Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
PLoS One ; 8(1): e53988, 2013.
Article in English | MEDLINE | ID: mdl-23335984

ABSTRACT

BACKGROUND: Graptopetalum paraguayense (GP) is a folk herbal medicine with hepatoprotective effects that is used in Taiwan. The aim of this study was to evaluate the hepatoprotective and antifibrotic effects of GP on experimental hepatic fibrosis in both dimethylnitrosamine (DMN)- and carbon tetrachloride (CCl(4))-induced liver injury rats. METHODS: Hepatic fibrosis-induced rats were fed with the methanolic extract of GP (MGP) by oral administration every day. Immunohistochemistry, biochemical assays, and Western blot analysis were performed. The effects of MGP on the expression of fibrotic markers and cytokines in the primary cultured hepatic stellate cells (HSCs) and Kupffer cells, respectively, were evaluated. RESULTS: Oral administration of MGP significantly alleviated DMN- or CCl(4)-induced liver inflammation and fibrosis. High levels of alanine transaminase, aspartate transaminase, bilirubin, prothrombin activity and mortality rates also decreased in rats treated with MGP. There were significantly decreased hydroxyproline levels in therapeutic rats compared with those of the liver-damaged rats. Collagen I and alpha smooth muscle actin (α-SMA) expression were all reduced by incubation with MGP in primary cultured rat HSCs. Furthermore, MGP induced apoptotic cell death in activated HSCs. MGP also suppressed lipopolysaccharide-stimulated rat Kupffer cell activation by decreasing nitric oxide, tumor necrosis factor-α and interleukin-6 production, and increasing interleukin-10 expression. CONCLUSIONS: The results show that the administration of MGP attenuated toxin-induced hepatic damage and fibrosis in vivo and inhibited HSC and Kupffer cell activation in vitro, suggesting that MGP might be a promising complementary or alternative therapeutic agent for liver inflammation and fibrosis.


Subject(s)
Ferns/chemistry , Hepatic Stellate Cells/drug effects , Hepatic Stellate Cells/metabolism , Kupffer Cells/drug effects , Kupffer Cells/metabolism , Liver Cirrhosis/metabolism , Plant Extracts/pharmacology , Animals , Apoptosis/drug effects , Body Weight/drug effects , Cytokines/biosynthesis , Dimethylnitrosamine/adverse effects , Disease Models, Animal , Drugs, Chinese Herbal/administration & dosage , Drugs, Chinese Herbal/pharmacology , Inflammation/metabolism , Inflammation/pathology , Liver/drug effects , Liver/pathology , Liver Cirrhosis/blood , Liver Cirrhosis/drug therapy , Male , Organ Size/drug effects , Plant Extracts/administration & dosage , Rats , Spleen/drug effects
2.
Article in English | MEDLINE | ID: mdl-22811744

ABSTRACT

The incidence of cirrhosis is rising due to the widespread occurrence of chronic hepatitis, as well as the evident lack of an established therapy for hepatic fibrosis. In the search for hepatoprotective therapeutic agents, Graptopetalum paraguayense (GP) showed greater cytotoxicity toward hepatic stellate cells than other tested herbal medicines. Histopathological and biochemical analyses suggest that GP treatment significantly prevented DMN-induced hepatic inflammation and fibrosis in rats. Microarray profiling indicated that expression of most of metabolism- and cell growth and/or maintenance-related genes recovered to near normal levels following GP treatment as classified by gene ontology and LSM analysis, was observed. ANOVA showed that expression of 64% of 256 liver damage-related genes recovered significantly after GP treatment. By examining rat liver samples with Q-RT-PCR, five liver damage-related genes were identified. Among them, Egr1 and Nrg1 may serve as necroinflammatory markers, and Btg2 may serve as a fibrosis marker. Oldr1 and Hmgcs1 were up- and down-regulated markers, respectively. A publicly accessible website has been established to provide access to these data Identification of 44 necroinflammation-related and 62 fibrosis-related genes provides useful insight into the molecular mechanisms underlying liver damage and provides potential targets for the rational development of therapeutic drugs such as GP.

SELECTION OF CITATIONS
SEARCH DETAIL