thymine, DHU and DHT in a single analytical run. We provide additional data showing increased stability for DHU, thymine and DHT compared to uracil. This assay may be used as a diagnostic test in future studies, establishing the association of these endogenous biomarker concentrations with DPD activity and safety to treatment with fluoropyrimidines. In addition, future research should also be focused on reducing pre-analytical instability. Standardization in this field is essential to set proper reference values and to allow inter-study comparison on clinical outcomes.


Subject(s)
Dihydrouracil Dehydrogenase (NADP) , Thymine , Biomarkers , Capecitabine , Chromatography, Liquid , Dihydrouracil Dehydrogenase (NADP)/metabolism , Fluorouracil , Humans , Tandem Mass Spectrometry , Uracil/analogs & derivatives
3.
Thromb J ; 19(1): 35, 2021 May 31.
Article in English | MEDLINE | ID: mdl-34059058

ABSTRACT

BACKGROUND: The incidence of pulmonary thromboembolism is high in SARS-CoV-2 patients admitted to the Intensive Care. Elevated biomarkers of coagulation (fibrinogen and D-dimer) and inflammation (c-reactive protein (CRP) and ferritin) are associated with poor outcome in SARS-CoV-2. Whether the time-course of fibrinogen, D-dimer, CRP and ferritin is associated with the occurrence of pulmonary thromboembolism in SARS-CoV-2 patients is unknown. We hypothesise that patients on mechanical ventilation with SARS-CoV-2 infection and clinical pulmonary thromboembolism have lower concentrations of fibrinogen and higher D-dimer, CRP, and ferritin concentrations over time compared to patients without a clinical pulmonary thromboembolism. METHODS: In a prospective study, fibrinogen, D-dimer, CRP and ferritin were measured daily. Clinical suspected pulmonary thromboembolism was either confirmed or excluded based on computed tomography pulmonary angiography (CTPA) or by transthoracic ultrasound (TTU) (i.e., right-sided cardiac thrombus). In addition, patients who received therapy with recombinant tissue plasminogen activator were included when clinical instability in suspected pulmonary thromboembolism did not allow CTPA. Serial data were analysed using a mixed-effects linear regression model, and models were adjusted for known risk factors (age, sex, APACHE-II score, body mass index), biomarkers of coagulation and inflammation, and anticoagulants. RESULTS: Thirty-one patients were considered to suffer from pulmonary thromboembolism ((positive CTPA (n = 27), TTU positive (n = 1), therapy with recombinant tissue plasminogen activator (n = 3)), and eight patients with negative CTPA were included. After adjustment for known risk factors and anticoagulants, patients with, compared to those without, clinical pulmonary thromboembolism had lower average fibrinogen concentration of - 0.9 g/L (95% CI: - 1.6 - - 0.1) and lower average ferritin concentration of - 1045 µg/L (95% CI: - 1983 - - 106) over time. D-dimer and CRP average concentration did not significantly differ, 561 µg/L (- 6212-7334) and 27 mg/L (- 32-86) respectively. Ferritin lost statistical significance, both in sensitivity analysis and after adjustment for fibrinogen and D-dimer. CONCLUSION: Lower average concentrations of fibrinogen over time were associated with the presence of clinical pulmonary thromboembolism in patients at the Intensive Care, whereas D-dimer, CRP and ferritin were not. Lower concentrations over time may indicate the consumption of fibrinogen related to thrombus formation in the pulmonary vessels.

4.
Front Cardiovasc Med ; 8: 654174, 2021.
Article in English | MEDLINE | ID: mdl-33981736

ABSTRACT

Background: Coronavirus Disease 2019 (COVID-19) patients often present with thromboembolic events. In COVID-19 patients, routine hemostatic assays cannot correctly identify patients at risk for thromboembolic events. Viscoelastic testing with rotational thromboelastometry (ROTEM) might improve the characterization of COVID-19-associated coagulopathy. Objective: To unravel underlying coagulopathy and fibrinolysis over time as measured by serial assessment heparin-independent (FIBTEM and EXTEM) and fibrinolysis illustrating (tissue plasminogen activator; tPA) ROTEM assays. Patients/Methods: Between April 23 and June 12, consecutive adult patients enrolled within the Maastricht Intensive Care COVID (MaastrICCht) cohort were included, and a comprehensive set of clinical, physiological, pharmaceutical, and laboratory variables were collected daily. Twice per week, EXTEM, FIBTEM, and tPA ROTEM were performed. Clotting time (CT), clot formation time (CFT), maximum clot firmness (MCF), lysis onset time (LOT), and lysis time (LT) were determined to assess clot development and breakdown and were compared to routine hemostatic assays. Results: In 36 patients, 96 EXTEM/FIBTEM and 87 tPA ROTEM tests were performed during a 6-week follow-up. CT prolongation was present in 54% of EXTEM measurements, which were not matched by prothrombin time (PT) in 37%. Respectively, 81 and 99% of all EXTEM and FIBTEM MCF values were above the reference range, and median MCF remained elevated during follow-up. The ROTEM fibrinolysis parameters remained prolonged with median LOT consequently >49 min and unmeasurable LT in 56% of measurements, suggesting a severe hypofibrinolytic phenotype. Conclusion: ROTEM tests in COVID-19 ICU patients show hypercoagulability and severe hypofibrinolysis persisting over at least 6 weeks.

5.
Adv Exp Med Biol ; 1306: 41-59, 2021.
Article in English | MEDLINE | ID: mdl-33959905

ABSTRACT

Cardiac troponin T (cTnT) is a sensitive and specific biomarker for detecting cardiac muscle injury. Its concentration in blood can be significantly elevated outside the normal reference range under several pathophysiological conditions. The classical analytical method in routine clinical analysis to detect cTnT in serum or plasma is a single commercial immunoassay, which is designed to quantify the intact cTnT molecule. The targeted epitopes are located in the central region of the cTnT molecule. However, in blood cTnT exists in different biomolecular complexes and proteoforms: bound (to cardiac troponin subunits or to immunoglobulins) or unbound (as intact protein or as proteolytic proteoforms). While proteolysis is a principal posttranslational modification (PTM), other confirmed PTMs of the proteoforms include N-terminal initiator methionine removal, N-acetylation, O-phosphorylation, O-(N-acetyl)-glucosaminylation, N(ɛ)-(carboxymethyl)lysine modification and citrullination. The immunoassay probably detects several of those cTnT biomolecular complexes and proteoforms, as long as they have the centrally targeted epitopes in common. While analytical cTnT immunoreactivity has been studied predominantly in blood, it can also be detected in urine, although it is unclear in which proteoform cTnT immunoreactivity is present in urine. This review presents an overview of the current knowledge on the pathophysiological lifecycle of cTnT. It provides insight into the impact of PTMs, not only on the analytical immunoreactivity, but also on the excretion of cTnT in urine as one of the waste routes in that lifecycle. Accordingly, and after isolating the proteoforms from urine of patients suffering from proteinuria and acute myocardial infarction, the structures of some possible cTnT proteoforms are reconstructed using mass spectrometry and presented.


Subject(s)
Myocardial Infarction , Troponin T , Humans , Phosphorylation , Protein Processing, Post-Translational , Proteolysis , Troponin T/metabolism
6.
TH Open ; 4(4): e365-e375, 2020 Oct.
Article in English | MEDLINE | ID: mdl-33235946

ABSTRACT

Objective Severe cases of coronavirus disease 2019 (COVID-19) can require continuous renal replacement therapy (CRRT) and/or extracorporeal membrane oxygenation (ECMO). Unfractionated heparin (UFH) to prevent circuit clotting is mandatory but monitoring is complicated by (pseudo)-heparin resistance. In this observational study, we compared two different activated partial thromboplastin time (aPTT) assays and a chromogenic anti-Xa assay in COVID-19 patients on CRRT or ECMO in relation to their UFH dosages and acute phase reactants. Materials and Methods The aPTT (optical [aPTT-CS] and/or mechanical [aPTT-STA] clot detection methods were used), anti-Xa, factor VIII (FVIII), antithrombin III (ATIII), and fibrinogen were measured in 342 samples from 7 COVID-19 patients on CRRT or ECMO during their UFH treatment. Dosage of UFH was primarily based on the aPTT-CS with a heparin therapeutic range (HTR) of 50-80s. Associations between different variables were made using linear regression and Bland-Altman analysis. Results Dosage of UFH was above 35,000IU/24 hours in all patients. aPTT-CS and aPTT-STA were predominantly within the HTR. Anti-Xa was predominantly above the HTR (0.3-0.7 IU/mL) and ATIII concentration was >70% for all patients; mean FVIII and fibrinogen were 606% and 7.5 g/L, respectively. aPTT-CS correlated with aPTT-STA ( r 2 = 0.68) with a bias of 39.3%. Correlation between aPTT and anti-Xa was better for aPTT-CS (0.78 ≤ r 2 ≤ 0.94) than for aPTT-STA (0.34 ≤ r 2 ≤ 0.81). There was no general correlation between the aPTT-CS and ATIII, FVIII, fibrinogen, thrombocytes, C-reactive protein, or ferritin. Conclusion All included COVID-19 patients on CRRT or ECMO conformed to the definition of heparin resistance. A patient-specific association was found between aPTT and anti-Xa. This association could not be explained by FVIII or fibrinogen.

8.
J Appl Lab Med ; 2(6): 857-867, 2018 May 01.
Article in English | MEDLINE | ID: mdl-33636816

ABSTRACT

BACKGROUND: Because of its high cardiospecificity, cardiac troponin T (cTnT) is one of the first-choice biomarkers to diagnose acute myocardial infarction (AMI). cTnT is extensively fragmented in serum of patients suffering from AMI. However, it is currently unknown whether all cTnT is completely degraded in the body or whether some cTnT fragments can leave the body via urine. The aim of the present study is to develop a method for the detection of cTnT in urine and to examine whether cTnT is detectable in patient urine. METHODS: Proteins in urine samples of 20 patients were precipitated using a cTnT-specific immunoprecipitation technique and a nonspecific acetonitrile protein precipitation. After in-solution digestion of the precipitated proteins, the resulting peptides were separated and analyzed using HPLC and mass spectrometry with a targeted selected ion monitoring assay with data-dependent tandem mass spectrometry (t-SIM/dd-MS2). RESULTS: The t-SIM/dd-MS2 assay was validated using a synthetic peptide standard containing 10 specific cTnT peptides of interest and with purified human intact cTnT spiked in urine from healthy individuals. Using this assay, 6 different cTnT-specific peptides were identified in urine samples from 3 different patients, all suffering from AMI. CONCLUSIONS: We show here for the first time that cTnT can be present in the urine of AMI patients using a targeted LC-MS/MS assay. Whether the presence of cTnT in urine reflects a physiological or pathophysiological process still needs to be elucidated.

12.
Clin Chem ; 63(3): 683-690, 2017 03.
Article in English | MEDLINE | ID: mdl-28073901

ABSTRACT

BACKGROUND: We have found previously that in acute myocardial infarction (AMI), cardiac troponin T (cTnT) is degraded in a time-dependent pattern. We investigated whether cTnT forms differed in patients with chronic cTnT increases, as seen with renal dysfunction, from those in the acute phase of myocardial infarction. METHODS: We separated cTnT forms by gel filtration chromatography (GFC) in end-stage renal disease (ESRD) patients: prehemodialysis (pre-HD) and post-HD (n = 10) and 2 months follow-up (n = 6). Purified (cTnT) standards, quality control materials of the clinical cTnT immunoassay (Roche), and AMI patients' sera also were analyzed. Immunoprecipitation and Western blotting were performed with the original cTnT antibodies from the clinical assay and antibodies against the N- and C-terminal end of cTnT. RESULTS: GFC analysis revealed the retention of purified cTnT at 27.5 mL, identical to that for cTnT in quality controls. For all ESRD patients, one cTnT peak was found at 45 mL, pre- and post-HD, and stable over time. Western blotting illustrated that this peak corresponded to cTnT fragments <18 kDa missing the N- and C-terminal ends. AMI patients' sera revealed cTnT peaks at 27.5 and 45 mL, respectively, corresponding to N-terminal truncated cTnT of 29 kDa and N- and C-terminal truncated fragments of <18 kDa, respectively. CONCLUSIONS: We found that cTnT forms in ESRD patients are small (<18 kDa) and different from forms seen in AMI patients. These insights may prove useful for development of a more specific cTnT immunoassay, especially for the acute and diagnostic phase of myocardial infarction.


Subject(s)
Kidney Failure, Chronic/blood , Myocardial Infarction/blood , Troponin T/blood , Troponin T/chemistry , Acute Disease , Humans , Kidney Failure, Chronic/therapy , Myocardial Infarction/therapy , Renal Dialysis
13.
Clin Chem ; 63(2): 563-572, 2017 Feb.
Article in English | MEDLINE | ID: mdl-27940450

ABSTRACT

BACKGROUND: Cardiac troponin T (cTnT) is the preferred biomarker for the diagnosis of acute myocardial infarction (AMI). It has been suggested that cTnT is present predominantly in fragmented forms in human serum following AMI. In this study, we have used a targeted mass spectrometry assay and epitope mapping using Western blotting to confirm this hypothesis. METHODS: cTnT was captured from the serum of 12 patients diagnosed with AMI using an immunoprecipitation technique employing the M11.7 catcher antibody and fractionated with SDS-PAGE. Coomassie-stained bands of 4 patients at 37, 29, and 16 kDa were excised from the gel, digested with trypsin, and analyzed on a Q Exactive instrument set on targeted Selected Ion Monitoring mode with data-dependent tandem mass spectrometry (MS/MS) for identification. Western blotting employing 3 different antibodies was used for epitope mapping. RESULTS: Ten cTnT peptides of interest were targeted. By using MS/MS, all of these peptides were identified in the 37-kDa, intact, cTnT band. In the 29- and 16-kDa fragment bands, 8 and 4 cTnT-specific peptides were identified, respectively. Some of these peptides were "semitryptic," meaning that their C-termini were not formed by trypsin cleavage. The C-termini of these semitryptic peptides represent the C-terminal end of the cTnT molecules present in these bands. These results were confirmed independently by epitope mapping. CONCLUSIONS: Using LC-MS, we have succeeded in positively identifying the 29- and 16-kDa fragment bands as cTnT-derived products. The amino acid sequences of the 29- and 16-kDa fragments are Ser79-Trp297 and Ser79-Gln199, respectively.


Subject(s)
Myocardial Infarction/blood , Troponin T/blood , Acute Disease , Biomarkers/blood , Electrophoresis, Polyacrylamide Gel , Humans , Myocardial Infarction/diagnosis , Tandem Mass Spectrometry
14.
Biochem Biophys Res Commun ; 481(1-2): 165-168, 2016 Dec 02.
Article in English | MEDLINE | ID: mdl-27816455

ABSTRACT

Cardiac troponin T (cTnT) has been shown to be present in fragmented forms in human serum after acute myocardial infarction (AMI). While calpain-1 and caspase-3 have been identified as intracellular proteases able to cleave the N-terminus of cTnT, it is still unclear which proteases are responsible for the extensive and progressive cTnT fragmentation observed in serum of AMI-patients. In this pilot study we have investigated the possibility that human thrombin may be involved in this process. Purified human cTnT was spiked in unprocessed and deproteinated serum in the presence or absence of either purified human thrombin or PPACK thrombin inhibitor. After immunoprecipitation, SDS-PAGE and Western blotting we observed an increase in cTnT fragmentation when purified thrombin was added to deproteinated serum. Consequently, the addition of thrombin inhibitor to unprocessed serum resulted in a decrease of cTnT fragmentation. Our results suggest that multiple enzymes are involved in cTnT degradation, and that thrombin plays an important role.


Subject(s)
Serum/chemistry , Serum/metabolism , Thrombin/chemistry , Thrombin/metabolism , Troponin I/blood , Troponin I/chemistry , Catalysis , Humans , Myocardium/chemistry , Myocardium/metabolism
15.
Data Brief ; 7: 397-405, 2016 Jun.
Article in English | MEDLINE | ID: mdl-26977445

ABSTRACT

Cardiac troponin T (cTnT) fragmentation in human serum was investigated using a newly developed targeted selected ion monitoring assay, as described in the accompanying article: "Development of a targeted selected ion monitoring assay for the elucidation of protease induced structural changes in cardiac troponin T" [1]. This article presents data describing aspects of the validation and optimisation of this assay. The data consists of several figures, an excel file containing the results of a sequence identity search, and a description of the raw mass spectrometry (MS) data files, deposited in the ProteomeXchange repository with id PRIDE: PXD003187.

16.
J Proteomics ; 136: 123-32, 2016 Mar 16.
Article in English | MEDLINE | ID: mdl-26772903

ABSTRACT

Cardiac troponin T (cTnT) is a highly cardiospecific protein commonly used in the diagnosis of acute myocardial infarction (AMI), but is subject to proteolytic degradation upon its release in the circulation. In this study, a targeted mass spectrometry assay was developed to detect peptides which are differentially present within the different degradation products. cTnT was spiked in human serum and incubated at 37 °C to induce proteolytic degradation. Isolation and fractionation of cTnT and its fragments from serum were performed using immunoprecipitation and SDS-PAGE. Bands migrating to 37 kDa (intact cTnT), 29 kDa (primary fragment), and 19, 18, and 16kDa (secondary fragments) were excised, digested, and subsequently analysed using targeted selected ion monitoring on a UHPLC-coupled quadrupole-Orbitrap mass spectrometer. Sixteen precursor ions from a total of 11 peptides unique to cTnT were targeted. Precursor ions were detectable up until 1200 ng/L cTnT, which is a typical cTnT concentration after AMI. With tandem-MS and relative quantification, we proved the formation of cTnT fragments upon incubation in human serum and identified differentially present peptides in the fragment bands, indicative of N- and C-terminal proteolytic cleavage. These findings are of importance for the development of future cTnT assays, calibrators, and quality control samples. BIOLOGICAL SIGNIFICANCE: In this study we have developed a gel-based targeted mass spectrometry assay which is able to differentiate between different molecular forms of cTnT. The unravelling of the molecular presentation of cTnT in human serum is of importance in the field of clinical chemistry, where this highly specific and sensitive biomarker is being measured on a routinely basis in patient samples. Knowledge of the amino acid sequence of the different cTnT fragments may aid in the development of improved calibrators and quality control samples. In addition, different fragmentation patterns may be indicative of different underlying pathologies. New antibodies for future assays targeting specific areas of cTnT can thus be created based on this information. This assay will be used in future experiments to assess the fragmentation pattern of cTnT in serum of multiple patient groups in our laboratory.


Subject(s)
Peptide Hydrolases/chemistry , Proteolysis , Troponin T/chemistry , Humans , Mass Spectrometry , Myocardial Infarction/blood , Peptide Hydrolases/metabolism , Troponin T/blood
17.
Exp Mol Pathol ; 96(3): 339-45, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24607416

ABSTRACT

AIM: Cardiac troponin I (cTnI) and T (cTnT) are the most important biomarkers in the diagnosis of acute myocardial infarction (AMI). Nevertheless, they can be elevated in the absence of AMI. It is unclear if such elevations represent irreversible cardiomyocyte-damage or leakage from viable cardiomyocytes. Our objective is to evaluate whether cTn is released from viable cardiomyocytes in response to ischemia and to identify differences in the release of cTn and its molecular forms. METHODS AND RESULTS: HL-1 cardiomyocytes (mouse) were subjected to ischemia (modeled by anoxia with glucose deprivation). The total contents and molecular forms of cTn were determined in culture media and cell lysates. Cell viability was assessed from the release of lactate dehydrogenase (LDH). Before the release of LDH, the intracellular cTn content in ischemic cells decreased significantly compared to control (52% for cTnI; 23% for cTnT) and was not matched by a cTn increase in the medium. cTnI decreased more rapidly than cTnT, resulting in an intracellular cTnT/cTnI ratio of 25.5 after 24 h of ischemia. Western blots revealed changes in the relative amounts of fragmented cTnI and cTnT in ischemic cells. CONCLUSIONS: HL-1 cardiomyocytes subjected to simulated ischemia released cTnI and cTnT only in combination with the release of LDH. We find no evidence of cTn release from viable cardiomyocytes, but did observe a significant decrease in cTn content, before the onset of cell death. Intracellular decrease of cTn in viable cardiomyocytes can have important consequences for the interpretation of cTn values in clinical practice.


Subject(s)
Cell Death/physiology , Myocardial Infarction/diagnosis , Myocytes, Cardiac/metabolism , Troponin I/metabolism , Troponin T/metabolism , Animals , Cell Hypoxia , Cells, Cultured , Ischemia/pathology , L-Lactate Dehydrogenase/metabolism , Mice , Myocytes, Cardiac/pathology
18.
J Mol Cell Cardiol ; 63: 47-56, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23871791

ABSTRACT

Cardiac troponin (cTn) is an important sarcomeric protein complex situated on the thin filament and is involved in the regulation of cardiac muscle contraction. This regulation is primarily controlled by Ca(2+) binding to troponin C and in addition fine-tuned by the posttranslational modification of cTnI and cTnT. The vast majority of cTnT modifications involve the phosphorylation by protein kinase C (PKC) or other kinases and the N-terminal cleavage by caspase and calpain. In vitro studies employing reconstituted detergent-skinned fiber bundles and cell culture generally show a detrimental effect of cTnT phosphorylation on muscle contraction, which is backed by some in vivo studies finding increased cTnT phosphorylation in heart failure, but contradicted by others. In addition, N-terminal cleavage of cTnT is thought to be another factor influencing cardiac contraction. Time-dependent degradation of cTnT has been observed in human serum upon myocardial infarction. These molecular changes might influence the immunoreactivity of cTnT in the clinical immunoassay and have consequences for the clinical interpretations of these measurements. No consensus has yet been reached on the occurrence and extent of these observations and their underlying processes are subject of intense scientific debate. This review will focus on discussing these modifications, their implications on physiology and disease and summarizes the complex interplays of different enzymes on the molecular forms of cTnT and their associated effects.


Subject(s)
Myocardium/metabolism , Protein Processing, Post-Translational , Troponin T/metabolism , Animals , Humans , Phosphorylation , Proteolysis , Troponin T/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL