Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 830
Filter
1.
Front Pharmacol ; 15: 1424834, 2024.
Article in English | MEDLINE | ID: mdl-39092228

ABSTRACT

Immune inflammation is one of the main factors in the pathogenesis of depression. It is an effective and active way to find more safe and effective anti-inflammatory depressant drugs from plant drugs. The purpose of this study is to explore the potential of marine plant Sargassum pallidum (Turn).C.Ag. (Haihaozi, HHZ) in the prevention and treatment of depression and to explain the related mechanism. Phytochemical analysis showed that alkaloids, terpenes, and organic acids are the main constituents. In vitro and in vivo activity studies showed the anti-neuroinflammatory and antidepressant effect of Sargassum pallidum, furthermore, confirmed that 7-Hydroxycoumarin, Scoparone, and Kaurenoic Acid are important plant metabolites in Sargasum pallidum for anti-neuroinflammation. Mechanism exploration showed that inhibition of ERK1/2/p38 inflammatory signaling pathway contributing to the antidepressant effect of Sargassum pallidum in reducing intestinal inflammatory levels. This study confirmed the value of Sargassum pallidum and its rich plant metabolites in anti-inflammatory depression, providing a new choice for the follow-up research and development of antidepressant drugs.

2.
Lung Cancer ; 195: 107902, 2024 Jul 29.
Article in English | MEDLINE | ID: mdl-39126888

ABSTRACT

OBJECTIVE: The 5-year survival rate of early-stage non-small cell lung cancer (NSCLC) is still not optimistic. We aimed to construct prognostic tools using clinicopathological (CP) and serum 8-miRNA panel to predict the risk of overall survival (OS) in early-stage NSCLC. MATERIALS AND METHODS: A total of 799 patients with early-stage NSCLC, treated between April 2008 and September 2019, were included in this study. A sub-group of patients with serum samples, 280, were analyzed for miRNA profiling. The primary endpoint of the study was OS. The CP panel for prognosis was developed using multivariate and forward stepwise selection analyses. The serum 8-miRNA panel was developed using the miRNAs that were significant for prognosis, screened using real-time quantitative PCR (qPCR) followed by differential, univariate and Cox regression analyses. The combined model was developed using CP panel and serum 8-miRNA panel. The predictive performance of the panels and the combined model was evaluated using the area under curve (AUC) values of receiver operating characteristics (ROC) curves and Kaplan-Meier survival analysis. RESULT: The prognostic panels and the combined model (comprising CP panel and serum 8-miRNA panel) was used to classify the patients into high-risk and low-risk groups. The OS rates of these two groups were significantly different (P<0.05). The two panels had higher AUC than the two guidelines, and the combined model had the highest AUC. The AUC of the combined model (AUC=0.788; 95 %CI 0.706-0.871) was better than that of the National Comprehensive Cancer Network (NCCN) guideline (AUC=0.601; 95 %CI 0.505-0.697) and Chinese Society of Clinical Oncology (CSCO) guideline (AUC=0.614; 95 %CI 0.520-0.708). CONCLUSION: The combined model based on CP panel and serum 8-miRNA panel allows better prognostic risk stratification of patients with early-stage NSCLC to predict risk of OS.

3.
Nutrients ; 16(15)2024 Jul 31.
Article in English | MEDLINE | ID: mdl-39125375

ABSTRACT

Diabetes has become one of the most prevalent global epidemics, significantly impacting both the economy and the health of individuals. Diabetes is associated with numerous complications, such as obesity; hyperglycemia; hypercholesterolemia; dyslipidemia; metabolic endotoxemia; intestinal barrier damage; insulin-secretion defects; increased oxidative stress; and low-grade, systemic, and chronic inflammation. Diabetes cannot be completely cured; therefore, current research has focused on developing various methods to control diabetes. A promising strategy is the use of probiotics for diabetes intervention. Probiotics are a class of live, non-toxic microorganisms that can colonize the human intestine and help improve the balance of intestinal microbiota. In this review, we summarize the current clinical studies on using probiotics to control diabetes in humans, along with mechanistic studies conducted in animal models. The primary mechanism by which probiotics regulate diabetes is improved intestinal barrier integrity, alleviated oxidative stress, enhanced immune response, increased short-chain fatty acid production, etc. Therefore, probiotic supplementation holds great potential for the prevention and management of diabetes.


Subject(s)
Gastrointestinal Microbiome , Probiotics , Probiotics/therapeutic use , Humans , Animals , Oxidative Stress/drug effects , Diabetes Mellitus/prevention & control , Diabetes Mellitus, Type 2
5.
PLoS One ; 19(7): e0306321, 2024.
Article in English | MEDLINE | ID: mdl-38976695

ABSTRACT

Phytoplankton community characterized by strong vitality response to environmental change in freshwater ecosystems. This study aims to evaluate the effectiveness of using phytoplankton diversity as a water quality indicator in wetlands, and find out the main environmental variables affecting the distribution of phytoplankton. From 2020 to 2021, we examined phytoplankton assemblages and water environmental variables in spring, summer, and autumn at eight sampling sites from Hulanhe Wetland, Northeast (NE) China. The results showed that Bacillariophyta was the dominant species. Phytoplankton composition and abundance differed among sampling sites in each season; the abundance in summer (613.71 × 104 ind. L-1) was higher than that in autumn and spring. The water quality assessment of the trophic state index (TSI) based on the four physicochemical indicators was compared with phytoplankton diversity indices, which indicated that the phytoplankton community was stable, and these two indices were significantly lower in summer than in spring and autumn. According to redundancy analysis (RDA), total phosphorus (TP) and nitrogen (TN) were the main environmental variables affecting the distribution of phytoplankton. Temperature and dissolved oxygen (DO) changes also played a role, and their impact on the community was discussed. This work can provide relevant scientific references on the usefulness of phytoplankton diversity structure in assessing water quality in cold regions, in which the succession can be significantly affected by nutrients and temperatures.


Subject(s)
Fresh Water , Phytoplankton , Seasons , Water Quality , Wetlands , Phytoplankton/growth & development , China , Fresh Water/analysis , Phosphorus/analysis , Biodiversity , Environmental Monitoring/methods , Nitrogen/analysis , Temperature
6.
Mol Cancer ; 23(1): 140, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38982491

ABSTRACT

Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive malignancy with a poor prognosis and limited therapeutic options. Research on the tumor microenvironment (TME) of PDAC has propelled the development of immunotherapeutic and targeted therapeutic strategies with a promising future. The emergence of single-cell sequencing and mass spectrometry technologies, coupled with spatial omics, has collectively revealed the heterogeneity of the TME from a multiomics perspective, outlined the development trajectories of cell lineages, and revealed important functions of previously underrated myeloid cells and tumor stroma cells. Concurrently, these findings necessitated more refined annotations of biological functions at the cell cluster or single-cell level. Precise identification of all cell clusters is urgently needed to determine whether they have been investigated adequately and to identify target cell clusters with antitumor potential, design compatible treatment strategies, and determine treatment resistance. Here, we summarize recent research on the PDAC TME at the single-cell multiomics level, with an unbiased focus on the functions and potential classification bases of every cellular component within the TME, and look forward to the prospects of integrating single-cell multiomics data and retrospectively reusing bulk sequencing data, hoping to provide new insights into the PDAC TME.


Subject(s)
Pancreatic Neoplasms , Single-Cell Analysis , Tumor Microenvironment , Humans , Tumor Microenvironment/genetics , Single-Cell Analysis/methods , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/pathology , Pancreatic Neoplasms/metabolism , Carcinoma, Pancreatic Ductal/pathology , Carcinoma, Pancreatic Ductal/genetics , Carcinoma, Pancreatic Ductal/metabolism , Animals , Biomarkers, Tumor , Genomics/methods , Gene Expression Regulation, Neoplastic , Multiomics
7.
Biochem Biophys Res Commun ; 731: 150390, 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-39024980

ABSTRACT

6-phosphogluconate dehydrogenase (6PGDH) is an essential enzyme in energy metabolism and redox reactions, and represents a potential drug target for the development of therapies targeting trypanosomes, plasmodium, or other pathogens. Tuberculosis, caused by Mycobacterium tuberculosis, is a contagious disease that severely affects human health, with approximately one-third of the world's population infected. However, the protein structure, exact oligomeric state, and catalytic mechanism of 6PGDH in Mycobacterium tuberculosis (Mt6PGDH) have remained largely unknown. In this study, we successfully purified and determined the structure of Mt6PGDH, revealing its function as a tetramer in both solution and crystal states. Through structural comparisons, we clarified the tetramer formation mechanism and the oligomeric organization of short-chain 6PGDHs. Additionally, we identified key residues for coenzyme recognition and catalytic activity. This work not only deepens our understanding of the enzymatic function of Mt6PGDH but also lays a foundation for the development of drugs targeting this enzyme.

8.
J Pharm Pharmacol ; 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-39018042

ABSTRACT

OBJECTIVES: Curcumae Rhizoma (CR) is a traditional Chinese medicine used frequently in clinics, which contains volatile components that exhibit various active effects. This study explores the effect of Curcumae Rhizoma volatile oil (CRVO) on depressive mice and its possible mechanism of action. METHODS: Chemical composition of CRVO was analysed by GC-MS. DPPH and ABTS free radical scavenging assays were used to evaluate the in vitro antioxidant capacity of CRVO. A chronic unpredictable mild stress (CUMS) model was used to evaluate the antidepressant effect of CRVO. The effects of CRVO on oxidative stress in vivo were investigated using Nissl staining, ELISA and transmission electron microscopy. The Nrf2/HO-1/NQO1 signalling pathway was detected by western blotting and immunofluorescence. ML385, a Nrf2 inhibitor was used to validate the effect of Nrf2 on CUMS mice with CRVO treatment. KEY FINDINGS: Phytochemical analysis showed that CRVO is rich in its characteristic components, including curzerene (31.1%), curdione (30.56%), and germacrone (12.44%). In vivo, the administration of CRVO significantly ameliorated CUMS-induced depressive-like behaviours. In addition, inhalation of CRVO significantly alleviated the oxidative stress caused by CUMS and improved neuronal damage and mitochondrial dysfunction. The results of mechanistic studies showed that the mechanism of action is related to the Nrf2/HO-1/NQO1 pathway and the antioxidant and antidepressant effects of CRVO were weakened when ML385 was used. CONCLUSIONS: In summary, by regulating the Nrf2 pathway, inhalation of CRVO can reduce oxidative stress in depressed mice, thereby reducing neuronal damage and mitochondrial dysfunction to alleviate depression-like behaviours. Our study offers a prospective research foundation to meet the diversity of clinical medication.

9.
New Phytol ; 2024 Jul 26.
Article in English | MEDLINE | ID: mdl-39056285

ABSTRACT

Kiwifruit ripening is a complex and highly coordinated process that occurs in conjunction with the formation of fruit edible quality. The significance of epigenetic changes, particularly the impact of N6-methyladenosine (m6A) RNA modification on fruit ripening and quality formation, has been largely overlooked. We monitored m6A levels and gene expression changes in kiwifruit at four different stages using LC-MS/MS, MeRIP, RNA-seq, and validated the function of AcALKBH10 through heterologous transgenic expression in tomato. Notable m6A modifications occurred predominantly at the stop codons and the 3' UTRs and exhibited a gradual reduction in m6A levels during the fruit ripening process. Moreover, these m6A modifications in the aforementioned sites demonstrated a discernible inverse relationship with the levels of mRNA abundance throughout the ripening process, suggesting a repression effect of m6A modification in the modulation of kiwifruit ripening. We further demonstrated that AcALKBH10 rather than AcECT9 predominantly regulates m6A levels in ripening-related genes, thereby exerting the regulatory control over the ripening process and the accumulation of soluble sugars and organic acids, ultimately influencing fruit ripening and quality formation. In conclusion, our findings illuminate the epi-regulatory mechanism involving m6A in kiwifruit ripening, offering a fresh perspective for cultivating high-quality kiwifruit with enhanced nutritional attributes.

11.
Quant Imaging Med Surg ; 14(7): 4825-4839, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-39022272

ABSTRACT

Background: Liver tumor segmentation based on medical imaging is playing an increasingly important role in liver tumor research and individualized therapeutic decision-making. However, it remains a challenging in terms of the accuracy of automatic segmentation of liver tumors. Therefore, we aimed to develop a novel deep neural network for improving the results from the automatic segmentation of liver tumors. Methods: This paper proposes the attention-guided context asymmetric fusion network (AGCAF-Net), combining attention guidance and fusion context modules on the basis of a residual neural network for the automatic segmentation of liver tumors. According to the attention-guided context block (AGCB), the feature map is first divided into multiple small blocks, the local correlation between features is calculated, and then the global nonlocal fusion module (GNFM) is used to obtain the global information between pixels. Additionally, the context pyramid module (CPM) and asymmetric semantic fusion module (AFM) are used to obtain multiscale features and resolve the feature mismatch during feature fusion, respectively. Finally, we used the liver tumor segmentation benchmark (LiTS) dataset to verify the efficiency of our designed network. Results: Our results showed that AGCAF-Net with AFM and CPM is effective in improving the accuracy of liver tumor segmentation, with the Dice coefficient increasing from 82.5% to 84.1%. The segmentation results of liver tumors by AGCAF-Net were superior to those of several state-of-the-art U-net methods, with a Dice coefficient of 84.1%, a sensitivity of 91.7%, and an average symmetric surface distance of 3.52. Conclusions: AGCAF-Net can obtain better matched and accurate segmentation in liver tumor segmentation, thus effectively improving the accuracy of liver tumor segmentation.

12.
Phytomedicine ; 132: 155829, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38941813

ABSTRACT

BACKGROUND: Since the pathogenesis of depression is complex, antidepressant therapy remains unsatisfactory. Recent evidence suggests a link between depression and lipid metabolism. Saikosaponin (SS) exhibits antidepression and lipid-regulating effects in modern pharmacology. However, it is unknown whether lipid regulation is the key mechanism of the SS antidepressant effect and how it works. PURPOSE: In this study, we investigated the relationship between the antidepressant activity of SS and the regulation of lipid metabolism and explored potential mechanisms. METHODS: APOE-/- mice, in combination with the chronic unpredictable mild stress (CUMS) model, were used to study the relationship between SS antidepressant activity and lipid metabolism through behavioral, electrophysiological techniques, and non-targeted lipidomics. Western blot, primary cell culture technology, and laser speckle cerebral blood flow imaging were employed to elucidate potential mechanisms. GraphPad Prism was used for statistical analysis, and p < 0.05 was considered statistically significant. RESULTS: APOE-/- mice exhibit more severe depressive-like behavior and dysregulation of sphingolipid metabolism in CUMS. SS alleviates depressive behavior and cortical sphingolipid metabolism disorder caused by CUMS, but has no effect on APOE-/- mice. SS alleviates the imbalance between ceramide (Cer) and sphingomyelin (SM) through acidic sphingomyelinase (AMSase). In addition, SS regulates neuronal glutamate release via sphingolipid metabolism, thereby alleviating the CUMS-induced inhibition of neurovascular coupling (regulates metabotropic glutamate receptor and IP3 receptor), which ameliorates the reduction of cerebral blood flow in depressed mice. CONCLUSION: Our study highlights the role of lipid metabolism in the antidepressant activity of SS and explores its underlying mechanisms. This study provided new insights into the better understanding of the antidepressant mechanisms of phytomedicine while increasing the possibility of lipid metabolism as a therapeutic strategy for depression.

13.
Sheng Li Xue Bao ; 76(3): 394-406, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38939934

ABSTRACT

Spinal cord injury (SCI) is a serious central nervous system disease with high disability and mortality rates and complex pathophysiologic mechanisms. MicroRNA (miRNA), as a kind of non-coding RNA, plays an important role in SCI. miRNA is involved in the regulation of inflammatory response, oxidative stress, axonal regeneration, and apoptosis after SCI, and interacts with long non-coding RNA (lncRNA) and circular RNA (circRNA) to regulate the pathophysiological process of SCI. This paper summarizes the changes in miRNA expression after SCI, and reviews the targeting mechanism of miRNA in SCI and the current research status of miRNA-targeted drugs to provide new targets and new horizons for basic and clinical research on SCI.


Subject(s)
MicroRNAs , Spinal Cord Injuries , Spinal Cord Injuries/genetics , Spinal Cord Injuries/metabolism , Spinal Cord Injuries/physiopathology , MicroRNAs/genetics , MicroRNAs/metabolism , MicroRNAs/physiology , Humans , Animals , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , RNA, Long Noncoding/physiology , RNA, Circular/genetics , RNA, Circular/physiology , RNA, Circular/metabolism , Oxidative Stress , Apoptosis/genetics
14.
Heliyon ; 10(11): e32132, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38867948

ABSTRACT

Background: This study aimed to show a 3-year trajectory of physical performance among Chinese elderly in Beijing communities and explore the associations between new adverse events during the 3-year follow-up period and decreased physical performance. Methods: A longitudinal observational study included baseline data and transitional information of physical performance from 456 community elders (mean age 67.3 ± 4.9 years, female 43.2 %) at a 3-year follow-up. The Mini-Mental State Examination (MMSE) and the Short Physical Performance Battery (SPPB) were used to measure cognition and physical performance, respectively. The number of chronic diseases, cognitive impairment, malnutrition, depression, knee pain, falls, and frailty were the principal independent variables in multivariate logistic regression analysis. Results: The proportion of the elderly with poor physical performance (26.97 %) increased to 42.11 % and the proportion of those with good physical performance (44.96 %) dropped to 30.48 % after the three-year follow-up. As for physical performance transitions, 39.47 % of the elderly progressed to a worsening physical status. After adjustment for covariates, only new onset cognitive impairment (OR: 5.17; 95%CI: 2.01-14.54; P = 0.001) was associated with physical performance deterioration. Conclusion: Cognitive impairment is an independent risk factor for decreased physical performance in elderly people. Active interventions targeted at cognitive impairment could help promote healthy aging.

15.
Heliyon ; 10(11): e31959, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38868072

ABSTRACT

Objective: To detect levofloxacin (LFX) and moxifloxacin (MFX) resistance among rifampicin-resistant tuberculosis (RR-TB) isolates, and predict the resistance level based on specific mutations in gyrA and gyrB genes. Methods: A total of 686 RR-TB isolates were collected from Chinese Drug Resistance Surveillance Program from 2013 to 2020. The minimum inhibitory concentrations (MICs) of 12 anti-TB drugs were acquired using the broth microdilution method, followed by whole genome sequencing (WGS) analysis. Results: Among the 686 RR isolates, the most prevalent resistance was to isoniazid (80.5 %) and ethambutol (28.4 %), followed by LFX (26.1 %) and MFX (21.9 %). The resistance rate of LFX (26.1%-99.4 %) was higher than that of MFX (21.9%-83.3 %) across various drug resistance patterns. Of the 180 fluoroquinolones (FQs) resistant isolates, 168 (93.3 %) had mutations in quinolone-resistant determining regions (QRDRs) with 21 mutation types, and Asp94Gly (32.7 %, 55/168) was the predominant mutation. Isolates with mutations in Asp94Asn and Asp94Gly were associated with high levels of resistance to LFX and MFX. Using broth microdilution method as gold standard, the sensitivities of WGS for LFX and MFX were 93.3 % and 98.0 %, and the specificities were 98.6 % and 95.0 %, respectively. Conclusion: The resistance rate of LFX was higher than that of MFX among various drug resistance patterns in RR-TB isolates. The gyrA Asp94Gly was the predominant mutation type underlying FQs resistance. However, no significant difference was observed between mutation patterns in gyrA gene and resistance level of FQs.

16.
Cancer Immunol Immunother ; 73(8): 159, 2024 Jun 08.
Article in English | MEDLINE | ID: mdl-38850359

ABSTRACT

BACKGROUND: Although, immune checkpoint inhibitors (ICIs) have been widely applied in the therapy of malignant tumors, the efficacy and safety of ICIs in patients with tumors and pre-existing CAD, especially chronic coronary syndromes (CCS) or their risk factors (CRF), is not well identified. METHODS: This was a nationwide multicenter observational study that enrolled participants who diagnosed with solid tumors and received ICIs therapy. The main efficacy indicators were progression-free survival (PFS) and overall survival (OS), followed by objective response rate (ORR) and disease control rate (DCR). Safety was assessed by describing treatment-related adverse events (TRAEs) during ICIs therapy evaluated by the Common Terminology Criteria for Adverse Events 5.0 (CTCAE 5.0). RESULTS: In the current research, we retrospectively analyzed the data of 551 patients diagnosed with solid tumors and received ICIs therapy, and these patients were divided into CCS/CRF group and non-CCS/CRF group. Patients with CCS/CRF had more favorable PFS and OS than patients without CCS/CRF (P < 0.001) and the pre-existing CCS/CRF was a protective factor for survival. The ORR (51.8% vs. 39.1%) and DCR (95.8% vs. 89.2%) were higher in CCS/CRF group than in non-CCS/CRF group (P = 0.003, P = 0.006). In this study, there was no significant difference in treatment-related adverse events (TRAEs), including immune-related adverse events (irAEs), between the two groups. CONCLUSIONS: We concluded that ICIs appear to have better efficacy in malignant solid tumor patients with pre-existing CCS/CRF and are not accompanied by more serious irAEs.


Subject(s)
Immune Checkpoint Inhibitors , Neoplasms , Humans , Immune Checkpoint Inhibitors/adverse effects , Immune Checkpoint Inhibitors/therapeutic use , Female , Male , Neoplasms/drug therapy , Neoplasms/complications , Neoplasms/immunology , Middle Aged , Retrospective Studies , Aged , Risk Factors , Adult , Aged, 80 and over , Cohort Studies
17.
Hepat Med ; 16: 45-54, 2024.
Article in English | MEDLINE | ID: mdl-38859813

ABSTRACT

Objective: The goal of this study was to develop and assess the effectiveness of a patient-engaged healthcare guidance plan for individuals with decompensated hepatitis B cirrhosis. Methods: This study employed literature review, situational analysis, and expert consultations to create a healthcare guidance plan that includes patient participation for those suffering from decompensated hepatitis B cirrhosis. Between January 2022 and January 2023, 86 patients with this condition admitted to our hospital were selected through convenience sampling and randomly assigned into two groups using a random number table. The control group (n=43) received standard care, while the intervention group (n=43) received the novel patient-engaged healthcare guidance in addition to standard care. We compared both groups in terms of anxiety and depression levels, self-care capability, uncertainty about their illness, and overall quality of life. Results: Upon discharge, scores for the Self-Rating Anxiety Scale (SAS), Self-Rating Depression Scale (SDS), and Mishel's Uncertainty in Illness Scale (MUIS) decreased in both groups compared to their scores at admission (P<0.05), with the intervention group showing more significant improvements than the control group (P<0.05). Additionally, scores for the Self-Care Ability Scale (ESCA) and the component threshold scores of the Health Survey Short Form (SF-36) increased for both groups from admission to discharge (P<0.05), with the intervention group showing greater improvements than the control group (P<0.05). Conclusion: The patient-engaged healthcare guidance plan developed for individuals with decompensated hepatitis B cirrhosis proved to be highly effective. It significantly reduced patient anxiety and depression, enhanced self-care capabilities, diminished illness uncertainty, and improved overall quality of life.

18.
Medicine (Baltimore) ; 103(23): e38442, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38847677

ABSTRACT

To explore the risk factors affecting the length of hospital stay (LOS) as well as to examine the relationship between preoperative serum albumin levels and LOS following non-cardiac, non-obstetric surgery in patients with pulmonary hypertension (PHTN). This study represents a secondary retrospective analysis based on 287 non-cardiac, non-obstetric procedures performed on 195 PTHN patients at a single institution in the USA between 2007 and 2013. The primary outcome was the LOS. We conducted a multiple logistic regression analysis to compare the LOS between the 2 groups, divided at a serum albumin level of 3.5 g/dL. After adjusting for multiple covariates, the ORs for the long length of stay (LOS > 7 days) for the high group(albumin > 3.5 g/dL) compared with the low group (albumin ≤ 3.5 g/dL) were 0.35 (95%CI: 0.21~0.6), 0.41 (95%CI: 0.22 ~0.76), 0.41 (95%CI: 0.18~0.94) from model 2 to model 4. The stratified analysis results indicate that these findings are stable (p for trend > 0.05). In this study, it was observed that low levels of preoperative albumin were associated with an increased risk of prolonged hospital stay after non-cardiac, non-obstetric surgery in patients with PHTN. This implies that optimizing preoperative nutrition could potentially reduce the LOS for non-cardiac, non-obstetric surgery in patients with PHTN.


Subject(s)
Hypertension, Pulmonary , Length of Stay , Serum Albumin , Humans , Female , Retrospective Studies , Length of Stay/statistics & numerical data , Male , Hypertension, Pulmonary/blood , Hypertension, Pulmonary/surgery , Middle Aged , Serum Albumin/analysis , Aged , Risk Factors , Preoperative Period , Adult , Surgical Procedures, Operative
19.
Molecules ; 29(11)2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38893584

ABSTRACT

In this study, molecular dynamics (MD) simulations were employed to elucidate the processes and underlying mechanisms that govern the adsorption and accumulation of gas (represented by N2) at the hydrophobic solid-liquid interface, using the GROMACS program with an AMBER force field. Our findings indicate that, regardless of surface roughness, the presence of water molecules is a prerequisite for the adsorption and aggregation of N2 molecules on solid surfaces. N2 molecules dissolved in water can cluster even without a solid substrate. In the gas-solid-liquid system, the exclusion of water molecules at the hydrophobic solid-liquid interface and the adsorption of N2 molecules do not occur simultaneously. A loosely arranged layer of water molecules is initially formed on the hydrophobic solid surface. The two-stage process of N2 molecule adsorption and accumulation at the hydrophobic solid/liquid interface involves initial adsorption to the solid surface, displacing water molecules, followed by N2 accumulation via self-interaction after saturating the substrate's surface. The process and underlying mechanisms of gas adsorption and accumulation at hydrophobic solid/liquid interfaces elucidated in this study offer a molecular-level understanding of nano-gas layer formation.

20.
World Neurosurg ; 2024 Jun 08.
Article in English | MEDLINE | ID: mdl-38857870

ABSTRACT

OBJECTIVE: The purpose of this study was to explore the impact of central obesity on spinal sagittal balance in adults aged 18 and older by examining correlations between waist circumference (WC) and abdominal circumference (AC) and spinopelvic alignment parameters. METHODS: This prospective cohort study included 350 adults aged 18 and older. Participants underwent whole-body biplanar radiography using the EOS imaging system. Spinal and pelvic parameters were measured and correlated with body mass index, WC, and AC. Statistical analyses included one-way analysis of variance, Wilcoxon rank-sum tests for data with nonhomogeneous variances, and chi-squared tests for categorical data. Intra-rater and inter-rater reliability were assessed using intraclass correlation coefficients, with subsequent analyses to explore correlations between body measurements and spinal parameters. RESULTS: The study found significant correlations between increased WC and AC and changes in spinopelvic parameters. However, obesity did not uniformly influence all sagittal alignment parameters. Significant variations in spinal measurements indicate that central obesity plays a role in altering spinal stability and alignment. CONCLUSIONS: The findings highlight the impact of central obesity on spinal alignment and emphasize the importance of considering central obesity in clinical assessments of spinal pathologies. Further research is essential to better understand the relationship between obesity, spinal sagittal balance, and related health conditions.

SELECTION OF CITATIONS
SEARCH DETAIL