Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 55
1.
Environ Sci Technol ; 58(17): 7469-7479, 2024 Apr 30.
Article En | MEDLINE | ID: mdl-38557082

Trivalent arsenicals such as arsenite (AsIII) and methylarsenite (MAsIII) are thought to be ubiquitous in flooded paddy soils and have higher toxicity than pentavalent forms. Fungi are widely prevalent in the rice rhizosphere, and the latter is considered a hotspot for As uptake. However, few studies have focused on alleviating As toxicity in paddy soils using fungi. In this study, we investigated the mechanism by which the protein TaGlo1, derived from the As-resistant fungal strain Trichoderma asperellum SM-12F1, mitigates AsIII and MAsIII toxicity in paddy soils. Taglo1 gene expression in Escherichia coli BL21 conferred strong resistance to AsIII and MAsIII, while purified TaGlo1 showed a high affinity for AsIII and MAsIII. Three cysteine residues (Cys13, Cys18, and Cys71) play crucial roles in binding with AsIII, while only two (Cys13 and Cys18) play crucial roles for MAsIII binding. TaGlo1 had a stronger binding strength for MAsIII than AsIII. Importantly, up to 90.2% of the homologous TaGlo1 proteins originate from fungi by GenBank searching. In the rhizospheres of 14 Chinese paddy soils, Taglo1 was widely distributed and its gene abundance increased with porewater As. This study highlights the potential of fungi to mitigate As toxicity and availability in the soil-rice continuum and suggests future microbial strategies for bioremediation.


Soil Pollutants , Soil , Soil/chemistry , Arsenites , Soil Microbiology , Oryza
2.
Sci Total Environ ; 912: 169419, 2024 Feb 20.
Article En | MEDLINE | ID: mdl-38128661

As an emerging contaminant, microplastics are absorbed by crops, causing diverse impacts on plants. Plants may have different physiological responses to different uptake modes of microplastics various stage of growth. In this study, the distribution of polystyrene (PS) microspheres in the roots of oilseed rape and the physiological responses at different growth stages were investigated by confocal laser scanning microscope, scanning electron microscopy, and biochemical analysis. This study, conducted via scanning electron microscopy, discovered that agglomerates of microspheres, rather than individual plastic pellets, were taken up by plant roots in solution for the first time. The agglomerates subsequently migrate into the vascular bundles of the root system. Moreover, this study provided the proof for the first time that PS is transported in plants via the symplast system. On the physiological and biochemical function, the exposure of PS at the flowering and bolting stages caused oxidative stress on oilseed rape. That is, the addition of PS with different particle sizes significantly increased peroxidase (POD), malondialdehyde (MDA), photosynthetic rate, chlorophyll content and inhibited superoxide dismutase (SOD) content in oilseed rape at different developmental stages. These changes regulated the chloroplast structure and chlorophyll synthesis, maintained a high photosynthetic rate, and mitigated the toxicity of PS. In addition, correlation analysis showed that MDA and citric acid contents were significantly positively correlated with chlorophyll contents (p < 0.05), which suggested that the 80 nm PS treatment stimulated organic acid secretion in oilseed rape at the bolting stage to maintain a higher chlorophyll content. This study expands the current understanding of the effects of microplastics on crop growth, and the results holding significant implications for exploring the impact of microplastics on vegetables during various developmental stages and for future risk assessment.


Brassica napus , Microplastics , Microplastics/metabolism , Plastics/toxicity , Plastics/metabolism , Brassica napus/metabolism , Peroxidases/metabolism , Chlorophyll/metabolism , Polystyrenes/toxicity , Polystyrenes/metabolism , Plant Roots/metabolism
3.
Environ Pollut ; 332: 121968, 2023 Sep 01.
Article En | MEDLINE | ID: mdl-37290633

Reducing the bioavailability of both cadmium (Cd) and arsenic (As) in paddy fields is a worldwide challenge. The authors investigated whether ridge cultivation combined with biochar or calcium-magnesium-phosphorus (CMP) fertilizer effectively reduces the accumulation of Cd and As in rice grains. Field trial showed that applying biochar or CMP on the ridges was similar to the continuous flooding, which maintained grain Cd at a low level, but grain As was reduced by 55.6%, 46.8% (IIyou28) and 61.9%, 59.3% (Ruiyou 399). Compared with ridging alone, the application of biochar or CMP decreased grain Cd by 38.7%, 37.8% (IIyou28) and 67.58%, 60.98% (Ruiyou399), and reduced grain As by 38.9%, 26.9% (IIyou28) and 39.7%, 35.5% (Ruiyou 399). Microcosm experiment showed that applying biochar and CMP on the ridges decreased As in soil solution by 75.6% and 82.5%, respectively, and kept Cd at a comparably low level at 0.13-0.15 µg L-1. Aggregated boosted tree (ABT) analysis revealed that ridge cultivation combined with soil amendments altered soil pH, redox state (Eh) and enhanced the interaction of Ca, Fe, Mn with As and Cd, which promoted the concerted reduction of As and Cd bioavailability. Application of biochar on the ridges enhanced the effects of Ca and Mn to maintain a low level of Cd, and enhanced the effects of pH to reduce As in soil solution. Similar to ridging alone, applying CMP on the ridges enhanced the effects of Mn to reduce As in soil solution, and enhanced the effects of pH and Mn to maintain Cd at a low level. Ridging also promoted the association of As with poorly/well-crystalline Fe/Al and the association of Cd on Mn-oxides. This study provides an effective and environmentally friendly method to decrease Cd and As bioavailability in paddy fields and mitigate Cd and As accumulation in rice grain.


Arsenic , Oryza , Soil Pollutants , Cadmium/analysis , Arsenic/analysis , Fertilizers/analysis , Calcium/analysis , Magnesium/analysis , Soil/chemistry , Soil Pollutants/analysis , Charcoal/chemistry , Ecosystem , Phosphorus
4.
J Hazard Mater ; 441: 129897, 2023 01 05.
Article En | MEDLINE | ID: mdl-36084469

The co-existence of antibiotics and heavy metals in soil with manure application poses high risk to both environment and human health, and thus effective remediation methods are in urgent need. This study investigated the synergistic effects of electrokinetic remediation (EKR) on antibiotic resistance and arsenic (As) in co-contaminated paddy soils. EKR treatments in soil amended with pig manure (EKR-PD) showed better remediation efficiency compared with that without pig manure. In detail, the content of available As and the abundance of antibiotic-resistant bacteria (ARB) decreased by 25.2 %-41.4 % and 9.5 %-21.1 % after 7-d remediation, respectively, due to a relatively higher current density for EKR-PD. The role of the electric field contributed to 33.9 % of antibiotic degradation. Antibiotic resistance genes (ARGs) with ribosomal-protection and enzymatic-deactivation types were easier to remove, with the removal ratio of 37.8 %-41.6 % in EKR-PD. Brevundimonas was the most significantly different species during remediation. Bacillus and Clostridium_ sensu_stricto_1 were potential host bacteria of ARGs in the electric field. Membrane transport might be an effective strategy for microorganisms to respond to the stress of both electric field and co-contaminated environments. This study supports the potential role of EKR in the co-contamination of heavy metals and antibiotic resistance under manure application.


Arsenic , Metals, Heavy , Angiotensin Receptor Antagonists/pharmacology , Angiotensin-Converting Enzyme Inhibitors/pharmacology , Animals , Anti-Bacterial Agents/pharmacology , Bacteria/genetics , Genes, Bacterial , Humans , Manure/microbiology , Soil , Soil Microbiology , Swine
5.
Huan Jing Ke Xue ; 43(9): 4820-4830, 2022 Sep 08.
Article Zh | MEDLINE | ID: mdl-36096622

The straight head disease of rice is one of the main problems limiting rice production. Arsenic (As) methylation in paddy soils is considered to be highly related to the occurrence of the straight head disease. As a typical field practice, rice fields are usually drained during the late tillering stage and the mid-late grain filling stage. Nevertheless, the key influencing factors on the As methylation efficiency during paddy soil drying remain unclear. In this study, an indoor cultivation experiment was set up to simulate the drying process of paddy soil. Two As-contaminated soils collected from Xingren (XR) in Guizhou province and Nandan (ND) in Guangxi province were used as test soils. Each soil was treated with the addition of rice straw (RS) and without rice straw (CK). With the drying of paddy soil (0, 24, 36, 48, and 60 h), the changes in soil Eh, pH, total organic carbon (TOC), and As chemical species in the porewater were determined. The abundance of the As methylation functional gene (arsM), sulfate-reducing bacteria (harboring dsrA, As methylation-related microorganism), and methanogens (harboring mcrA, As demethylation-related microorganism), as well as the diversity of arsM-harboring microorganisms, were also observed. The results showed that during the process of drying paddy soil, soil Eh changed from -300--200 mV under complete flooding to -150--50 mV after drying; however, the change in soil pH was not obvious. The concentrations of inorganic As (iAs) and dimethylarsenic (DMAs) in porewater significantly increased (P<0.05) with the drying process. Additionally, the concentration of DMAs in the RS treatment was prominently higher than that in CK. Compared with XR soil, the concentration of DMAs in ND soil was higher. As a function of soil drying time, the As methylation efficiency of XR soil (XR-CK and XR-RS) slightly increased but was not significant (P>0.05), whereas the As methylation efficiency of ND soil (ND-CK and ND-RS) increased significantly (P<0.05). After the drying time reached 60 h, the As methylation efficiency of ND-CK and ND-RS increased by 61.8% and 23.2%, respectively, compared with those at the early stage of drying (0 hours). The copy numbers of the arsM and dsrA genes greatly increased with the extension of drying time, whereas an opposite trend was observed for the copy number of the mcrA gene. Furthermore, the addition of straw obviously increased the gene abundance of whole bacteria and arsM-, dsrA-, and mcrA-harboring bacteria. Based on the multi-factor analysis of variance and the redundancy analysis, it was found that the test soil type, straw addition, drying time, and their interaction had a critical influence on the changes in As species, As methylation efficiency, and the gene abundance in soils. TOC, Eh, and the functional genes associated with As methylation were positively linked with the methylated As content in soil porewater but negatively correlated with that of iAs. According to the sequence of the arsM-harboring microbe, it was clearly demonstrated that a community shift of As-methylating microbe occurred with the soil drying. Here, the following conclusions were derived:① the drying process did not lower the As methylation efficiency in paddy soil. On the contrary, in this study, the As methylation efficiency, especially that for ND soil, remarkably improved. The addition of straw notably promoted the As methylation efficiency and the content of DMAs in porewater. ② An increasing tendency was observed for the abundance of microbes related to As methylation, whereas a reverse trend was indicated for microbes related to As demethylation. The community shift of arsM-harboring microbes might be the crucial reason for the improved As methylation efficiency during the soil drying. These observations contribute to a better understanding of the As methylation process during paddy soil drying and will shed light on the future mitigation of rice straight head disease in paddy soils.


Arsenic , Oryza , Soil Pollutants , Arsenic/analysis , China , Methylation , Oryza/chemistry , Soil/chemistry , Soil Pollutants/analysis
6.
Article En | MEDLINE | ID: mdl-36141677

In this study, a newly synthesized sepiolite-supported nanoscale zero-valent iron (S-nZVI) adsorbent was tested for the efficient removal of As(III) and As(V) in aqueous solution. Compared with ZVI nanoparticles, the As(III) and As(V) adsorption abilities of S-nZVI were substantially enhanced to 165.86 mg/g and 95.76 mg/g, respectively, owing to the good dispersion of nZVI on sepiolite. The results showed that the adsorption kinetics were well fitted with the pseudo-second-order model, and the adsorption isotherms were fitted with the Freundlich model, denoting a multilayer chemical adsorption process. The increase in the initial solution pH of the solution inhibited As(III) and As(V) adsorption, but a weaker influence on As(III) than As(V) adsorption was observed with increasing pH. Additionally, the presence of SO42- and NO3- ions had no pronounced effect on As(III) and As(V) removal, while PO43- and humic acid (HA) significantly restrained the As(III) and As(V) adsorption ability, and Mg2+/Ca2+ promoted the As(V) adsorption efficiency. Spectral analysis showed that As(III) and As(V) formed inner-sphere complexes on S-nZVI. As(III) oxidation and As(V) reduction occurred with the adsorption process on S-nZVI. Overall, the study demonstrated a potential adsorbent, S-nZVI, for the efficient removal of As(III) and As(V) from contaminated water.


Arsenites , Water Pollutants, Chemical , Adsorption , Arsenates , Humic Substances/analysis , Iron/chemistry , Kinetics , Magnesium Silicates , Thermodynamics , Water , Water Pollutants, Chemical/analysis
7.
Front Plant Sci ; 13: 881098, 2022.
Article En | MEDLINE | ID: mdl-36003806

Diet is the main intake source of selenium (Se) in the body. Southern Jiangxi is the largest navel orange-producing area in China, and 25.98% of its arable land is Se-rich. However, studies on the Se-rich characteristics and Se dietary evaluation of navel orange fruits in the natural environment of southern Jiangxi have not been reported. This study was large-scale and in situ samplings (n = 492) of navel oranges in southern Jiangxi with the goal of investigating the coupling relationships among Se, nutritional elements, and quality indicators in fruits and systematically evaluating Se dietary nutrition to the body. The results indicated that the average content of total Se in the flesh was 4.92 µg⋅kg-1, and the percentage of Se-rich navel oranges (total Se ≥ 10 µg⋅kg-1 in the flesh) was 7.93%, of which 66.74% of the total Se was distributed in the pericarp and 33.26% in the flesh. The average content of total Se in the flesh of Yudu County was the highest at 5.71 µg⋅kg-1. There was a significant negative correlation (p < 0.05) between Se, Cu, and Zn in the Se-rich flesh. According to the Se content in the flesh, the Se dietary nutrition evaluation was carried out, and it was found that the Se-enriched navel orange provided a stronger Se nutritional potential for the human body. These findings will help to identify Se enrichment in navel orange fruit in China's largest navel orange-producing area and guide the selection of Se-rich soils for navel orange production in the future.

8.
J Environ Manage ; 319: 115658, 2022 Oct 01.
Article En | MEDLINE | ID: mdl-35842987

Arsenic (As) and cadmium (Cd) are two highly toxic elements. In recent years, many newly synthesized chemical materials have been used widely for treatments of As- and Cd-contaminated effluents. However, most materials do not exhibit high efficiencies for simultaneous removal of As and Cd from water systems. Our study established a simple scheme for synthesizing a sepiolite (SEP)-modified nanoscale zero-valent iron (S-nZVI) for simultaneous removal of coexisting As and Cd from water and illuminated a possible underlying mechanism. Batch experiments showed that the maximum capacities for adsorption of As(III) and Cd(II) by S-nZVI were 230.29 mg/g and 11.37 mg/g, respectively, which represented better effects than those of other materials, as reported previously. Removal of Cd(II) depended on pH, but As(III) removal showed little dependence on pH. Coexisting ions such as phosphate (PO43-) and the conjugate base of humic acid (HA) significantly inhibited simultaneous removal of As(III) and Cd(II). In the mixed As(III)-Cd(II) system, the presence of As(III)-pretreated S-nZVI significantly enhanced Cd(II) adsorption by a factor of four over that seen for aqueous solution without As(III). XRD and XPS results showed that CdFe2O4 (Fe-O-Cd), Fe2As2O14 or FeAsO4 (Fe-O-As) were formed after As(III) and Cd(II) were captured by S-nZVI. However, a further zeta (ζ) potential analysis showed that the mechanism for As(III) and Cd(II) adsorption by S-nZVI is not just simple formation of the above chemicals, since the adsorbed As(III) increased the negative charge of S-nZVI; this suggested an electrostatic attraction between S-nZVI and Cd(II) and indicated that adsorbed As(III) created new sorption sites for Cd(II), which enhanced Cd(II) sorption via formation of ternary complexes (Fe-As-Cd). These results suggested that S-nZVI is a promising material for in situ remediation of heavy metal-contaminated groundwaters or paddy soils.


Arsenic , Water Pollutants, Chemical , Adsorption , Arsenic/analysis , Cadmium/analysis , Iron/chemistry , Magnesium Silicates , Water , Water Pollutants, Chemical/analysis
9.
Environ Pollut ; 306: 119376, 2022 Aug 01.
Article En | MEDLINE | ID: mdl-35491001

Manure application increases the transfer risk of antibiotic resistance to farmland. Especially, its impact remains unclear when it occurs in arsenic (As)-contaminated paddy soils, which is considered as a global environmental problem. In this work, we investigated the fate of antibiotic resistance genes (ARGs) in As-antibiotic co-contaminated paddy soils under the application of manure from different sources (pig manure, cow dung, and chicken manure). Differences in the aliphatic carbon and electron-donating capacities of these dissolved organic matters (DOM) regulated the transformation of iron and As by both biotic and abiotic processes. The regulation by pig manure was stronger than that by cow dung and chicken manure. DOM regulation increased the abundance of As-related functional genes (arsC, arrA, aioA, and arsM) in the soil and accelerated the transformation of As speciation, the highest proportion of As(III) being 45%-61%. Meanwhile, the continuous selection pressure provided by the highly toxic As(III) increased the risk of ARGs and mobile genetic elements (MGEs) via horizontal gene transfer. As-resistant bacteria, including Bacillus, Geobacter, and Desulfitobacterium, were finally considered as potential host bacteria for ARGs and MGEs. In summary, this study clarified the synergistic mechanism of As-antibiotic on the fate of ARGs in co-contaminated paddy soils, and provided practical guidance for the proper application of organic fertilizers.


Arsenic , Manure , Animals , Anti-Bacterial Agents , Bacteria , Dissolved Organic Matter , Genes, Bacterial , Soil , Soil Microbiology , Swine
10.
Chemosphere ; 300: 134368, 2022 Aug.
Article En | MEDLINE | ID: mdl-35390414

Humic acid amendments have been widely advocated for the remediation of heavy metal-contaminated soil. However, the impacts of straw-derived humic acid-like substances on the remediation of cadmium (Cd) and arsenic (As) co-contaminated paddy soil remain unclear and the potential mechanism required clarification. In this study, we employed a pot experiment and chose a straw-derived humic acid-like substance (BFA) as the amendment with four doses to investigate how BFA affects the availability of Cd and As in soil and their accumulation in rice. The results showed that grain Cd decreased by 25.65-36.03%, while there was no significant change in total As (TAs) with the addition of BFA. The contents of DCB-Fe, DCB-As and DCB-Cd on the root surface decreased by 6.07-40.54% during the whole growth stage. The addition of BFA significantly decreased the pe + pH and enhanced the transformation of crystalline iron oxides (Fed) into amorphous forms (Feo) in the soil. The CaCl2-extractable Cd decreased and the KH2PO4-extractable As increased with the decrease in pe + pH and Fed and the relative increase in Feo. The correlation analysis showed that the decrease in availability of Cd and translocation factor of Cd effectively decreased the grain Cd and the decrease in DCB-Cd may also contribute to decreasing the uptake of Cd by rice. However, the increase in As of roots and shoots might play key roles in restricting the transport of As to rice grains. Consequently, the addition of BFA could effectively reduce the Cd accumulation in rice under flooding conditions, while no risk of As accumulation in rice grain was observed. The present work provides a new perspective for the application of straw-derived humic acid-like substances as amendments on Cd-As co-contaminated soils, which should be advocated as an eco-friendly, economical and effective soil amendment in the future.


Arsenic , Oryza , Soil Pollutants , Arsenic/analysis , Cadmium/analysis , Edible Grain/chemistry , Humic Substances/analysis , Oryza/chemistry , Soil/chemistry , Soil Pollutants/analysis
11.
J Environ Manage ; 312: 114903, 2022 Jun 15.
Article En | MEDLINE | ID: mdl-35313152

The performances of passivation materials mitigating Cadmium (Cd) bioavailability considerably vary with the pH condition of Cd-contaminated soils. However, less information was available for the method of improving Cd passivation efficiency taking into account the pH of the targeted soil. Furthermore, the underlying mechanism of Cd availability mitigation in soils with different pH has not been clearly explored. In this study, cotton straw biochar (CSB) and its modified products using NaOH (CSB-NaOH) were prepared and applied in two kinds of Cd-contaminated soils with different pH. It was found that CSB-NaOH was more effective than CSB in regulating the Cd bioavailability in the acid soil, while the opposite tendency was observed in alkaline soil. The difference of the Cd passivation efficiency is correlated with contributions of various Cd-biochar binding mechanisms, which cation exchange mechanism is largely eliminated for CSB-NaOH. The interaction of Cd with CSB/CSB-NaOH was further evidenced through characterization results of Scan Electron Microscopy (SEM), X-Ray Diffraction (XRD), Fourier-transformed infrared spectroscopy (FTIR) and X-ray Photoelectron spectroscopy (XPS). Characterization results proved that carboxyl, hydroxyl and ethyl groups were the key functional groups involved in Cd passivation. XPS results showed that Cd binding methods varied between CSB and CSB-NaOH, which Cd2+ and Cd-O were the main form of Cd binding to CSB while Cd-O was the main form on CSB-NaOH. In this work, it was demonstrated that in acid soil, pH change caused by biochar plays a more significant role in controlling the Cd bioavailability, while in alkaline soil, the strength of the Cd-biochar interaction is more decisive for the Cd passivation efficiency. This work provides information on how to select the suitable passivator to decrease the Cd bioavailability in terms of different soil pH and property.


Cadmium , Soil Pollutants , Biological Availability , Cadmium/analysis , Charcoal/chemistry , Hydrogen-Ion Concentration , Sodium Hydroxide , Soil/chemistry , Soil Pollutants/analysis
12.
J Hazard Mater ; 429: 128325, 2022 05 05.
Article En | MEDLINE | ID: mdl-35101761

The simultaneous mitigation of toxic arsenic (As) and cadmium (Cd) in rice grain remains a global challenge. The over-accumulation of husk dimethylarsinic acid (DMAs) induces the rice straight-head disease, which threatens rice production worldwide. In this study, we investigated various soil ridge height treatments with Eh ranging from - 225-87 mV and pH ranging from 6.3 to 4.1. Soil ridge cultivation can maintain grain As and Cd at low levels for slightly co-contaminated paddy soils, especially when the ridge height is 11 cm (Eh of 43 mV and pH of 4.6), where grain inorganic As decreased-at maximum-by 48% and DMAs by 55%. Grain Cd (0.14 mg kg-1) increased but was still below the limit (0.2 mg kg-1) in China, and the cost of ridging is acceptable. There were definite correlations among porewater As, Cd, Fe, S, and Mn contents across various Eh and pH values. Soil ridge cultivation significantly (P < 0.05) diminished the copy number of As-reducing (harboring arsC and arrA), As-methylating (harboring arsM), and sulfate-reducing (harboring dsrA) bacteria. Moreover, soil ridge cultivation shifted the arsM-harboring microbiota. In response to ridge height increase, the abundance of the bacterial biomarker phylum Euryachaeota declined and the families Halorubrum and Planctomyces were gradually replaced by Sandaracinus in paddy soil.


Oryza , Soil Pollutants , Bacteria , Cadmium/analysis , Cadmium/toxicity , Methylation , Oryza/chemistry , Soil/chemistry , Soil Pollutants/analysis
13.
Chemosphere ; 286(Pt 2): 131469, 2022 Jan.
Article En | MEDLINE | ID: mdl-34340118

The strong ability of ferrihydrite and its aged minerals for fixing arsenate is a key factor in remediating arsenate-polluted environments. It is therefore crucial to clarify the stability of Fe-As complexes and the release conditions for As(V). The As(V) release amount was evaluated and compared in the presence of six representative anions, namely, phosphate, silicate, sulfate, inositol hexaphosphate, citrate, and oxalate. It was found that the As(V) release amount changed with the aging time of ferrihydrite and that this tendency generally followed two rules. These are, longer aging time leads to lower As(V) release (Rule 1), and longer aging time leads to higher As(V) release (Rule 2). Whether Rule 1 or Rule 2 dominated As release depended on the number of surface groups, size of competing anions, and contribution of As(V) re-adsorption. Characterization results using X-ray photoelectron spectroscopy (XPS), Fourier-transform infrared spectroscopy (FTIR), and X-ray diffraction (XRD) provided evidence for the predicted mechanisms of As(V) release under various circumstances. In this work, it was demonstrated that when inorganic anions such as sulfate and silicate are present, ferrihydrite with longer aging time led to decreased As(V) release. When organic anions are present, ferrihydrite with less aging time results in reduced As(V) leaching. For anions such as phosphate, the As(V) release amount in relation to the ferrihydrite aging time depends on the concentration of phosphate ions. Nevertheless, the ligand concentration and As(V) loading rate on ferrihydrite should be simultaneously considered for the rule governing As(V) releasing.


Ferric Compounds , Phosphates , Adsorption , Minerals , Silicates , X-Ray Diffraction
14.
Environ Sci Pollut Res Int ; 29(7): 9805-9816, 2022 Feb.
Article En | MEDLINE | ID: mdl-34505251

Mineral-associated soil organic matter (MAOM) is seen as the key to soil carbon sequestration, but its stability often varies with types of exogenous organic materials. Fulvic acid and manure are ones of the exogenous organic materials used for the improvement of degraded soil. However, little is known about if and how fulvic acid and manure affect the stability of MAOM. Using a field experiment of four fertilization treatments (no fertilization, mineral fertilizers, fulvic acid, and manure) and a comprehensive meta-analysis using relevant studies published prior to January 2020, we investigated effects of exogenous fulvic acid and manure applications on four MAOM stability indexes: association intensity, humus stabilization index, iron oxide complex coefficient, and aluminum oxide complex coefficient. Exogenous fulvic acid and manure applications increased soil organic carbon fractions by 26.04-48.47%, MAOM stability by 12.26-387.41%, and complexed iron/aluminum contents by 16.12-20.01%. Fulvic acid application increased MAOM stability by promoting mineral oxide complexation by 20.33% and manure application improved MAOM stability via increasing humus stabilization by 21-25%. Association intensity was positively correlated with contents of soil carbon fractions and the metal oxide complex coefficients were positively correlated with iron/aluminum oxide contents. Moreover, stable-humus exerted significantly positive direct and indirect effects on association intensity and humus stabilization index, while amorphous iron/aluminum content had significantly negative influences on metal oxide complex coefficients. The meta-analysis verified that long-term fulvic acid application improved MAOM stability more so than manure application in acidic soils. We recommend that strategies aiming to prevent land degradation should focus on the potential of fulvic acid as a soil amendment because it can significantly increase MAOM stability.


Manure , Soil , Benzopyrans , Carbon , Fertilizers/analysis , Minerals
15.
Sci Total Environ ; 812: 152603, 2022 Mar 15.
Article En | MEDLINE | ID: mdl-34953852

The simultaneous mitigation of toxic arsenic (As) and cadmium (Cd) in rice grain remains a global challenge. Passivation with natural or artificially modified materials has shown great potential to simultaneously reduce the bioavailability of As and Cd in paddy soils. To date, however, limited materials have are available, with unclear underling mechanisms. Here, a natural iron-based desulfurization material is hypothesized to simultaneously mitigate As and Cd availability in paddy soil-rice continuum, since it is rich in calcium (Ca), iron (Fe), Silicon (Si), manganese (Mn), and sulfur (S). The addition of the proposed material promoted rice growth and reduced soil availability of Cd (extracted with 0.01 mg·L-1 of CaCl2) by 88.0-89.6% and As (extracted with 0.5 mg·L-1 of KH2PO4) by 37.9-69.9%. Grain Cd was reduced by 26.4-51.6%, whereas that of inorganic As (iAs) by 33.3-42.7%. The increased Fe (by 44.2%) and Mn (by 178.6%) in iron plaque on the root surface were conducive to the reduction of grain Cd and iAs after application. Furthermore, the maximum adsorption capacities of the proposed material for Cd and As(III) reached 526.31 and 2.67 mg·g-1, respectively. The coprecipitation with Cd(OH)2 as a product, Fe-As and Ca-As complexation, and ion exchange of Fe2+ released by the material with Cd2+ are involved in the mechanisms underlying the available As and Cd reduction. Combining the safety, low-cost, and high accessibility, Fe-based desulfurization material showed great potential for future safe-utilization of As-Cd contaminated paddy soil via passivation.


Oryza , Soil Pollutants , Cadmium/analysis , Edible Grain/chemistry , Soil , Soil Pollutants/analysis
16.
Ecotoxicol Environ Saf ; 225: 112773, 2021 Dec 01.
Article En | MEDLINE | ID: mdl-34530261

Humic substances (HSs), as electron shuttles, are associated with iron oxide transformation, yet the manner by which HSs affect Cd/As availabilities during this process under anaerobic conditions remains unclear. Two HSs (humic sodium, HA-Na, and biochemical fulvic acid, BFA) were applied at 0, 1, 2, and 4 gCkg-1 in a submerged incubation experiment. The dissolved, extractable and fractions of Cd/As and different iron oxides in soils were monitored. The addition of both HA-Na and BFA decreased the CaCl2-extractable Cd by 12.66-93.13%, and increased the KH2PO4-extractable As by 18.81-71.38% on the 60th day of incubation. The soil Eh and crystalline iron oxides (Fed) decreased, while amorphous iron oxides (Feo) and dissolved As increased after addition of both HSs. However, the two HSs had opposite effects on soil pH and dissolved Cd at the end of the incubation. HA-Na immobilized 19.47-85.99% more available Cd than did BFA over the incubation, although the extent of immobilization was similar with the maximum application rate on the 60th day. BFA mobilized 5.22-26.12% more available As than did HA-Na. XPS data showed that FeOOH decreased while the FeO component increased over the incubation. Correlation analysis and SEM showed that the reduction in the soil Eh and Fed and relative increase in Feo increased the available Cd, while decreased the available As. Consequently, the addition of HA-Na and BFA, particularly combined with flooding irrigation management, could effectively reduce the available Cd in Cd-contaminated soil. However, this method should be used with caution in As-contaminated soil.


Arsenic , Oryza , Soil Pollutants , Cadmium/analysis , Humic Substances , Iron , Soil , Soil Pollutants/analysis
17.
Chemosphere ; 272: 129891, 2021 Jun.
Article En | MEDLINE | ID: mdl-33601208

Soil management and cultivar selection are two strategies to reduce the accumulation risk of heavy metals in crops. However, it is still an open question which of these two strategies is more efficient for the safe utilization of contaminated soil. In this study, the available bio-concentration factors (aBCF) of arsenic (As) and cadmium (Cd) among 39 maize cultivars were determined through a field experiment. The effect of soil management was mimicked by choosing diverse sampling sites having different soil available contents of As and Cd. The aBCF of As and Cd in grain ranged from 0.02 to 0.13 and 1.17 to 42.2, respectively. The accumulation ability of As and Cd was classified among different maize cultivars. Soil pH and total As controlled the level of available As in soils, while soil pH dominated available Cd in soil. A soil pH of 6.5 was recommended to simultaneously minimize soil available As and Cd by managing soil conditions. The quantitative effects of cultivar and soil management on grain As and Cd were expressed as Q [Grain As] = 0.746Q [Cultivar]-0.126Q [pH]+0.276Q [Asavailable] (R2 = 0.648, P = 1.00 × 10-37) and Q [Grain Cd] = 0.913Q [Cultivar]-0.192Q [pH]+0.071Q [SOC] (R2 = 0.782, P = 1.00 × 10-37), respectively. Cultivar selection contributed stronger than soil management to decrease the As and Cd levels in maize grains. A feasible method to seek for a more efficient strategy was proposed for the safe utilization of contaminated soil.


Arsenic , Oryza , Soil Pollutants , Cadmium/analysis , Soil , Soil Pollutants/analysis , Zea mays
18.
Environ Sci Technol ; 55(3): 1555-1565, 2021 02 02.
Article En | MEDLINE | ID: mdl-33449628

Bioavailability and speciation of arsenic (As) are impacted by fertilization and bacteria in the rice rhizosphere. In this study, we investigated the effects of long-term manure application on As bioavailability, microbial community structure, and functional genes in a rice paddy field. The results showed that manure application did not affect total As in the soil but increased soluble As forms by 19%, increasing arsenite (As(III)) accumulation in rice grains and roots by 34 and 64% compared to a control. A real-time quantitative polymerase chain reaction (qPCR) and high-throughput sequencing analysis demonstrated that manure application increased the relative abundance of Rhizobium, Burkholderia, Sphingobium, and Sphingomonas containing arsenate reductase genes (arsC) in the rhizosphere soil, consistent with the 529% increase in arsC, which may have promoted arsenate (As(V)) reduction and increased As availability in pore water. In addition, manure application significantly altered the iron (Fe)-plaque microbial community structure and diversity. The microbes, particularly, Bradyrhizobium, Burkholderia, and Ralstonia, were mostly associated with As, Fe, and sulfur (S) cycles. This result was consistent with changes in the functional genes related to As, Fe, and S transformation. Although manure application promoted As(V) reduction (arsC) in Fe-plaque by 682%, it inhibited Fe and S reduction by decreasing FeIII reduction bacteria (Geobacteraceae) and the sulfate-reducing gene (dsrA) abundance. Further, manure application changed the composition of the microbial community that contained the arsC gene. In short, caution needs to be excised even in the soil with a low As concentration as manure application increased As(III) accumulation in rice grains.


Arsenic , Oryza , Soil Pollutants , Arsenic/analysis , Bacteria/genetics , Ferric Compounds , Manure , Rhizosphere , Soil , Soil Pollutants/analysis
19.
J Environ Sci (China) ; 100: 43-50, 2021 Feb.
Article En | MEDLINE | ID: mdl-33279052

During the aging process, ferrihydrite was transformed into mineral mixtures composed of different proportions of ferrihydrite, goethite, lepidocrocite and hematite. Such a transformation may affect the fixed ability of arsenic. In this study, the stability of Fe-As composites formed with As(V) and the minerals aged for 0, 1, 4, 10 and 30 days of ferrihydrite were systematically examined, and the effects of molar of ratios Fe/As were also clarified using kinetic methods combined with multiple spectroscopic techniques. The results indicated that As(V) was rapidly adsorbed on minerals during the initial polymerization process, which delayed both the ferrihydrite conversion and the hematite formation. When the Fe/As molar ratio was 1.875 and 5.66, the As(V) adsorbed by ferrihydrite began to release after 6 hr and 12 hr, respectively. The corresponding release amounts of As(V) were 0.55 g/L and 0.07 g/L, and the adsorption rates were 92.43% and 97.50% at 60 days, respectively. However, the As(V) adsorbed by the transformation products aged for 30 days of ferrihydrite began to release after adsorbed 30 days. The corresponding release amounts of As(V) were 0.25 g/L and 0.03 g/L, and the adsorption rates were 84.23% and 92.18% after adsorbed 60 days, for the Fe/As=1.875 and 5.66, respectively. Overall, the combination of As(V) with ferrihydrite and aged products transformed from a thermodynamically metastable phase to a dynamically stable state within a certain duration. Moreover, the aging process of ferrihydrite reduced the sorption ability of arsenate by iron (hydr)oxide but enhanced the stability of the Fe-As composites.


Arsenic , Ferric Compounds , Adsorption , Aged , Humans , Iron , Kinetics , Minerals
20.
J Hazard Mater ; 401: 123370, 2021 01 05.
Article En | MEDLINE | ID: mdl-32650107

Microbes play a crucial role in arsenic (As) biogeochemical cycling and show great potential for environmental detoxification and bioremediation. Efflux, transformation, and compartmentalization are key processes in microbial As resistance. However, organelle specific As detoxification and fate during intracellular transfer and compartmentalization is not well understood. We conducted a time course experiment (2-5 days) of the organelle separation for fungal strains to explore subcellular As distributions. After exposure to 10 mg L-1 of arsenate (As(V)), the As accumulation among fungal organelles was generally in the order of extracellular (65 %) > cell wall (15 %) > vacuole (10 %) > other organelles (8 %). The vacuole As accounted for 55 % of the protoplast As. Extracellular bonding and vacuole compartmentalization were the main mechanisms of As resistance in the fungal strains tested. Glutathione (GSH) increases in fungal protoplast in response to As toxicity, acting as a reasonable indicator of As tolerance. Fourier transform infrared (FT-IR) spectroscopy indicated that carboxyl and amines groups within fungal cell walls potentially bind with As preventing As influx. Further analysis using scanning transmission X-ray microscopy (STXM) identified that fungal septa besides vacuole could also immobilize As.


Arsenic , Arsenic/analysis , Arsenic/toxicity , Biodegradation, Environmental , Fungi , Spectroscopy, Fourier Transform Infrared , Vacuoles
...