Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Neurobiol Aging ; 68: 68-75, 2018 08.
Article in English | MEDLINE | ID: mdl-29729423

ABSTRACT

In Alzheimer's disease, many indicators point to a central role for poor axonal transport, but the potential for stimulating axonal transport to alleviate the disease remains largely untested. Previously, we reported enhanced anterograde axonal transport of mitochondria in 8- to 11-month-old MAPTP301L knockin mice, a genetic model of frontotemporal dementia with parkinsonism-17T. In this study, we further characterized the axonal transport of mitochondria in younger MAPTP301L mice crossed with the familial Alzheimer's disease model, TgCRND8, aiming to test whether boosting axonal transport in young TgCRND8 mice can alleviate axonal swelling. We successfully replicated the enhancement of anterograde axonal transport in young MAPTP301L/P301L knockin animals. Surprisingly, we found that in the presence of the amyloid precursor protein mutations, MAPTP301L/P3101L impaired anterograde axonal transport. The numbers of plaque-associated axonal swellings or amyloid plaques in TgCRND8 brains were unaltered. These findings suggest that amyloid-ß promotes an action of mutant tau that impairs axonal transport. As amyloid-ß levels increase with age even without amyloid precursor protein mutation, we suggest that this rise could contribute to age-related decline in frontotemporal dementia.


Subject(s)
Aging/genetics , Aging/physiology , Amyloid beta-Peptides/genetics , Amyloid beta-Protein Precursor/genetics , Axonal Transport/genetics , Frontotemporal Dementia/etiology , Frontotemporal Dementia/genetics , Genetic Association Studies , Genetic Variation , Mutation , tau Proteins/genetics , Aging/metabolism , Alzheimer Disease/etiology , Alzheimer Disease/genetics , Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Amyloid beta-Peptides/metabolism , Animals , Axonal Transport/physiology , Brain/metabolism , Brain/pathology , Disease Models, Animal , Frontotemporal Dementia/metabolism , Frontotemporal Dementia/pathology , Male , Mice, Inbred C57BL , Mice, Transgenic , Mitochondria/genetics , Mitochondria/metabolism , Plaque, Amyloid/metabolism , tau Proteins/metabolism
2.
Neurobiol Aging ; 55: 202-212, 2017 07.
Article in English | MEDLINE | ID: mdl-28464981

ABSTRACT

Alzheimer's disease is characterized by the presence of 2 neuropathological lesions: neurofibrillary tangles, composed of tau proteins which are highly phosphorylated and phosphorylated on uncommon sites, and amyloid plaques, containing the Aß peptides generated from the amyloid precursor protein (APP). Reduction of some APP proteolytic derivatives in Alzheimer's disease such as sAPPα fragment has been reported and sAPPα has been shown to affect tau phosphorylation. To investigate in vivo the effect of absence of APP protein and its fragments on tau phosphorylation and the formation of neurofibrillary tangles, we have generated mice deleted for APP gene and overexpressing a human mutant tau protein and developing neurofibrillary tangles (APPKOTg30 mice). These APPKOTg30 mice showed more severe motor and cognitive deficits, increased tau phosphorylation, increased load of neurofibrillary tangles, and increased p25/35 ratio in the brain, compared with Tg30 mice. These data suggest that APP and/or its proteolytic derivatives interfere with the formation of neurofibrillary tangles in a transgenic mouse model that will be useful for investigating the relationship between APP and tau.


Subject(s)
Alzheimer Disease/genetics , Alzheimer Disease/pathology , Amyloid beta-Protein Precursor/metabolism , Mutation , Neurofibrillary Tangles/pathology , tau Proteins/genetics , Alzheimer Disease/metabolism , Alzheimer Disease/psychology , Animals , Cognitive Dysfunction/etiology , Disease Models, Animal , Mice, Transgenic , Neurofibrillary Tangles/metabolism , Phosphorylation , tau Proteins/metabolism
3.
Brain ; 139(Pt 8): 2290-306, 2016 08.
Article in English | MEDLINE | ID: mdl-27297240

ABSTRACT

Human neurodegenerative tauopathies exhibit pathological tau aggregates in the brain along with diverse clinical features including cognitive and motor dysfunction. Post-translational modifications including phosphorylation, ubiquitination and truncation, are characteristic features of tau present in the brain in human tauopathy. We have previously reported an N-terminally truncated form of tau in human brain that is associated with the development of tauopathy and is highly phosphorylated. We have generated a new mouse model of tauopathy in which this human brain-derived, 35 kDa tau fragment (Tau35) is expressed in the absence of any mutation and under the control of the human tau promoter. Most existing mouse models of tauopathy overexpress mutant tau at levels that do not occur in human neurodegenerative disease, whereas Tau35 transgene expression is equivalent to less than 10% of that of endogenous mouse tau. Tau35 mice recapitulate key features of human tauopathies, including aggregated and abnormally phosphorylated tau, progressive cognitive and motor deficits, autophagic/lysosomal dysfunction, loss of synaptic protein, and reduced life-span. Importantly, we found that sodium 4-phenylbutyrate (Buphenyl®), a drug used to treat urea cycle disorders and currently in clinical trials for a range of neurodegenerative diseases, reverses the observed abnormalities in tau and autophagy, behavioural deficits, and loss of synapsin 1 in Tau35 mice. Our results show for the first time that, unlike other tau transgenic mouse models, minimal expression of a human disease-associated tau fragment in Tau35 mice causes a profound and progressive tauopathy and cognitive changes, which are rescued by pharmacological intervention using a clinically approved drug. These novel Tau35 mice therefore represent a highly disease-relevant animal model in which to investigate molecular mechanisms and to develop novel treatments for human tauopathies.


Subject(s)
Cognitive Dysfunction/drug therapy , Phenylbutyrates/pharmacology , Tauopathies/drug therapy , tau Proteins , Animals , Behavior, Animal , Cognitive Dysfunction/etiology , Disease Models, Animal , Female , Humans , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Tauopathies/complications
4.
J Alzheimers Dis ; 40 Suppl 1: S135-45, 2014.
Article in English | MEDLINE | ID: mdl-24614899

ABSTRACT

Active immunization using tau phospho-peptides in tauopathy mouse models has been observed to reduce tau pathology, especially when given prior to the onset of pathology. Since tau aggregates in these models and in human tauopathies are composed of full-length tau with many post-translational modifications, and are composed of several tau isoforms in many of them, pathological tau proteins bearing all these post-translational modifications might prove to be optimal tau conformers to use as immunogens, especially in models with advanced tau pathology. To this aim, we immunized aged wild-type and mutant tau mice with preparations containing human paired helical filaments (PHF) emulsified in Alum-adjuvant. This immunization protocol with fibrillar PHF-tau was well tolerated and did not induce an inflammatory reaction in the brain or adverse effect in these aged mice. Mice immunized with four repeated injections developed anti-PHF-tau antibodies with rising titers that labeled human neurofibrillary tangles in situ. Immunized mutant tau mice had a lower density of hippocampal Gallyas-positive neurons. Brain levels of Sarkosyl-insoluble tau were also reduced in immunized mice. These results indicate that an immunization protocol using fibrillar PHF-tau proteins is an efficient and tolerated approach to reduce tau pathology in an aged tauopathy animal model.


Subject(s)
Alzheimer Disease/pathology , Brain/pathology , Neurofibrillary Tangles/pathology , Neurons/pathology , Vaccination , tau Proteins/metabolism , Aged, 80 and over , Alzheimer Disease/metabolism , Animals , Brain/metabolism , Disease Models, Animal , Female , Humans , Mice , Mice, Transgenic , Neurofibrillary Tangles/metabolism , Neurons/metabolism , Pilot Projects , Sarcosine/administration & dosage , Sarcosine/analogs & derivatives , tau Proteins/genetics
5.
Brain ; 137(Pt 2): 537-52, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24401760

ABSTRACT

ITPKB phosphorylates inositol 1,4,5-trisphosphate into inositol 1,3,4,5-tetrakisphosphate and controls signal transduction in various hematopoietic cells. Surprisingly, it has been reported that the ITPKB messenger RNA level is significantly increased in the cerebral cortex of patients with Alzheimer's disease, compared with control subjects. As extracellular signal-regulated kinases 1/2 activation is increased in the Alzheimer brain and as ITPKB is a regulator of extracellular signal-regulated kinases 1/2 activation in some hematopoietic cells, we tested whether this increased activation in Alzheimer's disease might be related to an increased activity of ITPKB. We show here that ITPKB protein level was increased 3-fold in the cerebral cortex of most patients with Alzheimer's disease compared with control subjects, and accumulated in dystrophic neurites associated to amyloid plaques. In mouse Neuro-2a neuroblastoma cells, Itpkb overexpression was associated with increased cell apoptosis and increased ß-secretase 1 activity leading to overproduction of amyloid-ß peptides. In this cellular model, an inhibitor of mitogen-activated kinase kinases 1/2 completely prevented overproduction of amyloid-ß peptides. Transgenic overexpression of ITPKB in mouse forebrain neurons was not sufficient to induce amyloid plaque formation or tau hyperphosphorylation. However, in the 5X familial Alzheimer's disease mouse model, neuronal ITPKB overexpression significantly increased extracellular signal-regulated kinases 1/2 activation and ß-secretase 1 activity, resulting in exacerbated Alzheimer's disease pathology as shown by increased astrogliosis, amyloid-ß40 peptide production and tau hyperphosphorylation. No impact on pathology was observed in the 5X familial Alzheimer's disease mouse model when a catalytically inactive ITPKB protein was overexpressed. Together, our results point to the ITPKB/inositol 1,3,4,5-tetrakisphosphate/extracellular signal-regulated kinases 1/2 signalling pathway as an important regulator of neuronal cell apoptosis, APP processing and tau phosphorylation in Alzheimer's disease, and suggest that ITPKB could represent a new target for reducing pathology in human patients with Alzheimer's disease with ITPKB expression.


Subject(s)
Alzheimer Disease/enzymology , Alzheimer Disease/pathology , Brain/enzymology , Brain/pathology , Phosphotransferases (Alcohol Group Acceptor)/biosynthesis , Aged , Aged, 80 and over , Animals , Apoptosis/physiology , Cell Line, Tumor , Female , Humans , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Middle Aged , Neurites/pathology , Neuroblastoma/enzymology , Neuroblastoma/pathology , Phosphotransferases (Alcohol Group Acceptor)/physiology , Plaque, Amyloid/pathology
6.
Acta Neuropathol ; 125(6): 861-78, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23589030

ABSTRACT

PICALM, a clathrin adaptor protein, plays important roles in clathrin-mediated endocytosis in all cell types. Recently, genome-wide association studies identified single nucleotide polymorphisms in PICALM gene as genetic risk factors for late-onset Alzheimer disease (LOAD). We analysed by western blotting with several anti-PICALM antibodies the pattern of expression of PICALM in human brain extracts. We found that PICALM was abnormally cleaved in AD samples and that the level of the uncleaved 65-75 kDa full-length PICALM species was significantly decreased in AD brains. Cleavage of human PICALM after activation of endogenous calpain or caspase was demonstrated in vitro. Immunohistochemistry revealed that PICALM was associated in situ with neurofibrillary tangles, co-localising with conformationally abnormal and hyperphosphorylated tau in LOAD, familial AD and Down syndrome cases. PHF-tau proteins co-immunoprecipitated with PICALM. PICALM was highly expressed in microglia in LOAD. These observations suggest that PICALM is associated with the development of AD tau pathology. PICALM cleavage could contribute to endocytic dysfunction in AD.


Subject(s)
Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Monomeric Clathrin Assembly Proteins/metabolism , Neurofibrillary Tangles/metabolism , Neurofibrillary Tangles/pathology , Adult , Aged , Aged, 80 and over , Alzheimer Disease/etiology , Case-Control Studies , Down Syndrome/etiology , Down Syndrome/metabolism , Down Syndrome/pathology , Female , Humans , Male , Microglia/physiology , Middle Aged , tau Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...