Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters











Database
Publication year range
1.
J Nanobiotechnology ; 22(1): 554, 2024 Sep 11.
Article in English | MEDLINE | ID: mdl-39261890

ABSTRACT

BACKGROUND: Myocardial infarction (MI) is the main contributor to most cardiovascular diseases (CVDs), and the available post-treatment clinical therapeutic options are limited. The development of nanoscale drug delivery systems carrying natural small molecules provides biotherapies that could potentially offer new treatments for reactive oxygen species (ROS)-induced damage in MI. Considering the stability and reduced toxicity of gold-phenolic core-shell nanoparticles, this study aims to develop ellagic acid-functionalized gold nanoparticles (EA-AuNPs) to overcome these limitations. RESULTS: We have successfully synthesized EA-AuNPs with enhanced biocompatibility and bioactivity. These core-shell gold nanoparticles exhibit excellent ROS-scavenging activity and high dispersion. The results from a label-free imaging method on optically transparent zebrafish larvae models and micro-CT imaging in mice indicated that EA-AuNPs enable a favorable excretion-based metabolism without overburdening other organs. EA-AuNPs were subsequently applied in cellular oxidative stress models and MI mouse models. We found that they effectively inhibit the expression of apoptosis-related proteins and the elevation of cardiac enzyme activities, thereby ameliorating oxidative stress injuries in MI mice. Further investigations of oxylipin profiles indicated that EA-AuNPs might alleviate myocardial injury by inhibiting ROS-induced oxylipin level alterations, restoring the perturbed anti-inflammatory oxylipins. CONCLUSIONS: These findings collectively emphasized the protective role of EA-AuNPs in myocardial injury, which contributes to the development of innovative gold-phenolic nanoparticles and further advances their potential medical applications.


Subject(s)
Ellagic Acid , Gold , Metal Nanoparticles , Myocardial Infarction , Oxidative Stress , Reactive Oxygen Species , Zebrafish , Animals , Gold/chemistry , Metal Nanoparticles/chemistry , Myocardial Infarction/drug therapy , Mice , Reactive Oxygen Species/metabolism , Ellagic Acid/pharmacology , Ellagic Acid/chemistry , Oxidative Stress/drug effects , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Male , Apoptosis/drug effects , Disease Models, Animal , Humans , Mice, Inbred C57BL
2.
J Pharm Anal ; 14(7): 100974, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39185336

ABSTRACT

A purified polysaccharide with a galactose backbone (SPR-1, Mw 3,622 Da) was isolated from processed Polygonati Rhizoma with black beans (PRWB) and characterized its chemical properties. The backbone of SPR-1 consisted of [(4)-ß-D-Galp-(1]9 â†’ 4,6)-ß-D-Galp-(1 â†’ 4)-α-D-GalpA-(1 â†’ 4)-α-D-GalpA-(1 â†’ 4)-α-D-Glcp-(1 â†’ 4,6)-α-D-Glcp-(1 â†’ 4)-α/ß-D-Glcp, with a branch chain of R1: ß-D-Galp-(1 â†’ 3)-ß-D-Galp-(1→ connected to the →4,6)-ß-D-Galp-(1→ via O-6, and a branch chain of R2: α-D-Glcp-(1 â†’ 6)-α-D-Glcp-(1→ connected to the →4,6)-α-D-Glcp-(1→ via O-6. Immunomodulatory assays showed that the SPR-1 significantly activated macrophages, and increased secretion of NO and cytokines (i.e., IL-1ß and TNF-α), as well as promoted the phagocytic activities of cells. Furthermore, isothermal titration calorimetry (ITC) analysis and molecular docking results indicated high-affinity binding between SPR-1 and MD2 with the equilibrium dissociation constant (K D) of 18.8 µM. It was suggested that SPR-1 activated the immune response through Toll-like receptor 4 (TLR4) signaling and downstream responses. Our research demonstrated that the SPR-1 has a promising candidate from PRWB for the TLR4 agonist to induce immune response, and also provided an easily accessible way that can be used for PR deep processing.

3.
J Ethnopharmacol ; 326: 117926, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38369064

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Gentiana species, known as the traditional Tibetan medicine "Bangjian," have been integral to clinical practice for millennia. Despite their longstanding use, our understanding of the variation in chemical constituents and bioactive effects among different species is limited. AIM OF THE STUDY: In the present study, we aimed to assess the differences in chemical profiles and bioactivities among four Gentiana species (G. veitchiorum, G. trichotoma, G. crassuloides, and G. squarrosa) and explore potential bioactive markers. MATERIALS AND METHODS: The chemical composition of the four Gentiana species was analyzed using UPLC-QE-Orbitrap-MS. The antioxidant activity of the extracts was compared through DPPH, ABTS, and reducing power assays. The anti-inflammatory activity was evaluated by measuring the inhibitory effects on lipopolysaccharide-induced secretion of nitric oxide (NO), interleukin-6 (IL-6), and tumor necrosis factor-alpha (TNF-α) by RAW264.7 macrophages. Additionally, compounds strongly correlated with anti-inflammatory and antioxidant activities were identified through spectrum-effect relationship analysis. RESULTS: A total of 50 compounds were identified across the four Gentiana species. In vitro antioxidant assays demonstrated DPPH and ABTS scavenging abilities and reducing power within the concentration range of 62.5-2000 µg/mL. All four species inhibited the production of NO, IL-6, and TNF-α in RAW264.7 cells. Spectrum-effect relationship analysis revealed that gentiascabraside A, gentiatibetine, tachioside, lutonarin, and isotachioside were associated with the highest antioxidant activity; and swertiamarin, tarennoside, eleganoside C, and alpigenoside were associated with the highest anti-inflammatory activity. CONCLUSIONS: This study presents, for the first time, the chemical profiles and bioactivities of G. trichotoma, G. crassuloides, and G. squarrosa, which were comprehensively compared with those of G. veitchiorum. The findings provide novel insights to understand the traditional use and/or expand the current use of Gentiana species. Additionally, this research highlights the potential of Gentiana species as natural sources of antioxidants and anti-inflammatory agents, suggesting promising applications in tea production or medicinal contexts in the near future.


Subject(s)
Benzothiazoles , Gentiana , Sulfonic Acids , Gentiana/chemistry , Antioxidants/pharmacology , Antioxidants/chemistry , Plant Extracts/chemistry , Tibet , Tumor Necrosis Factor-alpha , Interleukin-6 , Anti-Inflammatory Agents/pharmacology
4.
Chin Herb Med ; 15(2): 317-328, 2023 Apr.
Article in English | MEDLINE | ID: mdl-37265768

ABSTRACT

Objective: To rapidly identify the two morphologies and chemical properties of similar herbal medicines, Blumea riparia and B. megacephala as the basis for chemical constituent analysis. Methods: UPLC-Q-Exactive-MS/MS was utilized for profiling and identification of the constituents in B. riparia and B. megacephala. Chemical pattern recognition (CPR) was further used to compare and distinguish the two herbs and to identify their potential characteristic markers. Then, an HPLC method was established for quality evaluation. Results: A total of 93 constituents are identified, including 54 phenolic acids, 35 flavonoids, two saccharides, one phenolic acid glycoside, and one other constituent, of which 67 were identified in B. riparia and B. megacephala for the first time. CPR indicates that B. riparia and B. megacephala samples can be distinguished from each other based on the LC-MS data. The isochlorogenic acid A to cryptochlorogenic acid peak area ratio calculated from the HPLC chromatograms was proposed as a differentiation index for distinguishing and quality control of B. riparia and B. megacephala. Conclusion: This study demonstrates significant differences between B. riparia and B. megacephala in terms of chemical composition. The results provide a rapid and simple strategy for the comparison and evaluation of the quality of B. riparia and B. megacephala.

5.
Zhongguo Zhong Yao Za Zhi ; 47(22): 6097-6116, 2022 Nov.
Article in Chinese | MEDLINE | ID: mdl-36471935

ABSTRACT

In this study, UPLC-Q-Exactive-MS/MS was used to rapidly analyze the chemical constituents of Meconopsis quintupli-nervia, and the anti-liver fibrosis mechanism of M. quintuplinervia was preliminarily analyzed by network pharmacology, molecular docking, and cell experiments. The chemical constituents of M. quintuplinervia were identified according to the information of MS~1 and MS~2, as well as the data in the literature and databases. SwissTargetPrediction and TargetNet were used to predict the potential targets. The targets related to liver fibrosis were collected from GeneCards and OMIM. The protein-protein interaction(PPI) network was constructed by STRING. Cytoscape 3.6.1 was used to construct and analyze the "constituent-target-disease" network to obtain key targets and their corresponding constituents in the network. DAVID 6.8 was used for GO analysis and KEGG signaling pathway enrichment analysis. Finally, the preliminary verification was carried out by molecular docking and cell experiments. As a result, 106 chemical constituents were identified from M. quintuplinervia, including 66 flavonoids, 16 alkaloids, 18 phenolic acids, 1 anthocyanin, and 5 other constituents. Among them, 3 constituents were identified as potential new compounds, and 59 constituents were reported in M. quintuplinervia for the first time. Network pharmacology analysis showed that M. quintuplinervia presumably acted on AKT1, SRC, JUN, EGFR, STAT3, HSP90 AA1, MAPK3, and other core targets through luteolin, isorhamnetin, quercetin, apigenin, kaempferide, amurine, 2-methylflavinantine, allocryptopine, the multi and other active compounds, thereby regulating the PI3 K/AKT signaling pathway, pathways in cancer, proteoglycans in cancer, FoxO signaling pathway, and other pathways to exert anti-liver fibrosis effects. M. quintuplinervia extract(MQE) could significantly down-regulate PI3 K and AKT protein levels in the HSC-T6 cell model induced by TGF-ß1, suggesting that MQE may have the ability to regulate the PI3 K/AKT signaling pathway. The findings of this study indicated that the anti-liver fibrosis effect of M. quintuplinervia had multi-constituent, multi-target, and multi-pathway characteristics, which may provide a scientific basis for the research on the pharmacodynamic materials, action mechanism, and quality markers of M. quintupli-nervia.


Subject(s)
Drugs, Chinese Herbal , Papaveraceae , Tandem Mass Spectrometry , Molecular Docking Simulation , Network Pharmacology , Proto-Oncogene Proteins c-akt , Liver Cirrhosis , Drugs, Chinese Herbal/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL