Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.116
Filter
1.
Neural Regen Res ; 20(6): 1525-1540, 2025 Jun 01.
Article in English | MEDLINE | ID: mdl-38993130

ABSTRACT

Elucidating the complex dynamic cellular organization in the hypothalamus is critical for understanding its role in coordinating fundamental body functions. Over the past decade, single-cell and spatial omics technologies have significantly evolved, overcoming initial technical challenges in capturing and analyzing individual cells. These high-throughput omics technologies now offer a remarkable opportunity to comprehend the complex spatiotemporal patterns of transcriptional diversity and cell-type characteristics across the entire hypothalamus. Current single-cell and single-nucleus RNA sequencing methods comprehensively quantify gene expression by exploring distinct phenotypes across various subregions of the hypothalamus. However, single-cell/single-nucleus RNA sequencing requires isolating the cell/nuclei from the tissue, potentially resulting in the loss of spatial information concerning neuronal networks. Spatial transcriptomics methods, by bypassing the cell dissociation, can elucidate the intricate spatial organization of neural networks through their imaging and sequencing technologies. In this review, we highlight the applicative value of single-cell and spatial transcriptomics in exploring the complex molecular-genetic diversity of hypothalamic cell types, driven by recent high-throughput achievements.

2.
Foods ; 13(18)2024 Sep 19.
Article in English | MEDLINE | ID: mdl-39335900

ABSTRACT

Given the persistent occurrence of foodborne illnesses linked to both raw and processed vegetables, understanding microbial behavior in these foods under distribution conditions is crucial. This study aimed to develop predictive growth models for Salmonella spp. and Listeria monocytogenes in raw (mung bean sprouts, onion, and cabbage) and processed vegetables (shredded cabbage salad, cabbage and onion juices) at various temperatures, ranging from 4 to 36 °C. Growth models were constructed and validated using isolated strains of Salmonella spp. (S. Bareilly, S. Enteritidis, S. Typhimurium) and L. monocytogenes (serotypes 1/2a and 1/2b) from diverse food sources. The minimum growth temperatures for Salmonella varied among different vegetable matrices: 8 °C for mung bean sprouts, 9 °C for both onion and cabbage, and 10 °C for ready-to-eat (RTE) shredded cabbage salad. Both pathogens grew in cabbage juice at temperatures above 17 °C, while neither demonstrated growth in onion juice, even at 36 °C. Notably, Salmonella spp. exhibited faster growth than L. monocytogenes in all tested samples. At 8 °C, the lag time (LT) and specific growth rate (SGR) for Salmonella spp. in mung bean sprouts were approximately tenfold longer and threefold slower, respectively, compared to those at 10 °C. A decrease in refrigerator storage temperature by 1 or 2 degrees significantly prevented the growth of Salmonella in raw vegetables. These findings offer valuable insights into assessing the risk of foodborne illness associated with the consumption of raw and processed vegetables and inform management strategies in mitigating these risks.

3.
Commun Biol ; 7(1): 1090, 2024 Sep 05.
Article in English | MEDLINE | ID: mdl-39237613

ABSTRACT

T cell immunoglobulin and mucin-containing molecule 3 (TIM-3) exhibits unique, cell type- and context-dependent characteristics and functions. Here, we report that TIM-3 on myeloid cells plays essential roles in modulating lung inflammation. We found that myeloid cell-specific TIM-3 knock-in (FSF-TIM3/LysM-Cre+) mice have lower body weight and shorter lifespan than WT mice. Intriguingly, the lungs of FSF-TIM3/LysM-Cre+ mice display excessive inflammation and features of disease-associated pathology. We further revealed that galectin-3 levels are notably elevated in TIM-3-overexpressing lung-derived myeloid cells. Furthermore, both TIM-3 blockade and GB1107, a galectin-3 inhibitor, ameliorated lung inflammation in FSF-TIM3/LysM-Cre+/- mice. Using an LPS-induced lung inflammation model with myeloid cell-specific TIM-3 knock-out mice, we demonstrated the association of TIM-3 with both lung inflammation and galectin-3. Collectively, our findings suggest that myeloid TIM-3 is an important regulator in the lungs and that modulation of TIM-3 and galectin-3 could offer therapeutic benefits for inflammation-associated lung diseases.


Subject(s)
Galectin 3 , Hepatitis A Virus Cellular Receptor 2 , Myeloid Cells , Pneumonia , Animals , Hepatitis A Virus Cellular Receptor 2/metabolism , Hepatitis A Virus Cellular Receptor 2/genetics , Galectin 3/metabolism , Galectin 3/genetics , Myeloid Cells/metabolism , Mice , Pneumonia/metabolism , Pneumonia/pathology , Pneumonia/genetics , Mice, Knockout , Mice, Inbred C57BL , Galectins/metabolism , Galectins/genetics , Lung/pathology , Lung/metabolism
4.
Adv Mater ; : e2409142, 2024 Sep 23.
Article in English | MEDLINE | ID: mdl-39308207

ABSTRACT

Thrombosis is a significant threat to human health. However, the existing clinical treatment methods have limitations. Magnetic soft matter is used in the biomedical field for years, and ferromagnetic liquids exhibit tunable stiffness and on-demand movement advantages under magnetic fields. In this study, a ferromagnetic liquid robot (FMLR) is developed and applied it to thrombus removal in complex blood vessels. The FMLR consisted of Fe3O4 magnetic nanoparticles and dimethyl silicone oil. The FMLR can pass through a narrow complex maze through shape deformation by tailoring the intensity and direction of the external magnetic field. Finite element simulation analysis is used to validate the mechanism of controllable FMLR movements. Importantly, the storage modulus of FMLR can be tuned from 0.1 to 2018 Pa by varying the external magnetic intensity, ensuring its effectiveness in removing rigid and stubborn thrombi present on the vascular walls. Toward medical robotic applications, FMLR can be used in telerobotic neurointerventional. Experiments demonstrating the capability of FMLR to remove thrombi in the ear veins of rabbits are conducted. This study introduces an efficient approach for thrombus elimination, broadening the utilization of FMLRs within the realm of clinical medicine.

5.
Plant Methods ; 20(1): 145, 2024 Sep 19.
Article in English | MEDLINE | ID: mdl-39300484

ABSTRACT

BACKGROUND: This study aimed to produce Odontoglossum ringspot virus (ORSV)-free Cymbidium orchid 'New True' plants from ORSV-infected mother plants by culturing their meristems and successively repeating subcultures of protocorm-like bodies (PLBs) derived from the meristems. RESULTS: Initially, ORSV was confirmed as the causative agent of viral symptoms in orchid leaves via reverse transcription-polymerase chain reaction (RT-PCR) analysis. Meristems from infected plants were cultured to generate PLBs, which in sequence were repeatedly subcultured up to four times. RT-PCR and quantitative RT-PCR analyses revealed that while ORSV was undetectable in shoots derived from the first subculture, complete elimination of the virus required at least a second subculture. Genetic analysis using inter-simple sequence repeat markers indicated no somaclonal variation between regenerated plants and the mother plant, suggesting that genetic consistency was maintained. CONCLUSION: Overall, our findings demonstrate that subculturing PLBs for a second time is ideal for producing genetically stable, ORSV-free Cymbidium orchids, thus offering a practical means of generating genetically stable, virus-free plants and enhancing plant health and quality in the orchid industry.

6.
J Infect Dis ; 2024 Sep 20.
Article in English | MEDLINE | ID: mdl-39302695

ABSTRACT

Developing effective vaccines is necessary in combating new virus pandemics. For HIV and SARS-CoV-2, the induction of neutralizing antibodies (NAb) is important for vaccine protection; however, the exact mechanisms underlying protection require further study. Recent data emphasize that even Abs that do not exhibit neutralizing activity may contribute to immune defense. Abs exhibiting this function may counter virus mutations, which are acquired to escape from NAbs, and therefore, broaden the protective Ab response induced by vaccination. However, the steps leading to Ab Fc-mediated inhibition are complex. How can these functions be measured in vitro? What inhibitory assay is the most physiologically relevant at mimicking effective in vivo protection? This review provides a comprehensive update on the current knowledge gaps on the Ab Fc-mediated functions involved in HIV and SARS-CoV-2 protection. Understanding the inhibitory effects of these Abs is vital for designing the next generation of protective HIV and SARS-CoV-2 vaccines.

7.
Science ; 385(6713): 1077-1080, 2024 Sep 06.
Article in English | MEDLINE | ID: mdl-39236185

ABSTRACT

There is extensive geologic evidence of ancient volcanic activity on the Moon, but it is unclear how long that volcanism persisted. Magma fountains produce volcanic glasses, which have previously been found in samples of the Moon's surface. We investigated ~3000 glass beads in lunar soil samples collected by the Chang'e-5 mission and identified three as having a volcanic origin on the basis of their textures, chemical compositions, and sulfur isotopes. Uranium-lead dating of the three volcanic glass beads shows that they formed 123 ± 15 million years ago. We measured high abundances of rare earth elements and thorium in these volcanic glass beads, which could indicate that such recent volcanism was related to local enrichment of heat-generating elements in the mantle sources of the magma.

8.
Article in English | MEDLINE | ID: mdl-39226450

ABSTRACT

Bisphenol A (BPA), a known endocrine disruptor, is commonly used in food containers and packaging. Recently, alternatives such as bisphenol AF (BPAF), bisphenol B (BPB), and bisphenol E (BPE) have been introduced to replace BPA. However, these substitutes have been reported to exhibit toxicity levels similar to BPA. In this study, we developed and validated a method for the analysis of trace bisphenols (BPA, BPAF, BPB, and BPE) in food using immunoaffinity column (IAC) clean-up. The method demonstrated satisfactory accuracy and precision. We applied this validated method to analyze 56 carbonated beverage samples and 30 canned tuna samples. In the carbonated beverages, average concentrations of BPA and BPAF were 0.4 and 0.2 µg kg-1, respectively. In canned tuna, BPA and BPAF were found at average concentrations of 22.2 and 0.7 µg kg-1, respectively, while BPB and BPE were not detected in any samples. Estimated exposure levels ranged from 0.13 to 0.18 ng kg bw-1 day-1 in the general population and from 205.2 to 232.0 ng kg bw-1 day-1 among consumers. The commercial IAC-based analytical method used in this study can contribute to the safety management of BPA, BPAF, BPB, and BPE.

9.
Biochim Biophys Acta Rev Cancer ; 1879(6): 189178, 2024 Sep 04.
Article in English | MEDLINE | ID: mdl-39241895

ABSTRACT

The matrisome, a group of proteins constituting or interacting with the extracellular matrix (ECM), has garnered attention as a potent regulator of cancer progression. An increasing number of studies have focused on cancer matrisome utilizing diverse -omics approaches. Here, we present diverse patterns of matrisomal populations within cancer tissues, exploring recent -omics studies spanning different '-omics' levels (epigenomics, genomics, transcriptomics, and proteomics), as well as newly developed sequencing techniques such as single-cell RNA sequencing and spatial transcriptomics. Some matrisome genes showed uniform patterns of upregulated or downregulated expression across various cancers, while others displayed different expression patterns according to the cancer types. This matrisomal dysregulation in cancer was further examined according to their originating cell type and spatial location in the tumor tissue. Experimental studies were also collected to demonstrate the identified roles of matrisome genes during cancer progression. Interestingly, many studies on cancer matrisome have suggested matrisome genes as effective biomarkers in cancer research. Although the specific mechanisms and clinical applications of cancer matrisome have not yet been fully elucidated, recent techniques and analyses on cancer matrisomics have emphasized their biological importance in cancer progression and their clinical implications in deciding the efficacy of cancer treatment.

10.
J Invest Dermatol ; 2024 Sep 04.
Article in English | MEDLINE | ID: mdl-39241981

ABSTRACT

Blue light, a high-energy radiation in the visible light spectrum, was recently reported to induce skin pigmentation. In this study, we investigated the involvement of TRPV1-mediated signaling along with OPN3 in blue light-induced melanogenesis, as well as its signaling pathway. Operating downstream target of OPN3 in blue light-induced melanogenesis, blue light activated TRPV1 and upregulated its expression, resulting in calcium influx. [Ca2+] induced activation of CaMKII and MAPK. It also downregulated clusterin expression, leading to the nuclear translocation of PAX3, ultimately affecting melanin synthesis. In addition, blue light interfered with autophagy-mediated regulation of melanosomes by decreasing not only the interaction between CLU and LC3B but the expression of ATF family. These findings demonstrate that the pigmenting effects of blue light are mediated by CaMKII- and MAPK-mediated signaling, as well as CLU-dependent inhibition of autophagy through OPN3-TRPV1-calcium influx, suggesting a new signaling pathway by which blue light regulates melanocyte biology. Furthermore, these results suggest that TRPV1 and CLU could be potential therapeutic targets for blue light-induced pigmentation due to prolonged exposure to blue light.

12.
Angew Chem Int Ed Engl ; : e202412097, 2024 Aug 13.
Article in English | MEDLINE | ID: mdl-39136339

ABSTRACT

A sulfonated tris(1-phenylpyrazolato)iridium(III) complex ([Ir(sppz)3]3-) serves as a proof-of-concept non-emissive enhancer of the widely used ECL detection system of tris(2,2'-bipyridine)ruthenium(II) ([Ru(bpy)3]2+) with tri-n-propylamine (TPrA) co-reactant, acting through electrocatalysis of TPrA oxidation and efficient chemi-excitation of the luminophore. Using self-interference ECL spectroscopy, we show that the enhancer extends diffusion of the required electrogenerated precursors from the electrode surface. Previously reported enhancement through these pathways has been confounded by the inherent ECL of the enhancer, but the increase in [Ru(bpy)3]2+ ECL intensity using [Ir(sppz)3]3- was obtained without its concomitant emission. The most prominent enhancement (11-fold) occurred at low potentials associated with the 'indirect' co-reactant ECL pathway, which translated to between 2- and 6-fold enhancement when the luminophore was immobilised on microbeads as a general model for enhanced ECL assays.

13.
BMJ Open ; 14(8): e082019, 2024 Aug 06.
Article in English | MEDLINE | ID: mdl-39107014

ABSTRACT

INTRODUCTION: Approximately, 50% of stroke survivors experience impaired walking ability 6 months after conventional rehabilitation and standard care. However, compared with upper limb motor function, research on lower limbs rehabilitation through non-invasive neuromodulation like repetitive transcranial magnetic stimulation (rTMS) has received less attention. Limited evidence exists regarding the effectiveness of intermittent theta-burst stimulation (iTBS), an optimised rTMS modality, on lower limbs rehabilitation after stroke. This study aims to evaluate the effects of iTBS on gait, balance and lower limbs motor function in stroke recovery while also exploring the underlying neural mechanisms using longitudinal analysis of multimodal neuroimaging data. METHODS AND ANALYSIS: In this double-blinded randomised controlled trial, a total of 46 patients who had a stroke will be randomly assigned in a 1:1 ratio to receive either 15 sessions of leg motor area iTBS consisting of 600 pulses or sham stimulation over the course of 3 weeks. Additionally, conventional rehabilitation therapy will be administered following the (sham) iTBS intervention. The primary outcome measure will be the 10 m walking test. Secondary outcomes include the Fugl-Meyer assessment of the lower extremity, Timed Up and Go Test, Functional Ambulation Category Scale, Berg Balance Scale, modified Barthel Index, Mini-Mental State Examination, montreal cognitive assessment, tecnobody balance assessment encompassing both static and dynamic stability evaluations, surface electromyography recording muscle activation of the lower limbs, three-dimensional gait analysis focusing on temporal and spatial parameters as well as ground reaction force measurements, corticomotor excitability tests including resting motor threshold, motor evoked potential and recruitment curves and multimodal functional MRI scanning. Outcome measures will be collected prior to and after the intervention period with follow-up at 3 weeks. ETHICS AND DISSEMINATION: The study has received approval from the Medical Research Ethics Committee of Wuxi Mental Health Center/Wuxi Central Rehabilitation Hospital (no. WXMHCCIRB2023LLky078). Results will be disseminated through peer-reviewed journals and scientific conferences. TRIAL REGISTRATION NUMBER: ChiCTR2300077431.


Subject(s)
Gait , Lower Extremity , Postural Balance , Stroke Rehabilitation , Transcranial Magnetic Stimulation , Humans , Double-Blind Method , Transcranial Magnetic Stimulation/methods , Stroke Rehabilitation/methods , Lower Extremity/physiopathology , Lower Extremity/diagnostic imaging , Stroke/physiopathology , Stroke/diagnostic imaging , Randomized Controlled Trials as Topic , Male , Recovery of Function , Female , Neuroimaging/methods , Middle Aged , Adult , Aged , Magnetic Resonance Imaging/methods , Multimodal Imaging/methods
14.
BMC Public Health ; 24(1): 2145, 2024 Aug 07.
Article in English | MEDLINE | ID: mdl-39112980

ABSTRACT

BACKGROUND: Tuberculous meningitis (TBM) emerges as a grave complication of tuberculosis in people living with HIV (PLWH). The diagnosis and treatment of TBM pose significant challenges, leading to elevated mortality rates. To comprehensively grasp the epidemiological landscape of TBM in PLWH, a systematic review and meta-analysis were meticulously undertaken. METHODS: We performed a comprehensive search in PubMed, Embase, and Web of Science from database inception to September 19th, 2023, with no limitations on the publication type. The search terms were HIV/AIDS terms (AIDS OR HIV OR PLWH) and TBM-related terms (tuberculous meningitis OR TBM). Studies included in this meta-analysis evaluated the incidence of TBM among PLWH, or we were able to calculate the incidence of TBM among PLWH from the research. RESULTS: The analysis revealed that the prevalence of TBM among PLWH was 13.6% (95% CI: 6.6-25.9%), with an incidence rate of 1.5 cases per 1000 persons per year. The case fatality rate was found to be 38.1% (95% CI: 24.3-54.1%). No significant publication bias was observed. Meta-regression analysis identified the proportion of females and finance situation as factors influencing the outcomes. CONCLUSIONS: Our study highlights TBM as a prevalent opportunistic infection that targets the central nervous system in PLWH. The elevated case fatality rate is especially prominent among PLWH in impoverished regions, underscores the pressing necessity for enhanced management strategies for PLWH suffering from TBM. TRIAL REGISTRATION: PROSPERO; No: CRD42022338586.


Subject(s)
HIV Infections , Tuberculosis, Meningeal , Humans , Tuberculosis, Meningeal/epidemiology , Tuberculosis, Meningeal/mortality , Tuberculosis, Meningeal/complications , Incidence , HIV Infections/complications , HIV Infections/epidemiology , Prevalence , Adult
15.
Biochem Biophys Res Commun ; 733: 150601, 2024 Aug 23.
Article in English | MEDLINE | ID: mdl-39213703

ABSTRACT

Biotin is an essential coenzyme involved in various metabolic processes across all known organisms, with biotinylation being crucial for the activity of carboxylases. BirA from Haemophilus influenzae is a bifunctional protein that acts as a biotin protein ligase and a transcriptional repressor. This study reveals the crystal structures of Hin BirA in both its apo- and holo-(biotinyl-5'-AMP bound) forms. As a class II BirA, it consists of three domains: N-terminal DNA binding domain, central catalytic domain, and C-terminal SH3-like domain. The structural analysis shows that the biotin-binding loop forms an ordered structure upon biotinyl-5'-AMP binding. This facilitates its interaction with the ligand and promotes protein dimerization. Comparative studies with other BirA homologs from different organisms indicate that the residues responsible for binding biotinyl-5'-AMP are highly conserved. This study also utilized AlphaFold2 to model the potential heterodimeric interaction between Hin BirA and biotin carboxyl carrier protein, thereby providing insights into the structural basis for biotinylation. These findings enhance our understanding of the structural and functional characteristics of Hin BirA, highlighting its potential as a target for novel antibiotics that disrupt the bacterial biotin synthesis pathways.

16.
Cerebellum ; 2024 Aug 31.
Article in English | MEDLINE | ID: mdl-39215909

ABSTRACT

Recent functional MRI studies have implicated the cerebellum in working memory (WM) alongside the prefrontal cortex. Some findings indicate that the right cerebellum is activated during verbal tasks, while the left is engaged during visuospatial tasks, suggesting cerebellar lateralization in WM function. The cerebellum could be a potential target for non-invasive brain stimulation (NIBS) to enhance WM function in cognitive disorders. However, the comprehensive influence of cerebellar lateralization on different types of WM and the effect of stimulation over the unilateral or bilateral cerebellum remain uncertain. This study was to investigate the cerebellum's functional lateralization and its specific impact on various aspects of WM in a causal manner using unilateral or bilateral cerebellar continuous theta burst stimulation (cTBS), a form of inhibitroy NIBS. Twenty-four healthy participants underwent four sessions of cTBS targeting the left, right, or bilateral Crus I of the cerebellum, or a sham condition, in a controlled cross-over design. WM performance was assessed pre- and post-stimulation using neuropsychological tests, including the 3-back task, spatial WM task, and digit span task. Results indicated that cTBS over the bilateral and right cerebellum both led to a greater improvement in 3-back task performance compared to sham stimulation. Additionally, active cTBS over the bilateral cerebellum yielded better performance in the spatial WM task than sham stimulation. However, no significant differences were observed between stimulation conditions for the auditory digit span task. This study may provide novel causal evidence highlighting the specific involvement of the right and bilateral cerebellum in various types of WM. Specifically, the right cerebellum appears crucial for updating and tracking 3-back WM content, while spatial WM processes require the coordinated engagement of both cerebellar hemispheres.

17.
Nanoscale ; 16(35): 16313-16328, 2024 Sep 12.
Article in English | MEDLINE | ID: mdl-39110002

ABSTRACT

Carbon materials and their hybrid metal composites have garnered significant attention in biomedical applications due to their exceptional biocompatibility. This biocompatibility arises from their inherent chemical stability and low toxicity within biological systems. This review offers a comprehensive overview of carbon nanomaterials and their metal composites, emphasizing their biocompatibility-focused applications, including drug delivery, bioimaging, biosensing, and tissue engineering. The paper outlines advancements in surface modifications, coatings, and functionalization techniques designed to enhance the biocompatibility of carbon materials, ensuring minimal adverse effects in biological systems. A comprehensive investigation into hybrid composites integrating carbon nanomaterials is conducted, categorizing them as fullerenes, carbon quantum dots, carbon nanotubes, carbon nanofibers, graphene, and diamond-like carbon. The concluding section addresses regulatory considerations and challenges associated with integrating carbon materials into medical devices. This review culminates by providing insights into current achievements, challenges, and future directions, underscoring the pivotal role of carbon nanomaterials and their metal composites in advancing biocompatible applications.


Subject(s)
Biocompatible Materials , Carbon , Humans , Biocompatible Materials/chemistry , Carbon/chemistry , Tissue Engineering , Metals/chemistry , Biosensing Techniques , Nanotubes, Carbon/chemistry , Graphite/chemistry , Animals , Drug Delivery Systems
18.
J Integr Neurosci ; 23(8): 160, 2024 Aug 22.
Article in English | MEDLINE | ID: mdl-39207070

ABSTRACT

BACKGROUND: Previous studies have found that inhibitory priming with continuous theta burst stimulation (cTBS) can enhance the effect of subsequent excitatory conditioning stimuli with intermittent theta burst stimulation (iTBS) in the upper limbs. However, whether this combined stimulation approach elicits a comparable compensatory response in the lower extremities remains unclear. This study aimed to investigate how cTBS preconditioning modulated the effect of iTBS on motor cortex excitability related to the lower limb in healthy individuals. METHODS: Using a randomised cross-over design, a total of 25 healthy participants (19 females, mean age = 24.80 yr) were recruited to undergo three different TBS protocols (cTBS + iTBS, sham cTBS + iTBS, sham cTBS + sham iTBS) in a random order. Each TBS intervention was administered with one-week intervals. cTBS and iTBS were administered at an intensity of 80% active motor threshold (AMT) delivering a total of 600 pulses. Before intervention (T0), immediately following intervention (T1), and 20 min after intervention (T2), the corticomotor excitability was measured for the tibialis anterior muscle of participants' non-dominant leg using a Magneuro100 stimulator and matched double-cone coil. The average amplitude of the motor-evoked potential (MEP) induced by applying 20 consecutive monopulse stimuli at an intensity of 130% resting motor threshold (RMT) was collected and analysed. RESULTS: Compare with T0 time, the MEP amplitude (raw and normalised) at T1 and T2 showed a statistically significant increase following the cTBS + iTBS protocol (p < 0.01), but no significant differences were observed in amplitude changes following other protocols (sham cTBS + iTBS and sham cTBS + sham iTBS) (p > 0.05). Furthermore, no statistically significant difference was found among the three protocols at any given time point (p > 0.05). CONCLUSIONS: Preconditioning the lower extremity motor cortex with cTBS prior to iTBS intervention can promptly enhance its excitability in healthy participants. This effect persists for a minimum duration of 20 min. CLINICAL TRIAL REGISTRATION: No: ChiCTR2300069315. Registered 13 March, 2023, https://www.chictr.org.cn.


Subject(s)
Cross-Over Studies , Evoked Potentials, Motor , Lower Extremity , Motor Cortex , Theta Rhythm , Transcranial Magnetic Stimulation , Humans , Female , Motor Cortex/physiology , Male , Adult , Young Adult , Evoked Potentials, Motor/physiology , Lower Extremity/physiology , Theta Rhythm/physiology , Healthy Volunteers , Muscle, Skeletal/physiology
19.
Cancer Res ; 2024 Aug 29.
Article in English | MEDLINE | ID: mdl-39207402

ABSTRACT

Galectin-9 is a multifaceted regulator of various pathophysiological processes that exerts positive or negative effects in a context-dependent manner. Here, we elucidated the distinctive functional properties of galectin-9 on myeloid cells within the brain tumor microenvironment. Galectin-9-expressing cells were abundant at the hypoxic tumor edge in the tumor-bearing ipsilateral hemisphere compared to the contralateral hemisphere in an intracranial mouse brain tumor model. Galectin-9 was highly expressed in microglia and macrophages in tumor-infiltrating cells. In primary glia, both the expression and secretion of galectin-9 were influenced by tumors. Analysis of a human glioblastoma bulk RNA-sequencing dataset and a single-cell RNA-sequencing dataset from a murine glioma model revealed a correlation between galectin-9 expression and glial cell activation. Notably, the galectin-9high microglial subset was functionally distinct from the galectin-9neg/low subset in the brain tumor microenvironment. Galectin-9high microglia exhibited properties of inflammatory activation and higher rates of cell death, whereas galectin-9neg/low microglia displayed a superior phagocytic ability against brain tumor cells. Blockade of galectin-9 suppressed tumor growth and altered the activity of glial and T cells in a mouse glioma model. Additionally, glial galectin-9 expression was regulated by Hif-2α in the hypoxic brain tumor microenvironment. Myeloid-specific Hif-2α deficiency led to attenuated tumor progression. Together, these findings reveal that galectin-9 on myeloid cells is an immunoregulator and putative therapeutic target in brain tumors.

20.
Sensors (Basel) ; 24(16)2024 Aug 21.
Article in English | MEDLINE | ID: mdl-39205093

ABSTRACT

Exosomes are small extracellular vesicles produced by almost all cell types in the human body, and exosomal microRNAs (miRNAs) are small non-coding RNA molecules that are known to serve as important biomarkers for diseases such as cancer. Given that the upregulation of miR-106b is closely associated with several types of malignancies, the sensitive and accurate detection of miR-106b is important but difficult. In this study, a surface acoustic wave (SAW) biosensor was developed to detect miR-106b isolated from cancer cells based on immunoaffinity separation technique using our unique paddle screw device. Our novel SAW biosensor could detect a miR-106b concentration as low as 0.0034 pM in a linear range from 0.1 pM to 1.0 µM with a correlation coefficient of 0.997. Additionally, we were able to successfully detect miR-106b in total RNA extracted from the exosomes isolated from the MCF-7 cancer cell line, a model system for human breast cancer, with performance comparable to commercial RT-qPCR methods. Therefore, the exosome isolation by the paddle screw method and the miRNA detection using the SAW biosensor has the potential to be used in basic biological research and clinical diagnosis as an alternative to RT-qPCR.


Subject(s)
Biosensing Techniques , Exosomes , MicroRNAs , Humans , Exosomes/chemistry , Biosensing Techniques/methods , Biosensing Techniques/instrumentation , MicroRNAs/isolation & purification , MicroRNAs/genetics , MCF-7 Cells , Antibodies/immunology , Antibodies/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL