Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Cardiovasc Ther ; 2024: 5583961, 2024.
Article in English | MEDLINE | ID: mdl-38495810

ABSTRACT

Endothelial-to-mesenchymal transition (EndMT) is the process by which endothelial cells lose their endothelial properties and acquire mesenchymal characteristics. Dual-specific protein phosphatase 22 (DUSP22) inactivates various protein kinases and transcription factors by dephosphorylating serine/threonine residues: hence, it plays a key role in many diseases. The aim of this study was to explore the functional role of DUSP22 in EndMT. In the transforming growth factor-ß-induced EndMT model in human umbilical vein endothelial cells (HUVECs), we observed a downregulation of DUSP22 expression. This DUSP22 deficiency could aggravate EndMT. Conversely, the overexpression of DUSP22 could ameliorate EndMT. We used signaling pathway inhibitors to verify our results and found that DUSP22 could regulate EndMT through the smad2/3 and the mitogen-activated protein kinase (MAPK) signaling pathways. In summary, DUSP22 ameliorates EndMT in HUVECs in vitro through the smad2/3 and MAPK signaling pathways.


Subject(s)
MAP Kinase Signaling System , Phosphoprotein Phosphatases , Humans , Down-Regulation , Dual-Specificity Phosphatases/genetics , Endothelial-Mesenchymal Transition , Human Umbilical Vein Endothelial Cells , Mitogen-Activated Protein Kinase Phosphatases/genetics
2.
Addict Biol ; 29(3): e13385, 2024 03.
Article in English | MEDLINE | ID: mdl-38488472

ABSTRACT

Alcohol consumption is popular worldwidely and closely associated with cardiovascular diseases. Influences of paternal preconception alcohol consumption on offspring cerebral arteries are largely unknown. Male rats were randomly given alcohol or water before being mated with alcohol-naive females to produce alcohol- and control-sired offspring. Middle cerebral artery (MCA) was tested with a Danish Myo Technology wire myograph, patch-clamp, IONOPTIX, immunofluorescence and quantitative PCR. Alcohol consumption enhanced angiotensin II (AngII)-mediated constriction in male offspring MCA mainly via AT1R. PD123,319 only augmented AngII-induced constriction in control offspring. AngII and Bay K8644 induced stronger intracellular calcium transient in vascular smooth muscle cells (VSMCs) from MCA of alcohol offspring. L-type voltage-dependent calcium channel (L-Ca2+ ) current at baseline and after AngII-stimulation was higher in VSMCs. Influence of large-conductance calcium-activated potassium channel (BKC a ) was lower. Caffeine induced stronger constriction and intracellular calcium release in alcohol offspring. Superoxide anion was higher in alcohol MCA than control. Tempol and thenoyltrifluoroacetone alleviated AngII-mediated contractions, while inhibition was significantly higher in alcohol group. The mitochondria were swollen in alcohol MCA. Despite lower Kcnma1 and Prkce expression, many genes expressions were higher in alcohol group. Hypoxia induced reactive oxygen species production and increased AT1R expression in control MCA and rat aorta smooth muscle cell line. In conclusion, this study firstly demonstrated paternal preconception alcohol potentiated AngII-mediated vasoconstriction in offspring MCA via ROS-AT1R. Alcohol consumption increased intracellular calcium via L-Ca2+ channel and endoplasmic reticulum and decreased BKCa function. The present study provided new information for male reproductive health and developmental origin of cerebrovascular diseases.


Subject(s)
Angiotensin II , Vasoconstriction , Female , Rats , Male , Animals , Angiotensin II/pharmacology , Angiotensin II/metabolism , Calcium/metabolism , Cerebral Arteries/metabolism , Alcohol Drinking , Oxidative Stress
3.
J Hepatol ; 81(1): 135-148, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38460791

ABSTRACT

BACKGROUND & AIMS: NOTCH signaling in liver sinusoidal endothelial cells (LSECs) regulates liver fibrosis, a pathological feature of chronic liver diseases. POFUT1 is an essential regulator of NOTCH signaling. Here, we investigated the role of LSEC-expressed POFUT1 in liver fibrosis. METHODS: Endothelial-specific Pofut1 knockout mice were generated and experimental liver fibrosis was induced by chronic carbon tetrachloride exposure or common bile duct ligation. Liver samples were assessed by ELISA, histology, electron microscopy, immunostaining and RNA in situ hybridization. LSECs and hepatic stellate cells (HSCs) were isolated for gene expression analysis by RNA sequencing, qPCR, and western blotting. Signaling crosstalk between LSECs and HSCs was investigated by treating HSCs with supernatant from LSEC cultures. Liver single-cell RNA sequencing datasets from patients with cirrhosis and healthy individuals were analyzed to evaluate the clinical relevance of gene expression changes observed in mouse studies. RESULTS: POFUT1 loss promoted injury-induced LSEC capillarization and HSC activation, leading to aggravated liver fibrosis. RNA sequencing analysis revealed that POFUT1 deficiency upregulated fibrinogen expression in LSECs. Consistently, fibrinogen was elevated in LSECs of patients with cirrhosis. HSCs treated with supernatant from LSECs of Pofut1 null mice showed exacerbated activation compared to those treated with supernatant from control LSECs, and this effect was attenuated by knockdown of fibrinogen or by pharmacological inhibition of fibrinogen receptor signaling, altogether suggesting that LSEC-derived fibrinogen induced the activation of HSCs. Mechanistically, POFUT1 loss augmented fibrinogen expression by enhancing NOTCH/HES1/STAT3 signaling. CONCLUSIONS: Endothelial POFUT1 prevents injury-induced liver fibrosis by repressing the expression of fibrinogen, which functions as a profibrotic paracrine signal to activate HSCs. Therapies targeting the POFUT1/fibrinogen axis offer a promising strategy for the prevention and treatment of fibrotic liver diseases. IMPACT AND IMPLICATIONS: Paracrine signals produced by liver vasculature play a major role in the development of liver fibrosis, which is a pathological hallmark of most liver diseases. Identifying those paracrine signals is clinically relevant in that they may serve as therapeutic targets. In this study, we discovered that genetic deletion of Pofut1 aggravated experimental liver fibrosis in mouse models. Moreover, fibrinogen was identified as a downstream target repressed by Pofut1 in liver endothelial cells and functioned as a novel paracrine signal that drove liver fibrosis. In addition, fibrinogen was found to be relevant to cirrhosis and may serve as a potential therapeutic target for this devastating human disease.


Subject(s)
Endothelial Cells , Fibrinogen , Hepatic Stellate Cells , Liver Cirrhosis , Mice, Knockout , Animals , Humans , Male , Mice , Carbon Tetrachloride/toxicity , Carbon Tetrachloride/adverse effects , Disease Models, Animal , Endothelial Cells/metabolism , Fibrinogen/metabolism , Fibrinogen/biosynthesis , Fibrinogen/genetics , Hepatic Stellate Cells/metabolism , Liver/metabolism , Liver/pathology , Liver Cirrhosis/metabolism , Liver Cirrhosis/pathology , Liver Cirrhosis/genetics , Receptors, Notch/metabolism , Receptors, Notch/physiology , Signal Transduction
4.
iScience ; 27(1): 108722, 2024 Jan 19.
Article in English | MEDLINE | ID: mdl-38226173

ABSTRACT

Epigenetic regulation of heart development remains incompletely understood. Here we show that LSD1, a histone demethylase, plays a crucial role in regulating cardiomyocyte proliferation during heart development. Cardiomyocyte-specific deletion of Lsd1 in mice inhibited cardiomyocyte proliferation, causing severe growth defect of embryonic and neonatal heart. In vivo RNA-seq and in vitro functional studies identified Cend1 as a target suppressed by LSD1. Lsd1 loss resulted in elevated Cend1 transcription associated with increased active histone mark H3K4me2 at Cend1 promoter. Cend1 knockdown relieved the cell-cycle arrest and proliferation defect caused by LSD1 inhibition in primary rat cardiomyocytes. Moreover, genetic deletion of Cend1 rescued cardiomyocyte proliferation defect and embryonic lethality in Lsd1 null embryos. Consistently, LSD1 promoted the cell cycle of cardiomyocytes derived from human-induced pluripotent stem cells by repressing CEND1. Together, these findings reveal an epigenetic regulatory mechanism involving the LSD1-CEND1 axis that controls cardiomyocyte proliferation essential for murine heart development.

SELECTION OF CITATIONS
SEARCH DETAIL