Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 38
Filter
Add more filters











Publication year range
1.
Front Optoelectron ; 17(1): 14, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38802674

ABSTRACT

In this paper, we report a coherent beam combining (CBC) system that involves two thulium-doped all-polarization maintaining (PM) fiber chirped pulse amplifiers. Through phase-locking the two channels via a fiber stretcher by using the stochastic parallel gradient descent (SPGD) algorithm, a maximum average power of 265 W is obtained, with a CBC efficiency of 81% and a residual phase error of λ/17. After de-chirping by a pair of diffraction gratings, the duration of the combined laser pulse is compressed to 690 fs. Taking into account the compression efficiency of 90% and the main peak energy proportion of 91%, the corresponding peak power is calculated to be 4 MW. The laser noise characteristics before and after CBC are examined, and the results indicate that the CBC would degrade the low frequency relative intensity noise (RIN), of which the integration is 1.74% in [100 Hz, 2 MHz] at the maximum combined output power. In addition, the effects of the nonlinear spectrum broadening during chirped pulse amplification on the CBC efficiency are also investigated, showing that a higher extent of pulse stretching is effective in alleviating the spectrum broadening and realizing a higher output power with decent combining efficiency.

2.
Appl Opt ; 62(30): 8104-8108, 2023 Oct 20.
Article in English | MEDLINE | ID: mdl-38038106

ABSTRACT

A single-frequency linearly polarization pulsed fiber laser based on an electro-optic modulator with injection seeding technique is demonstrated. The single-frequency performance of the fiber ring-cavity laser is guaranteed by the seed source, which is a distributed-feedback fiber laser based on the π-phase-shifted fiber Bragg grating. The electro-optic modulator triggers active Q-switching of the laser for pulse generation. The devices used in the fiber laser are all polarization-maintaining to ensure linear polarization laser output. Through parameter optimization, the laser generates a single-frequency linearly polarization pulsed laser with a central wavelength of 1064.22 nm, linewidth of 35 MHz, and polarization extinction ratio of better than 40 dB. This type of fiber laser can be applied in lidar, beam combining, nonlinear frequency conversion, and other fields.

3.
Opt Lett ; 48(19): 5021-5024, 2023 Oct 01.
Article in English | MEDLINE | ID: mdl-37773375

ABSTRACT

As an essential component of the vortex beam, the fractional vortex beam has significantly advanced various applications, such as optical imaging, optical communication, and particle manipulation. However, practical applications face a significant challenge as generating high average power fractional vortex beams remains difficult. Here, we proposed and experimentally demonstrated a high average power mode-tunable fractional vortex beam generator based on an internally sensed coherent beam combining (CBC) system. We presented the first, to the best of our knowledge, successful generation of a 1.5 kW continuous wave fractional vortex beam. Moreover, real-time tuning of the topological charge (TC) from -2/3 to +2/3 was easily achieved using the programmable liquid crystals (LCs). More importantly, the fractional vortex beam copier was presented as well, and the generated fractional vortex beam could be easily transformed into a fractional vortex beam array by changing the fill factor of the laser array. This work can pave the path for the practical implementation of high average power structured light beams.

4.
Appl Opt ; 62(24): 6417-6424, 2023 Aug 20.
Article in English | MEDLINE | ID: mdl-37706834

ABSTRACT

As a promising way to realize high output power while maintaining high beam quality, coherent beam combining (CBC) of fiber lasers has drawn much interest. Phase control is one of the main technologies to fulfill CBC, which is employed to keep the phases of different fiber lasers consistent. Traditional phase control techniques employ beam splitters after the emitting array to obtain phase mismatch information. Different from the traditional phase-locking technique, the internal phase control technique can obtain phase mismatch information before the laser array output to free space, and the technique is compact and easy to expand to a lager array. In this paper, a CBC system based on an internal phase-locking technique is designed, and relative numerical simulations are studied. By using the cascaded technique, the phase control bandwidth can be greatly increased. The simulation results show that hundreds of laser beams can be effectively combined based on the technique. The results of the numerical simulations can provide significant reference for the compact CBC system design and phase control.

5.
Opt Express ; 30(15): 27304-27313, 2022 Jul 18.
Article in English | MEDLINE | ID: mdl-36236904

ABSTRACT

A high-accuracy, high-speed, and low-cost M2 factor estimation method for few-mode fibers based on a shallow neural network is presented in this work. Benefiting from the dimensionality reduction technique, which transforms the two-dimension near-field image into a one-dimension vector, a neural network with only two hidden layers can estimate the M2 factor directly. In the simulation, the mean estimation error is smaller than 3% even when the mode number increases to 10. The estimation time of 10000 simulation test samples is around 0.16s, which indicates a high potential for real-time applications. The experiment results of 50 samples from the 3-mode fiber have a mean estimation error of 0.86%. The strategies involved in this method can be easily extended to other applications related to laser characterization.

6.
Appl Opt ; 61(11): 3195-3200, 2022 Apr 10.
Article in English | MEDLINE | ID: mdl-35471298

ABSTRACT

A novel, to the best of our knowledge, cantilever construction design of an adaptive fiber-optics collimator (AFOC) based on piezoelectric bimorph actuators for tip/tilt control is introduced. With this new cantilever structure, an AFOC with a diameter of only 6 mm was developed, and the output laser beam deviation angle and resonance frequency of the device were measured. The experimental results show that this new AFOC can provide more than 1 mrad deflection angle at a 20 V driving voltage, and the first resonance frequency is about 500 Hz. Further, in order to verify whether the cantilever structure can be used in a high-power fiber collimator, a high-power X-Y positioner with an 8 mm diameter fiber end cap was developed. The experimental results show that the high-power X-Y positioner can output more than 2 kW laser power and provide about 330 µm displacement of the fiber end cap in the X direction and about 770 µm in the Y direction at a 150 V driving voltage.

7.
Appl Opt ; 61(12): 3429-3434, 2022 Apr 20.
Article in English | MEDLINE | ID: mdl-35471439

ABSTRACT

High-power fiber lasers have been widely utilized in manufacturing, medical care, and many other fields. Due to mode instability, nonlinear effects, and so on, the output power of a monolithic fiber laser is limited. Coherent beam combining (CBC) of fiber lasers is a promising way to obtain higher output power. An all-fiber CBC structure with internal phase detection has a compact construction and potential for a larger fiber laser array. For the existing internal active phase control of an all-fiber structure, π phase ambiguity always occurs because of double passing the fiber path. Additional compensation is needed under this condition, and the compactness of the system will decrease. In this paper, internal phase control of an all-fiber structure based on double wavelength detection without π-ambiguity is proposed. By adding a beacon laser with a different wavelength, phase locking of a coherent fiber laser array can be achieved internally without π-ambiguity. A corresponding math model is established, and a phase matched condition is derived. The spectral width of the beacon laser is analyzed, and the result shows that it can reach tens of nanometers with a proper optical path difference. Simulations of seven, 19, and 37 beams are carried out, and the results show that the structure proposed in this paper has the ability to achieve phase control with good robustness. The control bandwidth in the simulation is better than 1 kHz. By properly designing elements, the structure is expected to achieve high-power CBC of an all-fiber structure experimentally.

8.
Opt Express ; 30(2): 1089-1098, 2022 Jan 17.
Article in English | MEDLINE | ID: mdl-35209252

ABSTRACT

Coherent beam combining (CBC) of fiber laser array is a promising way to achieve high output power. Phase control is one key point to implement CBC. Appropriate feedback structures should be established to achieve phase control. Most feedback structures of CBC are established after the lasers emit to free space and consist of a set of lenses or mirrors. Those optical elements in free space may hinder array size and integration. In this paper, we demonstrated an all-fiber structured CBC method with distributed phase-locking. By adding an all-fiber measurement loop beside the main laser chain, the phase of main laser chain is appended to the measuring loop. Phases of each main laser chain are locked indirectly though the measurement loops by using stochastic parallel gradient descent (SPGD) algorithm. The principle of distributed phase-locking is also illustrated. Corresponding simulations are carried out and two-channel fiber lasers are coherently combined by this method. The experimental results show that the structure can achieve phase-locking effectively. Stable and distinct interference fringe is observed. Additionally, the structure proposed in this paper is straightforwardly building and expanding.

9.
Appl Opt ; 61(34): 10222-10227, 2022 Dec 01.
Article in English | MEDLINE | ID: mdl-36606784

ABSTRACT

Coherent beam combining (CBC) of a fiber laser can scale the output power while maintaining high beam quality. However, phase detection and control remain a challenge for a high-power CBC system with a massive laser array. This paper provides a novel, to the best of our knowledge, cascaded phase-control technique based on internal phase detection and control, called the cascaded internal phase-control technique. The principle of the technique was introduced in detail, and the numerical simulations were carried out based on the stochastic parallel gradient descent (SPGD) algorithm. The results indicated that the cascaded internal phase-control technique was compatible with the massive laser array. Compared with the traditional CBC based on the SPGD algorithm, the control bandwidth could be improved effectively about seven times (120 steps) than the traditional SPGD algorithm (830 steps). Furthermore, the average root mean square of residual phase error was decreased to 0.03 rad (∼λ/209) with a laser array of 259 channels (7∗37), which was 0.36 rad (∼λ/17) in the traditional SPGD algorithm. In addition, the element expanding capacity was analyzed. Since there is no large-aperture optical device in the phase-detection system, this technique has the advantage of freely designing the caliber of the laser emitting system. This paper could offer a reference for the high-power massive laser array system design and phase control.

10.
Opt Express ; 29(21): 34863-34879, 2021 Oct 11.
Article in English | MEDLINE | ID: mdl-34809266

ABSTRACT

Coherent beam combination (CBC) holds promise for scaling the output power of the laser system while maintaining good beam quality. Owing to the thermal effect and mechanics instability, piston and tilt distortions always exist and affect the performance of the combined beam. To ensure the constructive interference in the far-field, dynamic correction of the distortions is highly required. Here, we propose an approach for the simultaneous correction of piston and tilt distortions in CBC systems. Based on the position and interval information of the near-field interference fringes, the theoretical expressions for the relative piston phase and tilt errors of each array element are derived, indicating that dynamic distortions in CBC systems can be directly calculated and then corrected by employing phase control servos. To demonstrate the feasibility of the proposed approach, Monte-Carlo Simulations have been carried out for different perturbative environments. Our results indicate that both piston phase and tilt errors can be calculated and compensated accurately (λ/25 and 0.11µrad) by the proposed approach even in 169 beamlets, which also has high tolerance for defocus errors. This work could provide valuable reference on the practical implementation of high-power, phase-locked fiber laser array systems.

11.
Opt Lett ; 46(15): 3665-3668, 2021 Aug 01.
Article in English | MEDLINE | ID: mdl-34329251

ABSTRACT

Owing to the unique features in intensity and phase structures, optical vortex lattices (OVLs) have attracted intensive attention and promoted various applications. However, the power scaling of OVLs always presents a critical challenge. Here we take advantage of the brightness enhancement of coherent beam combining (CBC) technology and propose an architecture for creating OVLs based on the CBC system. In the experiment, by utilizing the stochastic parallel gradient descent algorithm, the dynamic phase noises were compensated. The desired piston phase shifting of each element for tailoring the structured wavefront was implemented by the liquid crystal. When the system in a closed loop, hexagonal close-packed OVL consists of spatially distributed orbital angular momentum, beams can be generated in the far-field. This work is an important step toward future implementation of high-power structured light beams.

12.
Appl Opt ; 60(20): 5984-5989, 2021 Jul 10.
Article in English | MEDLINE | ID: mdl-34263822

ABSTRACT

The master oscillator power amplifier structure has been widely employed to realize high-power and narrow-linewidth output in fiber lasers. However, the stimulated Raman scattering (SRS) effect would appear in high-power operation and even become an important limitation on further power scaling, especially when the seed lasers are based on a fiber Bragg grating (FBG) pair. In order to improve SRS suppressing ability, a composite cavity structure was demonstrated by employing an additional wide-bandwidth low-reflectivity FBG outside the conventional oscillator. After passing through a piece of 50 m SMF-28e fiber, thanks to the improved temporal stability of the composite oscillator, the proportion of Raman Stokes light dropped dramatically compared with the proportion in a conventional fiber oscillator. This composite cavity design could provide a simple and compact approach for SRS suppression in a high-power narrow-linewidth fiber laser system.

13.
Opt Express ; 29(9): 13428-13440, 2021 Apr 26.
Article in English | MEDLINE | ID: mdl-33985076

ABSTRACT

Light beams carrying orbital angular momentum (OAM) have important implications for future classical and quantum systems. In many applications, controlled switching of the OAM state at high speed is crucial, while accelerating the switching rate presents a long-standing challenge. Here we present a method for flexibly switching the OAM state of light based on a coherent laser array system. In the system, the output structured light beam is tailored by the coherent combination of array elements. By employing an OAM mode sorting assisted phase control subsystem, which continuously performs the optimization algorithm, the dynamic wavefront distortion of the combined OAM beam could be compensated. Meanwhile, our approach allows one to achieve fast states switching of the combined OAM beam via programming the cost function of the algorithm. The results of Monte-Carlo simulations demonstrate the feasibility of the proposed method, and the mode purity and power scaling potential of the controllably generated OAM beam are discussed. This theoretical work could be beneficial to the future implementation of rapidly switchable OAM beams at practical output power.

14.
Opt Express ; 29(4): 5259-5269, 2021 Feb 15.
Article in English | MEDLINE | ID: mdl-33726065

ABSTRACT

We investigate the focusing properties of cylindrical vector beams (CVBs) generated from the combination of an array of beams, each with sub-apertures and controllable polarization. The analytical expression of the tight focusing field of the combined CVBs has been derived based on the Richard-Wolf vector diffraction integral. To obtain a desired focal spot size which includes efficient sidelobe suppression, the required parameters, such as the exit sub-aperture, numerical aperture and truncation parameter, have been studied in detail. The result shows that the combined CVB distribution has a good match with the theoretical ideal CVB distribution. However, compared with the ideal CVBs, the focal spot width produced by the combined radially polarized beams is smaller. With the increase of initial polarization rotation of sub-aperture, the focal spot width increases, and the focal shape shifts from Gaussian-like to a flat-topped distribution and then to an annular distribution. Furthermore, flexible focal field tailoring can also be realized by adjusting the initial polarization rotation of each sub-aperture. These results might provide a valuable reference for material processing, microlithography and multi-particle manipulation.

15.
Opt Express ; 29(2): 761-782, 2021 Jan 18.
Article in English | MEDLINE | ID: mdl-33726306

ABSTRACT

An all-fiberized linearly polarized nanosecond master oscillator power amplifier based on polarization-maintaining large-mode-area Yb-doped tapered double cladding fiber (T-DCF) is comprehensively investigated. Firstly, excellent performance of the Yb-doped T-DCF for suppressing nonlinear effects, including stimulated Brillouin scattering (SBS) effect and spectral broadening effects, is experimentally demonstrated and qualitatively analyzed. An SBS-free average output power of 8.8 W is obtained under pulse duration of 3.8 ns and repetition frequency of 80 kHz, with peak power of ∼30 kW, pulse energy of 110 µJ and nearly transform-limited linewidth of < 283.8 MHz respectively. The polarization extinction ratio is > 16 dB and near-diffraction-limited beam quality with M2 factor of 1.2 is maintained at the maximal output power. Moreover, the discussion on the optimization of the system for further power scaling is carried out based a nonlinear dynamic model that is capable of simultaneously evaluating the time-domain and frequency-domain evolution properties of the narrow-linewidth linearly-polarized pulsed laser, and meaningful conclusion is obtained.

16.
Opt Lett ; 45(14): 4001-4004, 2020 Jul 15.
Article in English | MEDLINE | ID: mdl-32667339

ABSTRACT

The all-fiber high-power linearly polarized single-frequency fiber laser based on the polarization-maintaining tapered Yb-doped fiber (T-YDF) is systematically studied. As a result, a 300 W-level stable output with linear polarization and nearly diffraction-limited beam quality is demonstrated. In particular, the overall properties of the transverse mode instability (MI) effect in such a single-frequency laser system are discussed in detail for the first time, to the best of our knowledge, including temporal, frequency, polarization, and spatial domains. Furthermore, the beam pointing error taking the MI effect into account is investigated. Theoretical analyses covering both stimulated Brillouin scattering and the MI effects reveal the great potential of the T-YDF for further power scaling as well.

17.
Nanomaterials (Basel) ; 9(6)2019 Jun 07.
Article in English | MEDLINE | ID: mdl-31181606

ABSTRACT

In recent years, metal chalcogenide nanomaterials have received much attention in the field of ultrafast lasers due to their unique band-gap characteristic and excellent optical properties. In this work, two-dimensional (2D) indium monosulfide (InS) nanosheets were synthesized through a modified liquid-phase exfoliation method. In addition, a film-type InS-polyvinyl alcohol (PVA) saturable absorber (SA) was prepared as an optical modulator to generate ultrashort pulses. The nonlinear properties of the InS-PVA SA were systematically investigated. The modulation depth and saturation intensity of the InS-SA were 5.7% and 6.79 MW/cm2, respectively. By employing this InS-PVA SA, a stable, passively mode-locked Yb-doped fiber laser was demonstrated. At the fundamental frequency, the laser operated at 1.02 MHz, with a pulse width of 486.7 ps, and the maximum output power was 1.91 mW. By adjusting the polarization states in the cavity, harmonic mode-locked phenomena were also observed. To our knowledge, this is the first time an ultrashort pulse output based on InS has been achieved. The experimental findings indicate that InS is a viable candidate in the field of ultrafast lasers due to its excellent saturable absorption characteristics, which thereby promotes the ultrafast optical applications of InX (X = S, Se, and Te) and expands the category of new SAs.

18.
Appl Opt ; 58(6): 1491-1495, 2019 Feb 20.
Article in English | MEDLINE | ID: mdl-30874035

ABSTRACT

In this paper, we propose a design of coherent fiber-optics-array collimator (CFAC) that is mainly composed of a single unitary collimating lens and a prism. The CFAC system is presented conceptually, and corresponding parameters are theoretically analyzed using a geometrical optics method. Then, we set up a proof-of-concept experiment to verify the validity of the CFAC system with three coherent fiber lasers distributed along the symmetry axis through the center of the single unitary lens. After that, we realize the synchronous aberrationless collimating of the three beams with only one collimating lens system and their parallel propagation by utilizing a specific prism array. Finally, we successfully achieve a coherent beam combination of the laterally distributed three beams using a single-frequency dithering algorithm. Through an active piston phase control, the residual phase errors among the laser beams are suppressed below λ/26. By comparing the experimental results with the simulation results, we can see that the distribution of the closed-loop far-field intensity pattern detected by the charge-coupled infrared camera basically matches the ideal intensity distribution.

19.
Opt Express ; 27(4): 4046-4059, 2019 Feb 18.
Article in English | MEDLINE | ID: mdl-30876027

ABSTRACT

High-power vortex beams have extensive applications in optical communication, nonlinear frequency conversion, and laser processing. To overcome a single beam's power limitation, generating vortex beams, based on a phased beam array, is an intuitive idea that requires locking each beamlet's phase to a specific different value. Conventionally, the intensity profiles of the focal plane (far field) are used for extracting the cost functions in active phase control systems. However, as for generating vortex beams, the cost function extraction method at the focal plane suffers because the same intensity profile of the beam array could correspond to different phase distributions in near field. Thus, the accurate phase control signals are difficult to obtain. In this paper, a new concept of extracting cost functions at the non-focal-plane is firstly presented and analyzed in detail by numerical simulation. This cost function extraction method is an efficient way of generating vortex beams with different topological charges, including second-order Bessel-Gaussian beams. The new concept could provide a valuable reference and contribute to the practical implementation of generating vortex beams by coherent beam combining technology.

20.
Nanoscale Adv ; 1(1): 195-202, 2019 Jan 15.
Article in English | MEDLINE | ID: mdl-36132444

ABSTRACT

We demonstrated a high-quality black phosphorus (BP) crystal fabricated via a modified electrochemical delamination exfoliation process. Employing the nonlinear transmittance method and Z-scan technique, the nonlinear optical properties of BP were characterized. Based on the saturable absorber (SA) of BP, we designed a passively Q-switched ytterbium (Yb)-doped fiber laser operating at 1.06 µm. Additionally, the pulse laser could operate stably for at least 69 days. These experimental results indicate that the modified BP is an ultra-stable and promising optical modulation material for ultrashort pulse generation in Yb-doped fiber lasers.

SELECTION OF CITATIONS
SEARCH DETAIL