Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters











Database
Language
Publication year range
1.
Tohoku J Exp Med ; 259(2): 163-172, 2023 Jan 27.
Article in English | MEDLINE | ID: mdl-36450479

ABSTRACT

Proinflammatory cytokines, reactive oxygen species and imbalance of neurotransmitters are involved in the pathophysiology of angiotensin II-induced hypertension. The hypothalamic paraventricular nucleus (PVN) plays a vital role in hypertension. Evidences show that microglia are activated and release proinflammatory cytokines in angiocardiopathy. We hypothesized that angiotensin II induces PVN microglial activation, and the activated PVN microglia release proinflammatory cytokines and cause oxidative stress through nuclear factor-kappa B (NF-κB) pathway, which contributes to sympathetic overactivity and hypertension. Male Sprague-Dawley rats (weight 275-300 g) were infused with angiotensin II to induce hypertension. Then, rats were treated with bilateral PVN infusion of microglial activation inhibitor minocycline, NF-κB activation inhibitor pyrrolidine dithiocarbamate or vehicle for 4 weeks. When compared to control groups, angiotensin II-induced hypertensive rats had higher mean arterial pressure, PVN proinflammatory cytokines, and imbalance of neurotransmitters, accompanied with PVN activated microglia. These rats also had more PVN gp91phox (source of reactive oxygen species production), and NF-κB p65. Bilateral PVN infusion of minocycline or pyrrolidine dithiocarbamate partly or completely ameliorated these changes. This study indicates that angiotensin II-induced hypertensive rats have more activated microglia in PVN, and activated PVN microglia release proinflammatory cytokines and result in oxidative stress, which contributes to sympathoexcitation and hypertensive response. Suppression of activated PVN microglia by minocycline or pyrrolidine dithiocarbamate attenuates inflammation and oxidative stress, and improves angiotensin II-induced hypertension, which indicates that activated microglia promote hypertension through activated NF-κB. The findings may offer hypertension new strategies.


Subject(s)
Hypertension , Minocycline , Rats , Male , Animals , Minocycline/adverse effects , Microglia/metabolism , Paraventricular Hypothalamic Nucleus/metabolism , Reactive Oxygen Species/adverse effects , Reactive Oxygen Species/metabolism , NF-kappa B/metabolism , Angiotensin II/adverse effects , Angiotensin II/metabolism , Rats, Sprague-Dawley , Hypertension/drug therapy , Cytokines/metabolism , Neurotransmitter Agents/adverse effects , Neurotransmitter Agents/metabolism
2.
Foods ; 11(21)2022 Oct 25.
Article in English | MEDLINE | ID: mdl-36359968

ABSTRACT

The control of the pathogenic load on foodstuffs is a key element in food safety. Particularly, seafood such as cold-smoked salmon is threatened by pathogens such as Salmonella sp. or Listeria monocytogenes. Despite strict existing hygiene procedures, the production industry constantly demands novel, reliable methods for microbial decontamination. Against that background, a microwave plasma-based decontamination technique via plasma-processed air (PPA) is presented. Thereby, the samples undergo two treatment steps, a pre-treatment step where PPA is produced when compressed air flows over a plasma torch, and a post-treatment step where the PPA acts on the samples. This publication embraces experiments that compare the total viable count (tvc) of bacteria found on PPA-treated raw (rs) and cold-smoked salmon (css) samples and their references. The tvc over the storage time is evaluated using a logistic growth model that reveals a PPA sensitivity for raw salmon (rs). A shelf-life prolongation of two days is determined. When cold-smoked salmon (css) is PPA-treated, the treatment reveals no further impact. When PPA-treated raw salmon (rs) is compared with PPA-untreated cold-smoked salmon (css), the PPA treatment appears as reliable as the cold-smoking process and retards the growth of cultivable bacteria in the same manner. The experiments are flanked by quality measurements such as color and texture measurements before and after the PPA treatment. Salmon samples, which undergo an overtreatment, solely show light changes such as a whitish surface flocculation. A relatively mild treatment as applied in the storage experiments has no further detected impact on the fish matrix.

3.
Am J Hypertens ; 35(9): 820-827, 2022 09 01.
Article in English | MEDLINE | ID: mdl-35439285

ABSTRACT

BACKGROUND: It has been shown that activated microglia in brain releasing proinflammatory cytokines (PICs) contribute to the progression of cardiovascular diseases. In this study, we tested the hypothesis that microglial activation in hypothalamic paraventricular nucleus (PVN), induced by high-salt diet, increases the oxidative stress via releasing PICs and promotes sympathoexcitation and development of hypertension. METHODS: High-salt diet was given to male Dahl salt-sensitive rats to induce hypertension. Those rats were bilaterally implanted with cannula for PVN infusion of minocycline, a selective microglial activation blocker, or artificial cerebrospinal fluid for 4 weeks. RESULTS: High-salt diet elevated mean arterial pressure of Dahl salt-sensitive rats. Meanwhile, elevations of renal sympathetic nerve activity and central prostaglandin E2, as well as increase of plasma norepinephrine, were observed in those hypertensive rats. Tumor necrosis factor-α, interleukin-1ß (IL-1ß), and IL-6 increased in the PVN of those rats, associated with a significant activation of microglia and prominent disruption of redox balance, which was demonstrated by higher superoxide and NAD(P)H oxidase 2 (NOX-2) and NAD(P)H oxidase 4 (NOX-4), and lower Cu/Zn superoxide dismutase in PVN. PVN infusion of minocycline attenuated all hypertension-related alterations described above. CONCLUSION: This study indicates that high salt leads to microglial activation within PVN of hypertensive rats, and those activated PVN microglia release PICs and trigger the production of reactive oxygen species, which contributes to sympathoexcitation and development of hypertension. Blockade of PVN microglial activation inhibits inflammation and oxidative stress, therefore attenuating the development of hypertension induced by high-salt diet.


Subject(s)
Hypertension , Paraventricular Hypothalamic Nucleus , Animals , Cytokines/metabolism , Male , Microglia/metabolism , Minocycline/adverse effects , NADPH Oxidases/metabolism , Paraventricular Hypothalamic Nucleus/metabolism , Rats , Rats, Inbred Dahl , Sodium Chloride, Dietary/adverse effects
4.
Int J Mol Med ; 38(1): 57-64, 2016 Jul.
Article in English | MEDLINE | ID: mdl-27220915

ABSTRACT

The application of electromagnetic fields to support the bone-healing processes is a therapeutic approach for patients with musculoskeletal disorders. The ASNIS-III s-series screw is a bone stimulation system providing electromagnetic stimulation; however, its influence on human osteoblasts (hOBs) has not been extensively investigated. Therefore, in the present study, the impact of this system on the viability and differentiation of hOBs was examined. We used the ASNIS-III s screw system in terms of a specific experimental test set-up. The ASNIS-III s screw system was used for the application of electromagnetic fields (EMF, 3 mT, 20 Hz) and electromagnetic fields combined with an additional alternating electric field (EMF + EF) (3 mT, 20 Hz, 700 mV). The stimulation of primary hOBs was conducted 3 times per day for 45 min over a period of 72 h. Unstimulated cells served as the controls. Subsequently, the viability, the gene expression of differentiation markers and pro-collagen type 1 synthesis of the stimulated osteoblasts and corresponding controls were investigated. The application of both EMF and EMF + EF using the ASNIS-III s screw system revealed a positive influence on bone cell viability and moderately increased the synthesis of pro-collagen type 1 compared to the unstimulated controls. Stimulation with EMF resulted in a slightly enhanced gene expression of type 1 collagen and osteocalcin; however, stimulation with EMF + EF resulted in a significant increase in alkaline phosphatase (1.4-fold) and osteocalcin (1.6-fold) levels, and a notable increase in the levels of runt-related transcription factor 2 (RUNX-2; 1.54-fold). Our findings demonstrate that stimulation with electromagnetic fields and an additional alternating electric field has a positive influence on hOBs as regards cell viability and the expression of osteoblastic differentiation markers.


Subject(s)
Cell Differentiation , Magnetics/methods , Osteoblasts/cytology , Osteogenesis , Cell Survival , Collagen Type I/metabolism , Electric Stimulation , Electromagnetic Fields , Humans , Osteoblasts/metabolism
5.
Comput Methods Biomech Biomed Engin ; 19(12): 1306-13, 2016 Sep.
Article in English | MEDLINE | ID: mdl-26777343

ABSTRACT

The dielectric properties of human bone are one of the most essential inputs required by electromagnetic stimulation for improved bone regeneration. Measuring the electric properties of bone is a difficult task because of the complexity of the bone structure. Therefore, an automatic approach is presented to calibrate the electric properties of bone. The numerical method consists of three steps: generating input from experimental data, performing the numerical simulation, and calibrating the bone dielectric properties. As an example, the dielectric properties at 20 Hz of a rabbit distal femur were calibrated. The calibration process was considered as an optimization process with the aim of finding the optimum dielectric bone properties that match most of the numerically calculated simulation and experimentally measured data sets. The optimization was carried out automatically by the optimization software tool iSIGHT in combination with the finite-element solver COMSOL Multiphysics. As a result, the optimum conductivity and relative permittivity of the rabbit distal femur at 20 Hz were found to be 0.09615 S/m and 19522 for cortical bone and 0.14913 S/m and 1561507 for cancellous bone, respectively. The proposed method is a potential tool for the identification of realistic dielectric properties of the entire bone volume. The presented approach combining iSIGHT with COMSOL is applicable to, amongst others, designing implantable electro-stimulative devices or the optimization of electrical stimulation parameters for improved bone regeneration.


Subject(s)
Electricity , Femur/physiology , Finite Element Analysis , Software , Algorithms , Animals , Automation , Calibration , Electric Conductivity , Humans , Rabbits
6.
Bioelectromagnetics ; 35(8): 547-58, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25251424

ABSTRACT

Electromagnetic stimulation is a common therapy used to support bone healing in the case of avascular necrosis of the femoral head. In the present study, we investigated a bipolar induction screw system with an integrated coil. The aim was to analyse the influence of the screw parameters on the electric field distribution in the human femoral head. In addition, three kinds of design parameters (the shape of the screw tip, position of the screw in the femoral head, and size of the screw insulation) were varied. The electric field distribution in the bone was calculated using the finite element software Comsol Multiphysics. Moreover, a validation experiment was set up for an identical bone specimen with an implanted screw. The electric potential of points inside and on the surface of the bone were measured and compared to numerical data. The electric field distribution within the bone was clearly changed by the different implant parameters. Repositioning the screw by a maximum of 10 mm and changing the insulation length by a maximum of 4 mm resulted in electric field volume changes of 16% and 7%, respectively. By comparing the results of numerical simulation with the data of the validation experiment, on average, the electric potential difference of 19% and 24% occurred when the measuring points were at a depth of approximately 5 mm within the femoral bone and directly on the surface of the femoral bone, respectively. The results of the numerical simulations underline that the electro-stimulation treatment of bone in clinical applications can be influenced by the implant parameters.


Subject(s)
Bone Screws , Electricity , Electromagnetic Fields , Femur Head/radiation effects , Femur Head/surgery , Finite Element Analysis , Humans , Prosthesis Design
SELECTION OF CITATIONS
SEARCH DETAIL