Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 45
Filter
Add more filters










Publication year range
1.
J Hazard Mater ; 439: 129655, 2022 10 05.
Article in English | MEDLINE | ID: mdl-35901634

ABSTRACT

Peroxydisulfate (PDS) is a common oxidant for organic contaminant remediation. PDS is typically activated by metal catalysts to generate reactive radicals. Unfortunately, as radicals are non-selective and metal catalysts may cause secondary contamination, alternative selective non-radical pathways and non-metal catalysts need attention. Here we investigated PDS oxidation of commonly detected antibiotic Norfloxacin (NOR) using cyanobacterial nitrogen rich biochars (CBs) as catalysts. NOR was fully degraded by CB pyrolysed at 950 °C (CB950) within 120 min. CB950 caused threefold faster degradation than low pyrolysis temperature (PT) CBs and achieved a maximum surface area normalized rate constant of 4.38 × 10-2 min-1 m-2 L compared to widely used metal catalysts. CB950 maintained full reactivity after four repeated uses. High defluorination (82%) and mineralization (>82%) were observed for CB950/PDS. CBs were active over a broad pH range (3-10), but with twice as high rates under alkaline compared with neutral conditions. NOR is degraded by organic, •OH and SO4•- radicals in low PT CBs/PDS systems, where the presence of MnII promotes radical generation. Electron transfer reactions with radicals supplemented dominate high PT CBs/PDS systems. This study demonstrates high PT biochars from algal bloom biomass may find use as catalysts for organic contaminant oxidation.


Subject(s)
Anti-Bacterial Agents , Norfloxacin , Catalysis , Charcoal
2.
Sci Total Environ ; 834: 155283, 2022 Aug 15.
Article in English | MEDLINE | ID: mdl-35439507

ABSTRACT

Phytotoxins are produced in plants including agricultural crops. Lupins and other plants of the Fabaceae family produce toxic alkaloids. These alkaloids have been studied in food and feed, however, the environmental fate of alkaloids produced by cultivated lupins is largely unknown. Therefore, we conducted an agricultural field experiment to investigate the occurrence of indole and quinolizidine alkaloids in lupin plant tissues, soil, soil pore water and in drainage water. During the field experiment, alkaloids were regularly quantified (median concentrations) in lupin (13-8.7 × 103 ng/g dry weight (dw)), and topsoils at depth 0-5 cm (0.1-10 ng/g dw), and depth 15-30 cm (0.2-8.5 ng/g dw), soil pore water (0.2-7.5 ng/L) and drainage water samples (0.4-18 ng/L). Lupanine was the dominant alkaloid in all collected samples. Cumulative amounts of alkaloids emitted via drainage water were around 0.1-11 mg/ha for individual alkaloids over one growing season. The total cumulative amount of alkaloid in drainage water was 14 mg/ha, which is a very small amount compared to the mass of alkaloid in the lupin biomass (11 kg/ha) and soil (0.02 kg/ha). Nearly half of the alkaloids were exported in the drainage water during high flow events, indicating that alkaloids transport preferentially via macropores. These findings indicate that drainage from lupin cultivated areas contribute to surface water contamination. The environmental and ecotoxicological relevance of alkaloids as newly identified aquatic micropollutants in areas with agricultural activities have yet to be assessed.


Subject(s)
Alkaloids , Lupinus , Quinolizidines , Indoles , Soil , Water
3.
Water Res ; 205: 117610, 2021 Oct 15.
Article in English | MEDLINE | ID: mdl-34649082

ABSTRACT

Phytotoxins - toxins produced by plants - are contaminants with the potential to impair drinking water quality. They encompass a large group of toxic, partially persistent compounds that have been detected in seepage waters and in shallow wells used for drinking water production. If phytotoxins enter wells used for drinking water production, it is essential to know if the drinking water treatment processes will remove them from the water phase. However, it is currently unknown whether phytotoxins remain stable during traditional groundwater treatment using sand filters as the main treatment process. The objective of this study is to investigate removal potential of phytotoxins in biological sand filters and to asses if the removal potential is similar at different waterworks. Microcosms were set up with filter sand and drinking water collected at different groundwater-based waterworks. To be able to monitor phytotoxin removal ptaquiloside, caudatoside, gramine, sparteine, jacobine N-oxide, senecionine N-oxide and caffeine were applied at initial concentrations of 300 µg L-1, which is approx. two orders of magnitude higher than currently detected in environment, but expected to cover extreme environmental conditions. Removal was monitored over a period of 14 days. Despite the high initial concentration, all filter sands removed ptaquiloside and caudatoside completely from the water phase and at waterworks where pellet softening was implemented (pH 8.4) prior to rapid sand filtration, complete removal occurred within the first 30 min. All filter sands removed gramine and sparteine, primarily by a biological process, while jacobine N-oxide, senecionine N-oxide and caffeine were recalcitrant in the filter sands. During degradation of ptaquiloside and caudatoside we observed formation and subsequent removal of degradation products pterosin B and A. Filter sands with the highest removal potential were characterised by high contents of deposited iron and manganese oxides and hence large specific surface areas. Difference between bacterial communities investigated by 16S rRNA gene analyses did not explain different removal in the filter sands. All five investigated filter sands showed similar degradation patterns regardless of water chemistry and waterworks of origin. In drinking water treatment systems biological sand filters might therefore remove phytotoxin contaminants such as ptaquiloside, caudatoside, gramine, sparteine, while for other compounds e.g. jacobine N-oxide, senecionine N-oxide further investigations involving more advanced treatment options are needed.


Subject(s)
Drinking Water , Water Pollutants, Chemical , Water Purification , Filtration , RNA, Ribosomal, 16S , Renal Dialysis , Sand , Silicon Dioxide , Water Pollutants, Chemical/analysis
4.
Environ Sci Technol ; 2021 Aug 03.
Article in English | MEDLINE | ID: mdl-34342221

ABSTRACT

Phytotoxins are naturally produced toxins with potencies similar/higher than many anthropogenic micropollutants. Nevertheless, little is known regarding their environmental fate and off-field transport to streams. To fill this research gap, a network of six basins in the Midwestern United States with substantial soybean production was selected for the study. Stream water (n = 110), soybean plant tissues (n = 8), and soil samples (n = 16) were analyzed for 12 phytotoxins (5 alkaloids and 7 phytoestrogens) and 2 widely used herbicides (atrazine and metolachlor). Overall, at least 1 phytotoxin was detected in 82% of the samples, with as many as 11 phytotoxins detected in a single sample (median = 5), with a concentration range from below detection to 37 and 68 ng/L for alkaloids and phytoestrogens, respectively. In contrast, the herbicides were ubiquitously detected at substantially higher concentrations (atrazine: 99% and metolachlor: 83%; the concentrations range from below detection to 150 and 410 ng/L, respectively). There was an apparent seasonal pattern for phytotoxins, where occurrence prior to and during harvest season (September to November) and during the snow melt season (March) was higher than that in December-January. Runoff events increased phytotoxin and herbicide concentrations compared to those in base-flow conditions. Phytotoxin plant concentrations were orders of magnitude higher compared to those measured in soil and streams. These results demonstrate the potential exposure of aquatic and terrestrial organisms to soybean-derived phytotoxins.

5.
Chemosphere ; 272: 129821, 2021 Jun.
Article in English | MEDLINE | ID: mdl-35534959

ABSTRACT

While the Galápagos Islands have been renowned for their unique flora and fauna since the time of Charles Darwin, the soils of the isolated island chain have been mostly overlooked and little information on their heavy metal contents is available. The aim of this study was therefore to examine the total heavy metal (Cd, Co, Cr, Cu, Ni, Pb, U, Zn) contents of soils from the agricultural areas on islands Isabela, Santa Cruz and San Cristóbal, and identify trends with duration of exposure to weathering processes. Additionally, the mobility of these elements was assessed using ammonium nitrate extraction. In general, levels of Cd, Co, Cr, Cu, Ni and Zn were high compared to other world locations, while Pb levels were low and U levels were similar. Ni, Co, Cr, and to a lesser extent Pb and U tended to accumulate with increasing weathering duration. Soil concentrations of Cd, Zn, Cu, and possibly Pb and U, may have been influenced by use of agrochemicals, particularly on Santa Cruz Island. Mobility of Cd displayed an increasing trend with soil age, while Ni mobility decreased. Many soils had total contents of Cd, Co, Cr, Cu, Ni and Zn above threshold values indicating possible ecological or health risks. Systematic examination of trace element contents in soils from pristine national park areas would further assist in the delineation of background levels and the development of soil quality standards to ensure crop quality, animal and human health on this unique island chain.


Subject(s)
Metals, Heavy , Soil Pollutants , Cadmium , China , Ecuador , Environmental Monitoring , Lead , Metals, Heavy/analysis , Risk Assessment , Soil/chemistry , Soil Pollutants/analysis
6.
Sci Total Environ ; 755(Pt 1): 142822, 2021 Feb 10.
Article in English | MEDLINE | ID: mdl-33348479

ABSTRACT

Pyrrolizidine alkaloids (PA)s are natural toxins produced by a variety of plants including ragwort. The PAs present a serious health risk to human and livestock. Although these compounds have been extensively studied in food and feed, little is known regarding their environmental fate. To fill this data gap, we investigated the occurrence of PAs in ragwort plants, soils and surface waters at three locations where ragwort was the dominant plant species to better understand their environmental distribution. The concentrations of PAs were quantified during the full growing season (April-November) and assessed in relation to rain events. PA concentrations ranged from 3.2-6.6 g/kg dry weight (dw) in plants, 0.8-4.0 mg/kg dw in soils, and 6.0-529 µg/L in surface waters. Maximum PA concentrations in the soil (4 mg/kg) and water (529 µg/L) were in mid-May just before flowering. The average distribution of PAs in water was approximately 5 g/10,000 L, compared to the average amounts present in ragwort (506 kg/ha), and soil (1.7 kg/ha). In general, concentrations of PAs increase in the soil and surface water following rain events.


Subject(s)
Pyrrolizidine Alkaloids , Senecio , Grassland , Humans , Rain , Soil
7.
J Hazard Mater ; 406: 124724, 2021 03 15.
Article in English | MEDLINE | ID: mdl-33307445

ABSTRACT

Bone char catalyzed dechlorination of trichloroethylene (TCE) by green rust (iron(II)-iron(III) hydroxide, GR) has introduced a promising new reaction platform for degradation of chlorinated solvents. This study aimed to reveal whether a broader class of biochars are catalytically active for the dechlorination reaction and to identify which biochar properties are the most important for the catalytic activity. Biochars produced by pyrolysis of animal, plant, and sewage waste substrates at 950 °C were prepared for catalytic dechlorination of TCE by GR tested in batch experiments with 0.15 g L-1 biochar, 3.2 g L-1 GR, and ~ 20 µM TCE. The results showed that the biochar substrate significantly affects its catalytic activity, with the highest TCE reduction rate observed for bone and shrimp-based biochars (k ≥ 0.18 h-1), whereas no reactivity was seen for graphite and activated carbon references. Multivariate regression indicated that the biochar catalytic activity is controlled by multiple biochar properties - biochar surface area, TCE sorption, abundance of C-O groups, and pore size are the properties that impact the catalytic activity most. Derivation of biochar reactivity relationship for a broad spectrum of biochars provides a new approach for identifying proper biochar catalysts for pollutant degradation.


Subject(s)
Charcoal , Trichloroethylene , Animals , Catalysis , Ferric Compounds
8.
J Hazard Mater ; 406: 124331, 2021 03 15.
Article in English | MEDLINE | ID: mdl-33183833

ABSTRACT

Upgrades of wastewater treatment plant (WWTP) and full-scale application of additional advanced oxidation processes have been proven to be effective in reducing the nutrient emissions to the environment; however, the impacts of WWTP upgrades on the receiving waters with regard to the occurrence and ecological risks of pharmaceuticals are still unclear. In this study, 27 pharmaceuticals with diverse physicochemical properties were monitored in four rivers in Beijing, each of which was heavily impacted by a large-scale WWTP. Three-year sampling campaigns were conducted, covering the periods before and after the WWTP upgrades. The results show that the newly added combined treatment processes (e.g., biological filter, ultrafiltration, ozonation, and NaClO disinfection) reduced the total pharmaceutical concentrations in the effluents by 45-74%. The composition profiles reveal that the upgrades of two studied WWTPs resulted in a significant reduction of pharmaceutical concentrations in the receiving rivers, while little impacts were observed for the other rivers. The risk assessment shows that the acute toxic pressures in the studied rivers were generally low and the WWTP upgrades were conducive to reduce the risks for most of pharmaceuticals. However, erythromycin and ofloxacin still posed high risk, indicating the potential adverse effect of pharmaceuticals on aquatic environment.


Subject(s)
Pharmaceutical Preparations , Water Pollutants, Chemical , Water Purification , Beijing , Environmental Monitoring , Rivers , Wastewater/analysis , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/toxicity
9.
Sci Rep ; 10(1): 19784, 2020 11 13.
Article in English | MEDLINE | ID: mdl-33188248

ABSTRACT

Pyrrolizidine alkaloids (PAs) are persistent mutagenic and carcinogenic compounds produced by many common plant species. Health authorities recommend minimising human exposure via food and medicinal products to ensure consumer health and safety. However, there is little awareness that PAs can contaminate water resources. Therefore, no regulations exist to limit PAs in drinking water. This study measured a PA base concentration of ~ 70 ng/L in stream water adjacent to an invasive PA-producing plant Petasites hybridus (Asteraceae). After intense rain the PA concentration increased tenfold. In addition, PAs measured up to 230 ng/L in seepage water from groundwater wells. The dominant PAs in both water types corresponded to the most abundant PAs in the plants (senkirkine, senecionine, senecionine N-oxide). The study presents the first discovery of persistent plant toxins in well water and their associated risks. In addition, it for the first time reports monocrotaline and monocrotaline N-oxide in Petasites sp.

10.
Bull Environ Contam Toxicol ; 105(4): 572-581, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32960333

ABSTRACT

In order to assess the environmental impacts caused by flood to the paddy field, 940 semi-volatile organic compounds (SVOCs) were screened in paddy soil samples taken in central Vietnam before and after flooding. The concentration of 166 SVOCs in soil samples ranged from 0.031 to 2241 (mean 89.1) µg kg-1 dry wt. Chemicals originating from household sources showed the highest level, followed by chemicals originating from agriculture. Since untreated domestic wastewater used for agricultural irrigation, organic micro-pollutants in domestic wastewater is the main source of pollutants in paddy soil. However, contamination levels of pollutants in paddy soil after flooding were lower than those before flooding, possibly due to the removal of pollutants by floodwater. As a result, pollution characteristic of pollutants at sampling locations were different before flooding while they became similar after flooding due to the dispersion and elution of organic pollutants from soil into floodwaters.


Subject(s)
Environmental Monitoring , Floods , Organic Chemicals/analysis , Soil Pollutants/analysis , Water Pollutants, Chemical/analysis , Oryza/growth & development , Soil/chemistry , Vietnam
11.
Environ Sci Technol ; 54(9): 5687-5699, 2020 05 05.
Article in English | MEDLINE | ID: mdl-32227918

ABSTRACT

Pyrethroid insecticides are known to be highly toxic to most aquatic nontarget organisms, but little is known about the mechanisms causing some species to be highly sensitive while others are hardly affected by the pyrethroids. The aim of the present study was to measure the sensitivity (EC50-values) of 10 aquatic invertebrates toward a 24 h pulse of the pyrethroid cypermethrin and subsequently test if the difference in sensitivity could be explained by measured morphological and physiological traits and modeled toxicokinetic (TK) and toxicodynamic (TD) parameters. Large differences were observed for the measured uptake and elimination kinetics, with bioconcentration factors (BCFs) ranging from 53 to 2337 at the end of the exposure. Similarly, large differences were observed for the TDs, and EC50-values after 168 h varied 120-fold. Modeling the whole organism cypermethrin concentrations indicated compartmentation into a sorbed fraction and two internal fractions: a bioavailable and non-bioavailable internal fraction. Strong correlations between surface/volume area and the TK parameters (sorption and uptake rate constants and the resulting BCF) were found, but none of the TK parameters correlated with sensitivity. The only parameter consistently correlating with sensitivity across all species was the killing rate constant of the GUTS-RED-SD model (the reduced general unified threshold models of survival assuming stochastic death), indicating that sensitivity toward cypermethrin is more related to the TD parameters than to TK parameters.


Subject(s)
Pyrethrins , Water Pollutants, Chemical , Animals , Aquatic Organisms , Invertebrates , Kinetics , Toxicokinetics
12.
J Environ Manage ; 260: 110165, 2020 Apr 15.
Article in English | MEDLINE | ID: mdl-32090850

ABSTRACT

Cropping of maize (Zea mays L.) on sandy soil in wet climates involves a significant risk for nitrogen (N) losses, since nitrate added in fertilizers or produced from residues and manure may be lost outside the period with active crop N uptake. This one-year lysimeter experiment investigated the potential of Vizura®, a formulation for liquid manure (slurry) with the nitrification inhibitor 3,4-dimethylpyrazole phosphate (DMPP), to mitigate nitrous oxide (N2O) emissions and nitrate (NO3-) leaching from a coarse sandy soil cropped with maize. Maize followed grass-clover (Lolium perenne L.-Trifolium pratense L.) with spring incorporation and was fertilised with cattle slurry. A total of 12 treatments in triplicate were included in a factorial experiment with 1 m2 large and 1.4 m deep lysimeters: 1) with or without spraying the above-ground biomass of grass-clover with DMPP before incorporation; 2) application of cattle manure with or without DMPP, or no fertilization; and 3) natural rainfall or extra rain events to represent wet spring conditions, which were simulated with an automated and programmable irrigation system. Around 20 kg N ha-1 was returned to the soil in grass-clover above-ground biomass, and 145 kg N ha-1 in cattle manure. Cumulative annual N2O emissions ranged from 0.4 to 1.3 kg N ha-1, with between 49 and 86% of emissions occurring during spring. Manure application increased N2O emissions, while extra rainfall had no effect. The mitigation of N2O emissions by DMPP ranged from 46 to 67% under natural, and from 44 to 48% under high rainfall conditions. Total annual NO3- leaching ranged from 65 to 162 kg N ha-1. The extent of NO3- leaching to 1.4 m depth during spring was low, and instead most (72-83%) of total annual NO3--N leaching was recorded during autumn before harvest. The extra rainfall during spring increased NO3--N leaching in the pre-harvest period, but it is not clear to what extent this was associated with the N in grass-clover residues or manure applied in spring, or from N mineralisation below the root zone. Despite evidence for a reduction of NO3- leaching in three of four scenarios, overall this effect was not significant. No DMPP was detected in leachates. In conclusion, DMPP significantly reduced N2O emissions from cattle manure on this sandy loam soil independent of rainfall, while there was no significant effect on NO3- leaching. The results indicate that N2O emissions and NO3--N leaching were partly derived from below-ground sources of N not affected by DMPP, which should be further investigated to better predict the mitigation potential of nitrification inhibitors.


Subject(s)
Nitrous Oxide , Trifolium , Agriculture , Animals , Cattle , Fertilizers , Manure , Medicago , Nitrogen , Phosphates , Poaceae , Pyrazoles , Sand , Soil , Zea mays
13.
Sci Total Environ ; 715: 136803, 2020 May 01.
Article in English | MEDLINE | ID: mdl-32069738

ABSTRACT

Diflufenican is used in both agricultural and urban areas to control weeds. However, in Europe pesticides are regulated using agricultural soil data only. Urban soils where the top layer is replaced by gravel (e.g. driveways, outdoor tiled areas) can evidently differ from agricultural soils in many biotic and physical properties. In the present study, we compared the degradation, mineralization, sorption and aging of diflufenican between an agricultural sandy soil to a gravel used in urban areas. Both diflufenican and its two main aerobic metabolites were investigated. Diflufenican and the metabolites degraded slower in gravel than in agricultural soil. One of the metabolites, 2-[3-(Trifluoromethyl)phenoxy]nicotinic acid (AE B107137 as identified by EFSA; further abbreviated as AE-B), was formed from the incubation of diflufenican in both soil and gravel, however, showing different formation patterns in the two materials: No accumulation of AE-B was determined in the soil, whereas in gravel, an accumulation of AE-B was determined over the full study period of 150 days. After 150 days, approximately 10% of the applied diflufenican was mineralised in the soil (cumulative), while it was not mineralised in the gravel. Diflufenican showed much stronger sorption to the soil than to the gravel, while the sorption of the metabolites was weaker than diflufenican in both soil and gravel. Within the experimental period, the influence of aging on the fate of diflufenican in soil and gravel is limited (<0.9 and <1.4%, respectively) when compared to the amount of compound still present in the soil. Overall, the results imply shortcomings in the risk assessment procedures requested for the registration of pesticides for urban areas.

14.
Sci Total Environ ; 712: 134525, 2020 Apr 10.
Article in English | MEDLINE | ID: mdl-31822417

ABSTRACT

This study investigated the occurrence of 27 pharmaceuticals with diverse physicochemical properties in a year-long monitoring campaign in the Chaobai River, China. The correlation between the distribution of pharmaceuticals in the river and the adjacent sources was elucidated. The results indicate that the agriculture area was the most polluted area with a median summed pharmaceutical concentration of 225.3 ng L-1, followed by the urban area and the mountain area with the corresponding values of 136.9 and 29.9 ng L-1, respectively. In terms of individual compounds, 22 out of 27 compounds were detected with concentrations ranging from <1 to 1972 ng L-1. Caffeine, carbamazepine, azithromycin, bezafibrate, metoprolol, sulfadiazine, sulfamethoxazole, clarithromycin, erythromycin, roxithromycin, and trimethoprim were pharmaceuticals with relatively high levels, with median concentrations ranging from 3.3 to 25.6 ng L-1 and detection frequencies ranging from 40% to 97%. Higher concentrations were mainly observed during cold seasons, with mean concentrations 1 to 52 times as high as those during warm seasons. Spatial analysis reveals that the pharmaceutical concentrations in different areas were impacted by different sources. A wastewater treatment plant was an important source in the urban area, while the agriculture area was impacted by various treated and untreated wastewater sources. The species sensitivity distribution model and risk quotient (RQ) method were combined in the ecological risk assessment. The results indicate that the multi-substance potentially affected fraction (msPAF) values of the sampling sites were below 0.04%, whereas nearly half of RQ values were higher than 1. Caffeine was proposed as a priority compound due to its high contribution rate (i.e., 79%) to the cumulative msPAF value, which implies that increased control and management of untreated wastewater sources along the Chaobai River is necessary.


Subject(s)
Rivers , China , Environmental Monitoring , Pharmaceutical Preparations , Risk Assessment , Water Pollutants, Chemical
15.
Environ Sci Process Impacts ; 21(7): 1204-1214, 2019 Jul 17.
Article in English | MEDLINE | ID: mdl-31241099

ABSTRACT

Saponins form a group of plant-produced glycosides with potential as biopesticide ingredients. The environmental fate of saponins has never been fully investigated. In the present study, we use QS-18, a specific saponin from Quillaja saponaria as an example, to quantify hydrolysis under different conditions of pH, temperature and water chemical composition. Saponin hydrolysis in buffer solutions was base-catalyzed and followed first-order kinetics. Thus, hydrolysis was slow at pH 5.1 with a half-life of 330 ± 220 d (26 °C), which increases to 0.06 ± 0.01 d at pH 10.0. Hydrolysis rates were highly sensitive to temperature with an activation energy of 56.9 ± 14.2 kJ mol-1 at pH 7.2. In strong contrast, hydrolysis in lake waters (pH 6.4-8.2) produced different patterns with a fast initial dissipation of 25 to 60% of the added saponin within the first five hours, followed by an extremely slow reaction with 25 to 75% unreacted saponin left after reaction times longer than 120 h. The fast dissipation followed by slow hydrolysis in lake water was hypothesized to be attributed to sorption and/or flocculation of saponins by inorganic nanoparticles and/or solutes in the lake water followed by inactivation of hydrolysis due to the sorption/flocculation. The present study demonstrates that saponins may hydrolyze slowly under acidic and cold conditions. In addition, it demonstrates that dissipation kinetics in natural waters may deviate substantially from the kinetics predicted based on laboratory experiments with "clean" buffered solutions. This emphasizes the need for a deeper understanding of the processes affecting the dissipation kinetics of potential toxins under natural conditions, as fate models based on laboratory derived kinetic data may be seriously flawed.


Subject(s)
Biological Control Agents/chemistry , Lakes/chemistry , Quillaja/chemistry , Saponins/chemistry , Flocculation , Hydrogen-Ion Concentration , Hydrolysis , Kinetics , Nanoparticles/chemistry , Solutions , Temperature
16.
RSC Adv ; 9(52): 30350-30357, 2019 Sep 23.
Article in English | MEDLINE | ID: mdl-35530242

ABSTRACT

Pyrrolizidine alkaloids (PAs) are produced in plants as defence compounds against insects. PAs present a serious health risk to humans and livestock; therefore it is necessary to have a validated analytical method to monitor PAs in the environment. The objective of this work is to present an UPLC-MS/MS method for quantification of PAs in environmental samples of both soil and water. A fast, reliable, and sensitive approach is developed to identify and quantify PAs in soil and water. Sample preparation was performed by clean-up and pre-concentration of the samples using MCX solid phase extraction cartridges with full optimization, and then PAs were determined by UPLC coupled with TQ-MS. In the liquid chromatography, most of the parameters were optimized and tested including gradient time, solvents, additives, and pH of the mobile phases and flow rate. In addition, the MS parameters of cone voltage, desolvation temperature, cone flows, and collision energy were optimized. The instrument limit of detection (2-7 µg L-1) and limit of quantification (5-9 µg L-1) were determined experimentally, and the method was linearity validated up to 1000 µg L-1. The method was applied to analyse soil and surface water samples collected in April and May 2018 in Vejle, Borup, and Holte, Denmark. In total, 15 PAs were quantified and reported for the first time in environmental samples, in a range of 3-1349 µg kg-1 in soil and 4-270 µg L-1 in surface water.

17.
Chemosphere ; 204: 243-250, 2018 Aug.
Article in English | MEDLINE | ID: mdl-29660537

ABSTRACT

Saponin-rich plant extracts contain bioactive natural compounds and have many applications, e.g. as biopesticides and biosurfactants. The composition of saponin-rich plant extracts is very diverse, making environmental monitoring difficult. In this study various ecotoxicity data as well as exposure data have been collected to explore which compounds in the plant extract are relevant as plant protection agents and furthermore to clarify which compounds may cause undesired side-effects due to their toxicity. Hence, we quantified the toxicity of different fractions (saponins/non-saponins) in the plant extracts on the aquatic crustacean Daphnia magna and zebrafish (Danio rerio) embryos. In addition, we tested the toxicity changes during saponin degradation as well. The results confirm that saponins are responsible for the majority of toxicity (85.1-93.6%) of Quillaja saponaria extract. We, therefore, suggest saponins to be the main target of saponin-rich plant extracts, for instance in the saponin-based biopesticide regulation. Furthermore, we suggest that an abundant saponin fraction, QS-18 from Q. saponaria, can be a key monitoring target to represent the environmental concentration of the saponins, as it contributes with 26% and 61% of the joint toxicity to D. magna and D. rerio, respectively out of the total saponins. The degradation products of saponins are 3-7 times less toxic than the parent compound; therefore the focus should be mainly on the parent compounds.


Subject(s)
Plant Extracts/chemistry , Saponins/toxicity , Animals , Daphnia/drug effects , Quillaja/chemistry , Saponins/chemistry , Zebrafish
18.
Environ Pollut ; 236: 416-424, 2018 May.
Article in English | MEDLINE | ID: mdl-29414366

ABSTRACT

Saponin-rich extracts from Quillaja saponaria and Chenopodium quinoa have been registered by US EPA as active ingredients in biopesticides, and extract from tea seed powder, Camellia oleifera has been proposed for biocidal use. If saponin-rich biopesticides are efficient against pests, they are most likely also bioactive in the aquatic environment against non-target organisms. The aim of this study was to conduct an effect assessment of saponin-rich plant extracts by using species sensitivity distributions based on acute toxicity tests. The maximal concentrations protecting 95% of the aquatic species (HC5) of saponins extracted from quillaja bark, tea seed coat and quinoa seed coat were 2.91 ±â€¯1.00, 0.22 ±â€¯0.11 and 22.9 ±â€¯5.84 mg/L, respectively. The 100-fold difference in toxicity between the saponin-rich extracts from different plant species, indicate that saponin toxicity depends on the species it origins from, making "read-across" between saponins a dubious exercise. In addition, the predicted environmental concentrations of different saponins are close to or higher than their water quality standard, which means that the extracts might pose a risk to the aquatic environment if not used cautiously.


Subject(s)
Biological Control Agents/toxicity , Plant Extracts/toxicity , Saponins/toxicity , Toxicity Tests , Water Pollutants, Chemical/toxicity , Quillaja , Seeds
19.
J Hazard Mater ; 345: 18-26, 2018 Mar 05.
Article in English | MEDLINE | ID: mdl-29128723

ABSTRACT

A layered FeII-FeIII hydroxide (green rust, GR) was intercalated with dodecanoate (known as GRC12) and then amended with CuII (GRC12(Cu)) before reaction with chloroform (CF), carbon tetrachloride (CT), trichloroethylene (TCE) or tetrachloroethylene (PCE). Reduction of CT by GRC12(Cu) was 37 times faster than with GRC12 alone before the active Cu species was consumed. The Cu mediated reaction followed the dichloroelimination pathway as observed for GRC12 alone, with carbon monoxide (82.5%) and formate (26.6%) as main degradation products. Also, CF was reduced by GRC12(Cu), which is not seen with GRC12. Neither GRC12(Cu) nor GRC12 reacted with PCE or TCE. The chlorinated solvents can partition into dodecanoate interlayer but only small CS molecules (CF, CT) can transport through the dodecanoate interlayer. Copper(II) added to GRC12 was reduced to CuI by FeII in GR, but CuI was not regenerated during the dechlorination. High resolution TEM showed that Cu was evenly distributed in the GR without formation of Cu nanoparticles on edges of GR. The active CuI sites are most likely located between the iron hydroxide layer and the hydrated negatively charged carboxylate groups in the interlayer of GR. This work shines new light on the Cu accelerated dechlorination by GR.

20.
Environ Sci Pollut Res Int ; 24(23): 19338-19346, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28669095

ABSTRACT

Desorption of pesticides (fenobucarb, endosulfan, and dichlorodiphenyltrichloroethane (DDT)) from soil to aqueous solution with the simultaneous presence of dissolved organic carbon (DOC), sodium dodecyl sulfate (SDS), and sodium oxalate (Oxa) was investigated in batch test by applying a full factorial design and the Box-Behnken response surface methodology (RSM). Five concentration levels of DOC (8 to 92 mg L-1), SDS (0 to 6.4 critical micelle concentration (CMC)), and Oxa (0 to 0.15 M) were used for the experiments with a rice field topsoil. The results of RSM analysis and analysis of variance (ANOVA) have shown that the experimental data could be well described by quadratic regression equations with determination coefficients (R 2) of 0.990, 0.976, and 0.984 for desorption of fenobucarb, endosulfan, and DDT, respectively. The individual effects and interaction of DOC, SDS, and Oxa were evaluated through quadratic regression equations. When the aqueous solution includes 50 mg L-1 DOC, 3.75 CMC SDS, and 0.1 M Oxa, the maximum desorption concentrations of fenobucarb, endosulfan, and DDT were 96, 80, and 75 µg L-1, respectively. The lowest concentration of SDS, DOC, and Oxa caused the minimum desorption. This point at conditions of concern for flooding water is high content of organic compounds causing potentially high contamination by desorption, and the remarkably lower desorption at organic matter-free conditions. The suspended organic matter is one of the common characteristics of flooding and irrigation water in rice fields, and surfactants from pollution increase the problem with desorption of legacy pesticides in the rice fields.


Subject(s)
Chemistry Techniques, Analytical/methods , Organic Chemicals/chemistry , Pesticides/chemistry , Surface-Active Agents/chemistry , Water Pollutants, Chemical/chemistry , Adsorption , Environmental Pollution/analysis , Organic Chemicals/analysis , Pesticides/analysis , Soil Pollutants/analysis , Soil Pollutants/chemistry , Surface-Active Agents/analysis , Vietnam , Water/chemistry , Water Pollutants, Chemical/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...