Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
EMBO Rep ; 25(6): 2662-2697, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38744970

ABSTRACT

The multifunctional RNA-binding protein hnRNPL is implicated in antibody class switching but its broader function in B cells is unknown. Here, we show that hnRNPL is essential for B cell activation, germinal center formation, and antibody responses. Upon activation, hnRNPL-deficient B cells show proliferation defects and increased apoptosis. Comparative analysis of RNA-seq data from activated B cells and another eight hnRNPL-depleted cell types reveals common effects on MYC and E2F transcriptional programs required for proliferation. Notably, while individual gene expression changes are cell type specific, several alternative splicing events affecting histone modifiers like KDM6A and SIRT1, are conserved across cell types. Moreover, hnRNPL-deficient B cells show global changes in H3K27me3 and H3K9ac. Epigenetic dysregulation after hnRNPL loss could underlie differential gene expression and upregulation of lncRNAs, and explain common and cell type-specific phenotypes, such as dysfunctional mitochondria and ROS overproduction in mouse B cells. Thus, hnRNPL is essential for the resting-to-activated B cell transition by regulating transcriptional programs and metabolism, at least in part through the alternative splicing of several histone modifiers.


Subject(s)
Alternative Splicing , B-Lymphocytes , Epigenesis, Genetic , Lymphocyte Activation , Animals , Humans , Mice , Apoptosis/genetics , B-Lymphocytes/metabolism , B-Lymphocytes/immunology , Cell Proliferation/genetics , Gene Expression Regulation , Germinal Center/immunology , Germinal Center/metabolism , Histones/metabolism , Lymphocyte Activation/genetics
2.
Proc Natl Acad Sci U S A ; 121(17): e2312330121, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38625936

ABSTRACT

The apolipoprotein B messenger RNA editing enzyme, catalytic polypeptide (APOBEC) family is composed of nucleic acid editors with roles ranging from antibody diversification to RNA editing. APOBEC2, a member of this family with an evolutionarily conserved nucleic acid-binding cytidine deaminase domain, has neither an established substrate nor function. Using a cellular model of muscle differentiation where APOBEC2 is inducibly expressed, we confirmed that APOBEC2 does not have the attributed molecular functions of the APOBEC family, such as RNA editing, DNA demethylation, and DNA mutation. Instead, we found that during muscle differentiation APOBEC2 occupied a specific motif within promoter regions; its removal from those regions resulted in transcriptional changes. Mechanistically, these changes reflect the direct interaction of APOBEC2 with histone deacetylase (HDAC) transcriptional corepressor complexes. We also found that APOBEC2 could bind DNA directly, in a sequence-specific fashion, suggesting that it functions as a recruiter of HDAC to specific genes whose promoters it occupies. These genes are normally suppressed during muscle cell differentiation, and their suppression may contribute to the safeguarding of muscle cell fate. Altogether, our results reveal a unique role for APOBEC2 within the APOBEC family.


Subject(s)
Chromatin , Muscle Proteins , APOBEC Deaminases/genetics , APOBEC-1 Deaminase/genetics , Cell Differentiation/genetics , Chromatin/genetics , Cytidine Deaminase/metabolism , DNA , Muscle Fibers, Skeletal/metabolism , Muscle Proteins/metabolism , Myoblasts/metabolism , RNA, Messenger/genetics , Animals , Mice
SELECTION OF CITATIONS
SEARCH DETAIL