Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Nat Commun ; 15(1): 1213, 2024 Feb 09.
Article in English | MEDLINE | ID: mdl-38332012

ABSTRACT

Dysfunction of invariant natural killer T (iNKT) cells contributes to immune resistance of tumors. Most mechanistic studies focus on their static functional status before or after activation, not considering motility as an important characteristic for antigen scanning and thus anti-tumor capability. Here we show via intravital imaging, that impaired motility of iNKT cells and their exclusion from tumors both contribute to the diminished anti-tumor iNKT cell response. Mechanistically, CD1d, expressed on macrophages, interferes with tumor infiltration of iNKT cells and iNKT-DC interactions but does not influence their intratumoral motility. VCAM1, expressed by cancer cells, restricts iNKT cell motility and inhibits their antigen scanning and activation by DCs via reducing CDC42 expression. Blocking VCAM1-CD49d signaling improves motility and activation of intratumoral iNKT cells, and consequently augments their anti-tumor function. Interference with macrophage-iNKT cell interactions further enhances the anti-tumor capability of iNKT cells. Thus, our findings provide a direction to enhance the efficacy of iNKT cell-based immunotherapy via motility regulation.


Subject(s)
Natural Killer T-Cells , Neoplasms , Humans , Lymphocyte Activation , Neoplasms/therapy , Neoplasms/metabolism , Immunotherapy/methods , Macrophages/metabolism , Antigens, CD1d/metabolism
2.
Food Chem X ; 21: 101147, 2024 Mar 30.
Article in English | MEDLINE | ID: mdl-38312486

ABSTRACT

The metabolite and peptide profiles of fresh cheese fermented by three novel probiotics, Lacticaseibacillus rhamnosus B6, Limosylactobacillus fermentum B44 and Lacticaseibacillus rhamnosus KF7, were investigated using LC-MS/MS-based metabolomics and peptidomics. The multivariate analysis revealed significant differences in metabolite composition between the probiotic fresh cheese and the control sample. The differential metabolites were primarily lipids and lipid-like molecules and organic oxygen compounds, which were associated with fatty acid and carbohydrate-related pathways. Among three probiotics, L. rhamnosus KF7 showed the highest effectiveness in sucrose decomposition. 147 potential bioactive peptides, mainly derived from casein, were identified in probiotic fresh cheese. Furthermore, 112 bioactive peptides were significantly up-regulated in probiotic fresh cheese. Molecular docking analysis indicated that two short peptides (LVYPFPGPIP and YPQRDMPIQ) in the B44 and KF7 groups exhibited low estimated binding energy values (-9.9 and -6.9 kcal/mol) with ACE. These findings provide a theoretical basis for developing novel probiotic-enriched fresh cheese.

3.
Cancer Immunol Res ; 11(12): 1598-1610, 2023 12 01.
Article in English | MEDLINE | ID: mdl-37756568

ABSTRACT

Dysfunction of intratumoral invariant natural killer T (iNKT) cells hinders their antitumor efficacy, but the underlying mechanisms and the relationship with endogenous antigen priming remain to be explored. Here, we report that antigen priming leads to metabolic reprogramming and epigenetic remodeling, which causes functional reprogramming in iNKT cells, characterized by limited cytokine responses upon restimulation but constitutive high cytotoxicity. Mechanistically, impaired oxidative phosphorylation (OXPHOS) in antigen-primed iNKT cells inhibited T-cell receptor signaling, as well as elevation of glycolysis, upon restimulation via reducing mTORC1 activation, and thus led to impaired cytokine production. However, the metabolic reprogramming in antigen-primed iNKT cells was uncoupled with their enhanced cytotoxicity; instead, epigenetic remodeling explained their high expression of granzymes. Notably, intratumoral iNKT cells shared similar metabolic reprogramming and functional reprogramming with antigen-primed iNKT cells due to endogenous antigen priming in tumors, and thus recovery of OXPHOS in intratumoral iNKT cells by ZLN005 successfully enhanced their antitumor responses. Our study deciphers the influences of antigen priming-induced metabolic reprogramming and epigenetic remodeling on functionality of intratumoral iNKT cells, and proposes a way to enhance efficacy of iNKT cell-based antitumor immunotherapy by targeting cellular metabolism.


Subject(s)
Natural Killer T-Cells , Epigenesis, Genetic , Cytokines/metabolism , Immunotherapy , Antigens, CD1d , Lymphocyte Activation
4.
J Leukoc Biol ; 114(4): 335-346, 2023 Sep 27.
Article in English | MEDLINE | ID: mdl-37479674

ABSTRACT

CD8+ invariant natural killer T (iNKT) cells are functionally different from other iNKT cells and are enriched in human but not in mouse. To date, their developmental pathway and molecular basis for fate decision remain unclear. Here, we report enrichment of CD8+ iNKT cells in neonatal mice due to their more rapid maturation kinetics than CD8- iNKT cells. Along developmental trajectories, CD8+ and CD8- iNKT cells separate at stage 0, following stage 0 double-positive iNKT cells, and differ in HIVEP3 expression. HIVEP3 is lowly expressed in stage 0 CD8+ iNKT cells and negatively controls their development, whereas it is highly expressed in stage 0 CD8- iNKT cells and positively controls their development. Despite no effect on IFN-γ, HIVEP3 inhibits granzyme B but promotes interleukin-4 production in CD8+ iNKT cells. Together, we reveal that, as a negative regulator for CD8+ iNKT fate decision, low expression of HIVEP3 in stage 0 CD8+ iNKT cells favors their development and T helper 1-biased cytokine responses as well as high cytotoxicity.

5.
Biomed Res Int ; 2022: 5633403, 2022.
Article in English | MEDLINE | ID: mdl-36440358

ABSTRACT

With the development of human genome sequencing and techniques such as intestinal microbial culture and fecal microbial transplantation, newly discovered microorganisms have been isolated, cultured, and researched. Consequently, many beneficial probiotics have emerged as next-generation probiotics (NGPs). Currently, "safety," "individualized treatment," and "internal interaction within the flora" are requirements of a potential NGPs. Furthermore, in the complex ecosystem of humans and microbes, it is challenging to identify the relationship between specific strains, specific flora, and hosts to warrant a therapeutic intervention in case of a disease. Thus, this review focuses on the progress made in NGPs and human health research by elucidating the limitations of traditional probiotics; summarizing the functions and strengths of Akkermansia muciniphila, Faecalibacterium prausnitzii, Bacteroides fragilis, Eubacterium hallii, and Roseburia spp. as NGPs; and determining the role of their intervention in treatment of certain diseases. Finally, we aim to provide a reference for developing new probiotics in the future.


Subject(s)
Gastrointestinal Microbiome , Probiotics , Humans , Ecosystem , Probiotics/therapeutic use , Intestines
6.
Food Sci Nutr ; 10(9): 2947-2955, 2022 Sep.
Article in English | MEDLINE | ID: mdl-36171774

ABSTRACT

Several studies have claimed that the consumption of fermented dairy products can improve human gastrointestinal (GI) health. However, the numbers of systematic clinic trials are limited. In this study, a yogurt containing both probiotics and prebiotics was developed and a double-blind randomized controlled clinical trial was carried out to evaluate the effect of the product on human gastrointestinal health in three different aspects: (1) the effect on functional constipation (FC) and functional diarrhea (FD); (2) the effect on gastrointestinal (GI) tract immune system; and (3) the changes in GI tract microbiota. Participants who suffered FC or FD were randomized into three groups (n = 66 each group): the first group was treated with fermented milk with Lactobacillus plantarum ST-III (7 mg/kg) and inulin (1.5%), the second group was treated with L. plantarum ST-III (7 mg/kg) and inulin (1.0%), and the third group (control group) was treated without probiotics and prebiotics. Half of the participants stopped the treatment after 14 days and the rest of the group continued the trial to the full 28 days. The fecal samples of participants were analyzed regarding their short-chain fatty acids (SCFAs), secretory immunoglobulin A (sIgA), and microbiota. A survey on GI tract health was conducted and the Bristol stool scale was recorded. The results showed that the consumption of the symbiotic yogurt for 14 days and 28 days can both improve the digestive system, with the continual consumption of product containing L. plantarum ST-III (7 mg/kg) and inulin (1.5%) for 28 days showing the most significance. The consumption of this product may be used as a potential functional food.

7.
Front Immunol ; 13: 1051045, 2022.
Article in English | MEDLINE | ID: mdl-36741382

ABSTRACT

Activation of mTORC1 is essential for anti-tumor function of iNKT cells. The mechanisms underlying impaired mTORC1 activation in intratumoral iNKT cells remain unclear. Via generating Vam6+/- mice and using flow cytometry, image approach, and RNA sequencing, we studied the role of Vam6 in controlling mTORC1 activation and intratumoral iNKT cell functions. Here, we find that increased Vam6 expression in intratumoral iNKT cells leads to impaired mTORC1 activation and IFN-γ production. Mechanistically, Vam6 in iNKT cells is essential for Rab7a-Vam6-AMPK complex formation and thus for recruitment of AMPK to lysosome to activate AMPK, a negative regulator of mTORC1. Additionally, Vam6 relieves inhibitory effect of VDAC1 on Rab7a-Vam6-AMPK complex formation at mitochondria-lysosome contact site. Moreover, we report that lactic acid produced by tumor cells increases Vam6 expression in iNKT cells. Given the key roles of increased Vam6 in promoting AMPK activation in intratumoral iNKT cells, reducing Vam6 expression signifificantly enhances the mTORC1 activation in intratumoral iNKT cells as well as their anti-tumor effificacy. Together, we propose Vam6 as a target for iNKT cell-based immunotherapy.


Subject(s)
Natural Killer T-Cells , Neoplasms , Vesicular Transport Proteins , Animals , Mice , AMP-Activated Protein Kinases/metabolism , Mechanistic Target of Rapamycin Complex 1/metabolism , Natural Killer T-Cells/metabolism , Signal Transduction , TOR Serine-Threonine Kinases/metabolism
8.
Pharm Biol ; 59(1): 647-652, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34062085

ABSTRACT

CONTEXT: Upper respiratory tract infection (URTI) is the most common illness in humans. Fermented milk containing probiotics can mitigate URTI symptoms. OBJECTIVE: This study tests the effect of fermented milk (Qingrun), a yogurt supplemented with Bifidobacterium animalis subsp. lactis Bl-04, on adults with URTIs who live in a haze-covered area in a randomized clinical trial. MATERIALS AND METHODS: A total of 136 subjects were enrolled in the study at the baseline and randomized to consume either control yogurt or Qingrun yogurt (250 g) once daily for 12 weeks. The duration and severity of URTI were evaluated by the Wisconsin Upper Respiratory Symptom Survey-24. Blood and faecal samples were collected at the baseline and post-intervention, to determine the changes of immune biomarkers. RESULTS: Qingrun yogurt significantly reduced the incidence of the common cold (OR, 0.38; 95% CI, 0.17-0.81; p = 0.013) and influenza-like illness (OR, 0.32; 95% CI, 0.11-0.97; p = 0.045). Compared to the control yogurt, Qingrun yogurt significantly reduced the duration (1.23 ± 2.73 vs. 4.78 ± 5.09 d) and severity score (3.58 ± 7.12 vs. 11.37 ± 11.73) of URTI. In addition, the post-intervention levels of interferon-γ (139.49 ± 59.49 vs. 113.45 ± 65.12 pg/mL) and secretory immunoglobulin A (529.19 ± 91.70 vs. 388.88 ± 53.83 mg/dL) significantly increased in the Qingrun group, compared with those in the control group. CONCLUSIONS: Qingrun yogurt showed a protective effect against URTI in adults, suggesting that the use of yogurt with probiotics could be a promising dietary supplement for mitigating URTI.


Subject(s)
Bifidobacterium , Dietary Supplements , Probiotics/therapeutic use , Respiratory Tract Infections/therapy , Adult , Air Pollution/adverse effects , China , Double-Blind Method , Female , Fermentation , Humans , Male , Middle Aged , Respiratory Tract Infections/etiology , Yogurt/microbiology
9.
Metabolites ; 9(11)2019 Oct 28.
Article in English | MEDLINE | ID: mdl-31661817

ABSTRACT

Holistic benefits of human milk to infants, particularly brain development and cognitive behavior, have stipulated that infant formula be tailored in composition like human milk. However, the composition of human milk, especially lipids, and their effects on brain development is complex and not fully elucidated. We evaluated brain lipidome profiles in weanling rats fed human milk or infant formula using non-targeted UHPLC-MS techniques. We also compared the lipid composition of human milk and infant formula using conventional GC-FID and HPLC-ELSD techniques. The sphingomyelin class of lipids was significantly higher in brains of rats fed human milk. Lipid species mainly comprising saturated or mono-unsaturated C18 fatty acids contributed significantly higher percentages to their respective classes in human milk compared to infant formula fed samples. In contrast, PUFAs contributed significantly higher percentages in brains of formula fed samples. Differences between human milk and formula lipids included minor fatty acids such as C8:0 and C12:0, which were higher in formula, and C16:1 and C18:1 n11, which were higher in human milk. Formula also contained higher levels of low- to medium-carbon triacylglycerols, whereas human milk had higher levels of high-carbon triacylglycerols. All phospholipid classes, and ceramides, were higher in formula. We show that brain lipid composition differs in weanling rats fed human milk or infant formula, but dietary lipid compositions do not necessarily manifest in the brain lipidome.

10.
Cell Res ; 24(5): 595-609, 2014 May.
Article in English | MEDLINE | ID: mdl-24603360

ABSTRACT

Hedgehog (Hh) signaling plays vital roles in animal development and tissue homeostasis, and its misregulation causes congenital diseases and several types of cancer. Suppressor of Fused (Su(fu)) is a conserved inhibitory component of the Hh signaling pathway, but how it is regulated remains poorly understood. Here we demonstrate that in Drosophila Hh signaling promotes downregulation of Su(fu) through its target protein HIB (Hh-induced BTB protein). Interestingly, although HIB-mediated downregulation of Su(fu) depends on the E3 ubiquitin ligase Cul3, HIB does not directly regulate Su(fu) protein stability. Through an RNAi-based candidate gene screen, we identify the spliceosome factor Crooked neck (Crn) as a regulator of Su(fu) level. Epistasis analysis indicates that HIB downregulates Su(fu) through Crn. Furthermore, we provide evidence that HIB retains Crn in the nucleus, leading to reduced Su(fu) protein level. Finally, we show that SPOP, the mammalian homologue of HIB, can substitute HIB to downregulate Su(fu) level in Drosophila. Our study suggests that Hh regulates both Ci and Su(fu) levels through its target HIB, thus uncovering a novel feedback mechanism that regulates Hh signal transduction. The dual function of HIB may provide a buffering mechanism to fine-tune Hh pathway activity.


Subject(s)
Drosophila Proteins/metabolism , Drosophila/metabolism , Hedgehog Proteins/metabolism , Intracellular Signaling Peptides and Proteins/metabolism , Nuclear Proteins/metabolism , Repressor Proteins/metabolism , Animals , Cell Line , Cullin Proteins/metabolism , Down-Regulation , Drosophila/genetics , Drosophila Proteins/genetics , Repressor Proteins/genetics , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL
...