Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Acta Crystallogr F Struct Biol Commun ; 80(Pt 7): 154-163, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38958188

ABSTRACT

The third complementary-determining regions of the heavy-chain (CDR3H) variable regions (VH) of some cattle antibodies are highly extended, consisting of 48 or more residues. These `ultralong' CDR3Hs form ß-ribbon stalks that protrude from the surface of the antibody with a disulfide cross-linked knob region at their apex that dominates antigen interactions over the other CDR loops. The structure of the Fab fragment of a naturally paired bovine ultralong antibody (D08), identified by single B-cell sequencing, has been determined to 1.6 Šresolution. By swapping the D08 native light chain with that of an unrelated antigen-unknown ultralong antibody, it is shown that interactions between the CDR3s of the variable domains potentially affect the fine positioning of the ultralong CDR3H; however, comparison with other crystallographic structures shows that crystalline packing is also a major contributor. It is concluded that, on balance, the exact positioning of ultralong CDR3H loops is most likely to be due to the constraints of crystal packing.


Subject(s)
Complementarity Determining Regions , Immunoglobulin Fab Fragments , Immunoglobulin Heavy Chains , Immunoglobulin Light Chains , Models, Molecular , Animals , Cattle , Immunoglobulin Heavy Chains/chemistry , Crystallography, X-Ray , Immunoglobulin Light Chains/chemistry , Immunoglobulin Light Chains/genetics , Complementarity Determining Regions/chemistry , Immunoglobulin Fab Fragments/chemistry , Amino Acid Sequence , Protein Conformation
2.
Commun Chem ; 6(1): 219, 2023 Oct 12.
Article in English | MEDLINE | ID: mdl-37828292

ABSTRACT

Despite recent advances in cryo-electron microscopy and artificial intelligence-based model predictions, a significant fraction of structure determinations by macromolecular crystallography still requires experimental phasing, usually by means of single-wavelength anomalous diffraction (SAD) techniques. Most synchrotron beamlines provide highly brilliant beams of X-rays of between 0.7 and 2 Å wavelength. Use of longer wavelengths to access the absorption edges of biologically important lighter atoms such as calcium, potassium, chlorine, sulfur and phosphorus for native-SAD phasing is attractive but technically highly challenging. The long-wavelength beamline I23 at Diamond Light Source overcomes these limitations and extends the accessible wavelength range to λ = 5.9 Å. Here we report 22 macromolecular structures solved in this extended wavelength range, using anomalous scattering from a range of elements which demonstrate the routine feasibility of lighter atom phasing. We suggest that, in light of its advantages, long-wavelength crystallography is a compelling option for experimental phasing.

4.
bioRxiv ; 2020 Jun 08.
Article in English | MEDLINE | ID: mdl-32577665

ABSTRACT

COVID-19 is an ongoing global crisis in which the development of effective vaccines and therapeutics will depend critically on understanding the natural immunity to the virus, including the role of SARS-CoV-2-specific T cells. We have conducted a study of 42 patients following recovery from COVID-19, including 28 mild and 14 severe cases, comparing their T cell responses to those of 16 control donors. We assessed the immune memory of T cell responses using IFNγ based assays with overlapping peptides spanning SARS-CoV-2 apart from ORF1. We found the breadth, magnitude and frequency of memory T cell responses from COVID-19 were significantly higher in severe compared to mild COVID-19 cases, and this effect was most marked in response to spike, membrane, and ORF3a proteins. Total and spike-specific T cell responses correlated with the anti-Spike, anti-Receptor Binding Domain (RBD) as well as anti-Nucleoprotein (NP) endpoint antibody titre (p<0.001, <0.001 and =0.002). We identified 39 separate peptides containing CD4 + and/or CD8 + epitopes, which strikingly included six immunodominant epitope clusters targeted by T cells in many donors, including 3 clusters in spike (recognised by 29%, 24%, 18% donors), two in the membrane protein (M, 32%, 47%) and one in the nucleoprotein (Np, 35%). CD8+ responses were further defined for their HLA restriction, including B*4001-restricted T cells showing central memory and effector memory phenotype. In mild cases, higher frequencies of multi-cytokine producing M- and NP-specific CD8 + T cells than spike-specific CD8 + T cells were observed. They furthermore showed a higher ratio of SARS-CoV-2-specific CD8 + to CD4 + T cell responses. Immunodominant epitope clusters and peptides containing T cell epitopes identified in this study will provide critical tools to study the role of virus-specific T cells in control and resolution of SARS-CoV-2 infections. The identification of T cell specificity and functionality associated with milder disease, highlights the potential importance of including non-spike proteins within future COVID-19 vaccine design.

5.
J Gen Virol ; 97(7): 1557-1565, 2016 07.
Article in English | MEDLINE | ID: mdl-27002540

ABSTRACT

Foot-and-mouth disease (FMD) has a major economic impact throughout the world and is a considerable threat to food security. Current FMD virus (FMDV) vaccines are made from chemically inactivated virus and need to contain intact viral capsids to maximize efficacy. FMDV exists as seven serotypes, each made up by a number of constantly evolving subtypes. A lack of immunological cross-reactivity between serotypes and between some strains within a serotype greatly complicates efforts to control FMD by vaccination. Thus, vaccines for one serotype do not afford protection against the others, and multiple-serotype-specific vaccines are required for effective control. The FMDV serotypes exhibit variation in their thermostability, and the capsids of inactivated preparations of the O, C and SAT serotypes are particularly susceptible to dissociation at elevated temperature. Methods to quantify capsid stability are currently limited, lack sensitivity and cannot accurately reflect differences in thermostability. Thus, new, more sensitive approaches to quantify capsid stability would be of great value for the production of more stable vaccines and to assess the effect of production conditions on vaccine preparations. Here we have investigated the application of a novel methodology (termed PaSTRy) that utilizes an RNA-binding fluorescent dye and a quantitative (q)PCR machine to monitor viral genome release and hence dissociation of the FMDV capsid during a slow incremental increase in temperature. PaSTRy was used to characterize capsid stability of all FMDV serotypes. Furthermore, we have used this approach to identify stabilizing factors for the most labile FMDV serotypes.


Subject(s)
Capsid Proteins/immunology , Foot-and-Mouth Disease Virus/genetics , Foot-and-Mouth Disease Virus/immunology , Foot-and-Mouth Disease/prevention & control , Vaccines, Inactivated/immunology , Viral Vaccines/immunology , Animals , Capsid/immunology , Cell Line , Cricetinae , Foot-and-Mouth Disease/immunology , Foot-and-Mouth Disease/virology , Genome, Viral/genetics , Goats/virology , Hot Temperature , Polymerase Chain Reaction , Serogroup , Vaccination
7.
Int J Neural Syst ; 15(6): 415-25, 2005 Dec.
Article in English | MEDLINE | ID: mdl-16385631

ABSTRACT

To use crystallography for the determination of the three-dimensional structures of proteins, protein crystals need to be grown. Automated imaging systems are increasingly being used to monitor these crystallization experiments. These present problems of accessibility to the data, repeatability of any image analysis performed and the amount of storage required. Various image formats and techniques can be combined to provide effective solutions to high volume processing problems such as these, however lack of widespread support for the most effective algorithms, such as JPeg2000 which yielded a 64% improvement in file size over the bitmap, currently inhibits the immediate take up of this approach.


Subject(s)
Crystallography/methods , Image Processing, Computer-Assisted/methods , Imaging, Three-Dimensional/methods , Algorithms , Crystallization , Image Processing, Computer-Assisted/economics , Image Processing, Computer-Assisted/statistics & numerical data , Protein Structure, Tertiary , Software
SELECTION OF CITATIONS
SEARCH DETAIL
...