Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
Add more filters










Publication year range
1.
bioRxiv ; 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38915495

ABSTRACT

Inverted formin-2 (INF2) gene mutations are among the most common causes of genetic focal segmental glomerulosclerosis (FSGS) with or without Charcot-Marie-Tooth (CMT) disease. Recent studies suggest that INF2, through its effects on actin and microtubule arrangement, can regulate processes including vesicle trafficking, cell adhesion, mitochondrial calcium uptake, mitochondrial fission, and T-cell polarization. Despite roles for INF2 in multiple cellular processes, neither the human pathogenic R218Q INF2 point mutation nor the INF2 knock-out allele is sufficient to cause disease in mice. This discrepancy challenges our efforts to explain the disease mechanism, as the link between INF2-related processes, podocyte structure, disease inheritance pattern, and their clinical presentation remains enigmatic. Here, we compared the kidney responses to puromycin aminonucleoside (PAN) induced injury between R218Q INF2 point mutant knock-in and INF2 knock-out mouse models and show that R218Q INF2 mice are susceptible to developing proteinuria and FSGS. This contrasts with INF2 knock-out mice, which show only a minimal kidney phenotype. Co-localization and co-immunoprecipitation analysis of wild-type and mutant INF2 coupled with measurements of cellular actin content revealed that the R218Q INF2 point mutation confers a gain-of-function effect by altering the actin cytoskeleton, facilitated in part by alterations in INF2 localization. Differential analysis of RNA expression in PAN-stressed heterozygous R218Q INF2 point-mutant and heterozygous INF2 knock-out mouse glomeruli showed that the adhesion and mitochondria-related pathways were significantly enriched in the disease condition. Mouse podocytes with R218Q INF2, and an INF2-mutant human patient's kidney organoid-derived podocytes with an S186P INF2 mutation, recapitulate the defective adhesion and mitochondria phenotypes. These results link INF2-regulated cellular processes to the onset and progression of glomerular disease. Thus, our data demonstrate that gain-of-function mechanisms drive INF2-related FSGS and explain the autosomal dominant inheritance pattern of this disease.

2.
Pflugers Arch ; 475(3): 323-341, 2023 03.
Article in English | MEDLINE | ID: mdl-36449077

ABSTRACT

Two heterozygous missense variants (G1 and G2) of Apolipoprotein L1 (APOL1) found in individuals of recent African ancestry can attenuate the severity of infection by some forms of Trypanosoma brucei. However, these two variants within a broader African haplotype also increase the risk of kidney disease in Americans of African descent. Although overexpression of either variant G1 or G2 causes multiple pathogenic changes in cultured cells and transgenic mouse models, the mechanism(s) promoting kidney disease remain unclear. Human serum APOL1 kills trypanosomes through its cation channel activity, and cation channel activity of recombinant APOL1 has been reconstituted in lipid bilayers and proteoliposomes. Although APOL1 overexpression increases whole cell cation currents in HEK-293 cells, the ion channel activity of APOL1 has not been assessed in glomerular podocytes, the major site of APOL1-associated kidney diseases. We characterize APOL1-associated whole cell and on-cell cation currents in HEK-293 T-Rex cells and demonstrate partial inhibition of currents by anti-APOL antibodies. We detect in primary human podocytes a similar cation current inducible by interferon-γ (IFNγ) and sensitive to inhibition by anti-APOL antibody as well as by a fragment of T. brucei Serum Resistance-Associated protein (SRA). CRISPR knockout of APOL1 in human primary podocytes abrogates the IFNγ-induced, antibody-sensitive current. Our novel characterization in HEK-293 cells of heterologous APOL1-associated cation conductance inhibited by anti-APOL antibody and our documentation in primary human glomerular podocytes of endogenous IFNγ-stimulated, APOL1-mediated, SRA and anti-APOL-sensitive ion channel activity together support APOL1-mediated channel activity as a therapeutic target for treatment of APOL1-associated kidney diseases.


Subject(s)
Kidney Diseases , Podocytes , Mice , Animals , Humans , Podocytes/metabolism , Apolipoprotein L1/genetics , Apolipoprotein L1/metabolism , HEK293 Cells , Kidney Diseases/metabolism , Mice, Transgenic , Ion Channels/metabolism
3.
Proc Natl Acad Sci U S A ; 119(44): e2210150119, 2022 11.
Article in English | MEDLINE | ID: mdl-36282916

ABSTRACT

APOL1 risk variants are associated with increased risk of kidney disease in patients of African ancestry, but not all individuals with the APOL1 high-risk genotype develop kidney disease. As APOL1 gene expression correlates closely with the degree of kidney cell injury in both cell and animal models, the mechanisms regulating APOL1 expression may be critical determinants of risk allele penetrance. The APOL1 messenger RNA includes Alu elements at the 3' untranslated region that can form a double-stranded RNA structure (Alu-dsRNA) susceptible to posttranscriptional adenosine deaminase acting on RNA (ADAR)-mediated adenosine-to-inosine (A-to-I) editing, potentially impacting gene expression. We studied the effects of ADAR expression and A-to-I editing on APOL1 levels in podocytes, human kidney tissue, and a transgenic APOL1 mouse model. In interferon-γ (IFN-γ)-stimulated human podocytes, ADAR down-regulates APOL1 by preventing melanoma differentiation-associated protein 5 (MDA5) recognition of dsRNA and the subsequent type I interferon (IFN-I) response. Knockdown experiments showed that recognition of APOL1 messenger RNA itself is an important contributor to the MDA5-driven IFN-I response. Mathematical modeling suggests that the IFN-ADAR-APOL1 network functions as an incoherent feed-forward loop, a biological circuit capable of generating fast, transient responses to stimuli. Glomeruli from human kidney biopsies exhibited widespread editing of APOL1 Alu-dsRNA, while the transgenic mouse model closely replicated the edited sites in humans. APOL1 expression in mice was inversely correlated with Adar1 expression under IFN-γ stimuli, supporting the idea that ADAR regulates APOL1 levels in vivo. ADAR-mediated A-to-I editing is an important regulator of APOL1 expression that could impact both penetrance and severity of APOL1-associated kidney disease.


Subject(s)
Adenosine Deaminase , Interferon Type I , Humans , Animals , Mice , Adenosine Deaminase/genetics , Adenosine Deaminase/metabolism , RNA Editing , Interferon-Induced Helicase, IFIH1/metabolism , RNA, Double-Stranded/genetics , 3' Untranslated Regions , Apolipoprotein L1/genetics , Interferon-gamma/genetics , Interferon-gamma/metabolism , RNA, Messenger/metabolism , Inosine/genetics , Inosine/metabolism , Adenosine/metabolism , Interferon Type I/metabolism
4.
Micromachines (Basel) ; 13(9)2022 Aug 25.
Article in English | MEDLINE | ID: mdl-36144007

ABSTRACT

Kidney diseases often lack optimal treatments, causing millions of deaths each year. Thus, developing appropriate model systems to study human kidney disease is of utmost importance. Some of the most promising human kidney models are organoids or small organ-resembling tissue collectives, derived from human-induced pluripotent stem cells (hiPSCs). However, they are more akin to a first-trimester fetal kidney than an adult kidney. Therefore, new strategies are needed to advance their maturity. They have great potential for disease modeling and eventually auxiliary therapy if they can reach the maturity of an adult kidney. In this review, we will discuss the current state of kidney organoids in terms of their similarity to the human kidney and use as a disease modeling system thus far. We will then discuss potential pathways to advance the maturity of kidney organoids to match an adult kidney for more accurate human disease modeling.

5.
Tissue Eng Part B Rev ; 28(4): 938-948, 2022 08.
Article in English | MEDLINE | ID: mdl-34541902

ABSTRACT

Unraveling the complex behavior of healthy and disease podocytes by analyzing the changes in their unique arrangement of foot processes, slit diaphragm, and the three-dimensional (3D) morphology is a long-standing goal in kidney-glomerular research. The complexities surrounding the podocytes' accessibility in animal models and growing evidence of differences between humans and animal systems have compelled researchers to look for alternate approaches to study podocyte behaviors. With the advent of bioengineered models, an increasingly powerful and diverse set of tools is available to develop novel podocyte culture systems. This review discusses the pertinence of various culture models of podocytes to study podocyte mechanisms in both normal physiology and disease conditions. While no one in vitro system comprehensively recapitulates podocytes' in vivo architecture, we emphasize how the existing systems can be exploited to answer targeted questions on podocyte structure and function. We highlight the distinct advantages and limitations of using these models to study podocyte behaviors and screen therapeutics. Finally, we discuss various considerations and potential engineering strategies for developing next-generation complex 3D culture models for studying podocyte behaviors in vitro. Impact Statement In various glomerular kidney diseases, there are numerous alterations in podocyte structure and function. Yet, many of these disease events and the required targeted therapies remain unknown, resulting in nonspecific treatments. The scientific and clinical communities actively search for new modes to develop structurally and functionally relevant podocyte culture systems to gain insights into various diseases and develop therapeutics. Current in vitro systems help in some ways but are not sufficient. A deeper understanding of these previous approaches is essential to advance the field, and importantly, bioengineering strategies can contribute a unique toolbox to establish next-generation podocyte systems.


Subject(s)
Podocytes , Animals , Bioengineering , Humans , Kidney , Kidney Glomerulus , Podocytes/physiology
6.
Dis Model Mech ; 14(8)2021 08 01.
Article in English | MEDLINE | ID: mdl-34350953

ABSTRACT

People of recent sub-Saharan African ancestry develop kidney failure much more frequently than other groups. A large fraction of this disparity is due to two coding sequence variants in the APOL1 gene. Inheriting two copies of these APOL1 risk variants, known as G1 and G2, causes high rates of focal segmental glomerulosclerosis (FSGS), HIV-associated nephropathy and hypertension-associated end-stage kidney disease. Disease risk follows a recessive mode of inheritance, which is puzzling given the considerable data that G1 and G2 are toxic gain-of-function variants. We developed coisogenic bacterial artificial chromosome (BAC) transgenic mice harboring either the wild-type (G0), G1 or G2 forms of human APOL1. Expression of interferon gamma (IFN-γ) via plasmid tail vein injection results in upregulation of APOL1 protein levels together with robust induction of heavy proteinuria and glomerulosclerosis in G1/G1 and G2/G2 but not G0/G0 mice. The disease phenotype was greater in G2/G2 mice. Neither heterozygous (G1/G0 or G2/G0) risk variant mice nor hemizygous (G1/-, G2/-) mice had significant kidney injury in response to IFN-γ, although the heterozygous mice had a greater proteinuric response than the hemizygous mice, suggesting that the lack of significant disease in humans heterozygous for G1 or G2 is not due to G0 rescue of G1 or G2 toxicity. Studies using additional mice (multicopy G2 and a non-isogenic G0 mouse) supported the notion that disease is largely a function of the level of risk variant APOL1 expression. Together, these findings shed light on the recessive nature of APOL1-nephropathy and present an important model for future studies.


Subject(s)
AIDS-Associated Nephropathy , Apolipoprotein L1 , Animals , Apolipoprotein L1/genetics , Apolipoprotein L1/metabolism , Chromosomes, Artificial, Bacterial/metabolism , Gain of Function Mutation , Genetic Predisposition to Disease , Humans , Mice , Mice, Transgenic
7.
J Am Soc Nephrol ; 32(2): 307-322, 2021 02.
Article in English | MEDLINE | ID: mdl-33443052

ABSTRACT

BACKGROUND: FSGS caused by mutations in INF2 is characterized by a podocytopathy with mistrafficked nephrin, an essential component of the slit diaphragm. Because INF2 is a formin-type actin nucleator, research has focused on its actin-regulating function, providing an important but incomplete insight into how these mutations lead to podocytopathy. A yeast two-hybridization screen identified the interaction between INF2 and the dynein transport complex, suggesting a newly recognized role of INF2 in regulating dynein-mediated vesicular trafficking in podocytes. METHODS: Live cell and quantitative imaging, fluorescent and surface biotinylation-based trafficking assays in cultured podocytes, and a new puromycin aminoglycoside nephropathy model of INF2 transgenic mice were used to demonstrate altered dynein-mediated trafficking of nephrin in INF2 associated podocytopathy. RESULTS: Pathogenic INF2 mutations disrupt an interaction of INF2 with dynein light chain 1, a key dynein component. The best-studied mutation, R218Q, diverts dynein-mediated postendocytic sorting of nephrin from recycling endosomes to lysosomes for degradation. Antagonizing dynein-mediated transport can rescue this effect. Augmented dynein-mediated trafficking and degradation of nephrin underlies puromycin aminoglycoside-induced podocytopathy and FSGS in vivo. CONCLUSIONS: INF2 mutations enhance dynein-mediated trafficking of nephrin to proteolytic pathways, diminishing its recycling required for maintaining slit diaphragm integrity. The recognition that dysregulated dynein-mediated transport of nephrin in R218Q knockin podocytes opens an avenue for developing targeted therapy for INF2-mediated FSGS.


Subject(s)
Cytoplasmic Dyneins/metabolism , Formins/genetics , Glomerulosclerosis, Focal Segmental/etiology , Membrane Proteins/metabolism , Mutation/genetics , Podocytes/pathology , Animals , Cell Culture Techniques , Glomerulosclerosis, Focal Segmental/metabolism , Glomerulosclerosis, Focal Segmental/pathology , Mice , Podocytes/metabolism , Protein Transport
8.
J Am Soc Nephrol ; 31(2): 374-391, 2020 02.
Article in English | MEDLINE | ID: mdl-31924668

ABSTRACT

BACKGROUND: Mutations in the gene encoding inverted formin-2 (INF2), a member of the formin family of actin regulatory proteins, are among the most common causes of autosomal dominant FSGS. INF2 is regulated by interaction between its N-terminal diaphanous inhibitory domain (DID) and its C-terminal diaphanous autoregulatory domain (DAD). INF2 also modulates activity of other formins, such as the mDIA subfamily, and promotes stable microtubule assembly. Why the disease-causing mutations are restricted to the N terminus and how they cause human disease has been unclear. METHODS: We examined INF2 isoforms present in podocytes and evaluated INF2 cleavage as an explanation for immunoblot findings. We evaluated the expression of INF2 N- and C-terminal fragments in human kidney disease conditions. We also investigated the localization and functions of the DID-containing N-terminal fragment in podocytes and assessed whether the FSGS-associated R218Q mutation impairs INF2 cleavage or the function of the N-fragment. RESULTS: The INF2-CAAX isoform is the predominant isoform in podocytes. INF2 is proteolytically cleaved, a process mediated by cathepsin proteases, liberating the N-terminal DID to function independently. Although the N-terminal region normally localizes to podocyte foot processes, it does not do so in the presence of FSGS-associated INF2 mutations. The C-terminal fragment localizes to the cell body irrespective of INF2 mutations. In podocytes, the N-fragment localizes to the plasma membrane, binds mDIA1, and promotes cell spreading in a cleavage-dependent way. The disease-associated R218Q mutation impairs these N-fragment functions but not INF2 cleavage. CONCLUSIONS: INF2 is cleaved into an N-terminal DID-containing fragment and a C-terminal DAD-containing fragment. Cleavage allows the N-terminal fragment to function independently and helps explain the clustering of FSGS-associated mutations.


Subject(s)
Formins/genetics , Glomerulosclerosis, Focal Segmental/genetics , Mutation , Peptide Fragments/physiology , Podocytes/physiology , Animals , Cathepsins/physiology , Cells, Cultured , Formins/physiology , Glomerulosclerosis, Focal Segmental/etiology , HEK293 Cells , Humans , Mice , Mice, Inbred C57BL , Protein Isoforms
9.
Proc Natl Acad Sci U S A ; 116(9): 3712-3721, 2019 02 26.
Article in English | MEDLINE | ID: mdl-30733285

ABSTRACT

Two coding variants in the apolipoprotein L1 (APOL1) gene (termed G1 and G2) are strongly associated with increased risk of nondiabetic kidney disease in people of recent African ancestry. The mechanisms by which the risk variants cause kidney damage, although not well-understood, are believed to involve injury to glomerular podocytes. The intracellular localization and function of APOL1 in podocytes remain unclear, with recent studies suggesting possible roles in the endoplasmic reticulum (ER), mitochondria, endosomes, lysosomes, and autophagosomes. Here, we demonstrate that APOL1 also localizes to intracellular lipid droplets (LDs). While a large fraction of risk variant APOL1 (G1 and G2) localizes to the ER, a significant proportion of wild-type APOL1 (G0) localizes to LDs. APOL1 transiently interacts with numerous organelles, including the ER, mitochondria, and endosomes. Treatment of cells that promote LD formation with oleic acid shifted the localization of G1 and G2 from the ER to LDs, with accompanying reduction of autophagic flux and cytotoxicity. Coexpression of G0 APOL1 with risk variant APOL1 enabled recruitment of G1 and G2 from the ER to LDs, accompanied by reduced cell death. The ability of G0 APOL1 to recruit risk variant APOL1 to LDs may help explain the recessive pattern of kidney disease inheritance. These studies establish APOL1 as a bona fide LD-associated protein, and reveal that recruitment of risk variant APOL1 to LDs reduces cell toxicity, autophagic flux, and cell death. Thus, interventions that divert APOL1 risk variants to LDs may serve as a novel therapeutic strategy to alleviate their cytotoxic effects.


Subject(s)
Apolipoprotein L1/genetics , Autophagy/genetics , Kidney Diseases/genetics , Lipid Droplets/metabolism , Black People/genetics , Endoplasmic Reticulum/genetics , Endosomes/genetics , Genetic Variation , HEK293 Cells , Humans , Kidney/injuries , Kidney/pathology , Kidney Diseases/physiopathology , Lipid Droplets/pathology , Lysosomes/genetics , Podocytes/metabolism , Podocytes/pathology , Risk Factors
10.
Biomaterials ; 183: 295-305, 2018 11.
Article in English | MEDLINE | ID: mdl-30189357

ABSTRACT

Three-dimensional (3D) in vitro kidney tubule models have either largely relied on the self-morphogenetic properties of the mammalian cells or used an engineered microfluidic platform with a monolayer of cells cultured on an extracellular matrix (ECM) protein coated porous membrane. These systems are used to understand critical processes during kidney development and transport properties of renal tubules. However, high variability and lack of kidney tubule-relevant geometries among engineered structures limit their utility in disease research and pre-clinical drug testing. Here, we report a novel bioengineered guided kidney tubule (gKT) array system that incorporates in vivo-like physicochemical cues in 3D culture to reproducibly generate homogeneous kidney tubules. The system utilizes a unique 3D micro-molded ECM platform in human physiology-scale dimensions (50-µm diameter) and relevant shapes to guide cells towards formation of mature tubule structures. The guided kidney tubules in our array system display enhanced tubule homogeneity with in vivo-like structural and functional features as evaluated by marker protein localization and epithelial transport analysis. Furthermore, the response of gKT structures to forskolin treatment exhibits characteristic tissue transformations from tubules to expanding cysts. Moreover, acute cisplatin injury causes induction of Kidney Injury Molecule-1 (KIM-1) expression as well as tubular necrosis and apoptosis. Thus the gKT array system offers enhanced structural uniformity with accurate in vivo-like tissue architecture, and will have broad applications in kidney tubule disease pathophysiology (including ciliopathies and drug-induced acute kidney injury), and will enhance pre-clinical drug screening studies.


Subject(s)
Kidney Tubules/metabolism , Acute Kidney Injury/chemically induced , Acute Kidney Injury/metabolism , Animals , Antineoplastic Agents/pharmacology , Antineoplastic Agents/toxicity , Apoptosis , Bioengineering , Biological Transport , Cell Line , Cells, Cultured , Cisplatin/pharmacology , Cisplatin/toxicity , Dimethylpolysiloxanes/chemistry , Epithelial Cells/metabolism , Extracellular Matrix/chemistry , Humans , Kidney Diseases, Cystic/metabolism , Membranes, Artificial , Mice , Necrosis , Porosity
11.
Kidney Int ; 90(2): 363-372, 2016 08.
Article in English | MEDLINE | ID: mdl-27350175

ABSTRACT

Mutations in the INF2 (inverted formin 2) gene, encoding a diaphanous formin family protein that regulates actin cytoskeleton dynamics, cause human focal segmental glomerulosclerosis (FSGS). INF2 interacts directly with certain other mammalian diaphanous formin proteins (mDia) that function as RhoA effector molecules. FSGS-causing INF2 mutations impair these interactions and disrupt the ability of INF2 to regulate Rho/Dia-mediated actin dynamics in vitro. However, the precise mechanisms by which INF2 regulates and INF2 mutations impair glomerular structure and function remain unknown. Here, we characterize an Inf2 R218Q point-mutant (knockin) mouse to help answer these questions. Knockin mice have no significant renal pathology or proteinuria at baseline despite diminished INF2 protein levels. INF2 mutant podocytes do show impaired reversal of protamine sulfate-induced foot process effacement by heparin sulfate perfusion. This is associated with persistent podocyte cytoplasmic aggregation, nephrin phosphorylation, and nephrin and podocin mislocalization, as well as impaired recovery of mDia membrane localization. These changes were partially mimicked in podocyte outgrowth cultures, in which podocytes from knockin mice show altered cellular protrusions compared to those from wild-type mice. Thus, in mice, normal INF2 function is not required for glomerular development but normal INF2 is required for regulation of the actin-based behaviors necessary for response to and/or recovery from injury.


Subject(s)
Acute Kidney Injury/metabolism , Glomerulosclerosis, Focal Segmental/genetics , Glomerulosclerosis, Focal Segmental/metabolism , Microfilament Proteins/genetics , Podocytes/metabolism , Actins/metabolism , Acute Kidney Injury/chemically induced , Animals , Cells, Cultured , Disease Models, Animal , Formins , Heparin/pharmacology , Humans , Intracellular Signaling Peptides and Proteins/metabolism , Membrane Proteins/metabolism , Mice , Microfilament Proteins/metabolism , Microscopy, Electron, Transmission , Phenotype , Phosphorylation , Podocytes/drug effects , Podocytes/pathology , Podocytes/ultrastructure , Point Mutation , Protamines/toxicity , Signal Transduction , rho GTP-Binding Proteins/metabolism , rhoA GTP-Binding Protein
12.
Adv Funct Mater ; 24(4): 472-479, 2014 Jan 29.
Article in English | MEDLINE | ID: mdl-25419210

ABSTRACT

The goals of the present study are to establish an in vitro co-culture model of osteoblast and osteoclast function and to quantify the resulting bone remodeling. The bone is tissue engineered using well-defined silk protein biomaterials in 2D and 3D formats in combination with human cells expressing tethered agonists for selected G protein-coupled receptors (GPCRs). The tethered constructs are introduced with the objective of triggering sustained and localized GPCR signaling. The cell-modified biomaterial surfaces are reconstructed from SEM images into 3D models using image processing for quantitative measurement of surface characteristics. Parathyroid hormone (PTH) and glucose-dependent insulinotropic peptide (GIP) are selected because of their roles in bone remodeling for expression in tethered format on bone marrow derived human mesenchymal stem cells (hMSCs). Increased calcium deposition and increased surface roughness are found in 3D digital surface models constructed from SEM images of silk protein films remodeled by the co-cultures containing the tethered PTH, and decreased surface roughness is found for the films remodeled by the tethered GIP co-cultures. Increased surface roughness is not found in monocultures of hMSCs expressing tethered PTH, suggesting that osteoclast-osteoblast interactions in the presence of PTH signaling are responsible for the increased mineralization. These data point towards the design of in vitro bone models in which osteoblast-osteoclast interactions are mimicked for a better understanding of bone remodeling.

13.
Invest Ophthalmol Vis Sci ; 55(9): 5788-94, 2014 Aug 14.
Article in English | MEDLINE | ID: mdl-25125607

ABSTRACT

PURPOSE: Mutations in the cilia-centrosomal protein of centrosomal protein of 290 kDa (CEP290) result in severe ciliopathies, including autosomal recessive early onset childhood blindness disorder Leber congenital amaurosis (LCA). The Cep290(rd16) (retinal degeneration 16) mouse model of CEP290-LCA exhibits accumulation of CEP290-interacting protein Raf-1 kinase inhibitory protein (RKIP) prior to onset of retinal degeneration (by postnatal day P14). We hypothesized that reducing RKIP levels in the Cep290(rd16) mouse will delay or improve retinal phenotype. METHODS: We generated double mutant mice by combining the Cep290(rd16) and Rkip(ko) alleles (Cep290(rd16):Rkip(+/ko) and Cep290(rd16):Rkip(ko/ko)). Retinal function was assessed by ERG and retinal morphology and protein trafficking were assessed by histology, transmission electron microscopy (TEM), and immunofluorescence analysis. Cell death was examined by apoptosis. RESULTS: Prior to testing our hypothesis, we examined ERG and retinal morphology of Rkip(ko/ko) mice and did not find any detectable differences compared with wild-type mice. The Cep290(rd16):Rkip(+/ko) mice exhibited similar retinopathy as Cep290(rd16); however, Cep290(rd16): Rkip(ko/ko) double knockout mice demonstrated a substantial improvement (>9-fold) in photoreceptor function and structure at P18 as of Cep290(rd16) mice. We consistently detected transient preservation of photoreceptors at P18 and polarized trafficking of opsins to sensory cilia in the double mutant mice; however, retinal degeneration ensued by P30. CONCLUSIONS: Our studies implicate CEP290-RKIP pathway in CEP290-retinal degeneration and suggest that targeting RKIP levels can delay photoreceptor degeneration, assisting in extending the time-window for treating such rapidly progressing blindness disorder.


Subject(s)
Phosphatidylethanolamine Binding Protein/physiology , Retinal Degeneration/physiopathology , Analysis of Variance , Animals , Antigens, Neoplasm , Apoptosis/physiology , Cell Cycle Proteins , Ciliary Body/metabolism , Cytoskeletal Proteins , Disease Models, Animal , Electroretinography , Mice , Mice, Knockout , Nuclear Proteins , Opsins/metabolism , Phosphatidylethanolamine Binding Protein/deficiency , Photoreceptor Cells, Vertebrate/physiology , Retinal Degeneration/pathology
14.
Biomaterials ; 33(33): 8383-94, 2012 Nov.
Article in English | MEDLINE | ID: mdl-22940218

ABSTRACT

Autosomal Dominant Polycystic Kidney Disease (ADPKD) remains a major health care concern affecting several million patients worldwide and for which there is no specific treatment. We have employed a 3D tissue engineered disease-like system to emulate cystic structures in vitro and analyzed the extracellular matrix (ECM) interactions in it. The tissue system was developed by culturing normal or polycystin-1 silenced mouse Inner Medullary Collecting Duct (mIMCD) cells in ECM infused into 3D porous silk protein biomaterial scaffolds. In this system, the silk scaffolds provide slow degradation, biocompatibility, and maintain structure and transport for the 3D system, while the ECM molecules retain biological signaling. Using this 3D tissue system we provide evidence for an autocrine signaling loop involving abnormal matrix deposition (collagen type IV and laminin) and its integrin receptor subunit protein (Integrin-ß1) in Pkd1 silenced mIMCD cells. In addition, we report that abnormal pericystic ECM interactions between matrix molecules and integrin subunit proteins regulate the rate of cystogenesis in the disease system. Molecular signaling showed abnormalities in cyclin proteins and cell-cycle progression upon Pkd1 knockdown. Importantly, disruption of the abnormal matrix interactions by an additional knockdown (double-silencing) of integrin-ß1 in Pkd1 silenced cells reversed the abnormalities and reduced the rate of cystogenesis. Together, these findings indicate that abnormal matrix deposition and altered integrin profile distribution as observed in ADPKD and are critical in cystogenesis and should be considered a target for the development of therapeutics.


Subject(s)
Extracellular Matrix/metabolism , Kidney Diseases/metabolism , Tissue Engineering/methods , Animals , Biocompatible Materials/chemistry , Cell Cycle/physiology , Cell Proliferation , Immunoblotting , Integrin beta1/genetics , Integrin beta1/metabolism , Mice , Microscopy, Confocal , Polycystic Kidney Diseases/metabolism , Silk/chemistry , TRPP Cation Channels/genetics , TRPP Cation Channels/metabolism
15.
J Tissue Eng Regen Med ; 4(8): 590-9, 2010 Dec.
Article in English | MEDLINE | ID: mdl-20865693

ABSTRACT

Prostate cancer cases and deaths have increased for years, yet the mechanisms involved in prostate cancer metastasis to bone remain poorly understood. To address this need, an effective and relevant in vitro model for the study of prostate cancer bone metastases would be useful. Therefore, a 3D in vitro tissue system was established using prostate cancer cells (PC3), suitable culture conditions and a 3D silk scaffold biomaterial to provide mechanically robust and slow degrading matrices to support the tissues for extended time frames. The role of BMP-2 on the progression of prostate cancer was investigated using this 3D tissue system. The results suggest that BMP-2 stimulates the migration of PC3 cells, suggesting insight into mechanisms involved in this critical step in the disease. The data support the conclusion that this in vitro system mimics aspects of prostate cancer metastasis in the presence of BMP-2, thus the system can be utilized as a starting point as an in vitro model for further studies of prostate cancer development and metastasis, as well as in the screening of new therapeutic treatments.


Subject(s)
Bone Morphogenetic Protein 2/metabolism , Bone Neoplasms/metabolism , Bone Neoplasms/secondary , Models, Biological , Bone Neoplasms/pathology , Cell Line, Tumor , Cell Movement/drug effects , Enzyme-Linked Immunosorbent Assay , Gene Expression Regulation/drug effects , Humans , Male , Microscopy, Confocal , Silk/pharmacology , Tissue Scaffolds
16.
J Control Release ; 146(1): 136-43, 2010 Aug 17.
Article in English | MEDLINE | ID: mdl-20457191

ABSTRACT

Silk proteins are biodegradable and biocompatible, and can also be tailored to contain additional features via genetic engineering, suggesting utility for gene delivery. In the present study, novel silk-based block copolymers were bioengineered both with poly(L-lysine) domains to interact with plasmid DNA (pDNA) and RGD, to enhance cell-binding and transfection efficiency. Ionic complexes of these silk-polylysine-RGD block copolymers with pDNA were prepared, characterized and utilized for gene delivery to HeLa cells and human embryonic kidney (HEK) cells. The material systems were characterized by agarose gel electrophoresis, zeta-potentialmeter, atomic force microscopy, and dynamic light scattering. Sizes and charges of the pDNA complexes were regulated by the polymer/nucleotide molar ratio. Samples with 30-lysine residues and 11 RGD sequences, prepared at the ratio of number of amines/phosphates from pDNA (N/P) of 2, had an average solution diameter of 186 nm and showed the highest transfection efficiency. The intracellular distribution of complexes of Cy5-labeled pDNA was investigated by confocal laser scanning microscopy. The Cy5-labeled pDNA was distributed near the cell membrane and around the nuclei, indicating that the pDNA was transferred near the nucleus. The results demonstrated the potential of bioengineered silk proteins with additional functional features as a new family of highly tailored gene delivery systems.


Subject(s)
Drug Carriers/chemistry , Fibroins/chemistry , Gene Transfer Techniques , Oligopeptides/chemistry , Recombinant Fusion Proteins/chemistry , Amino Acid Motifs , Cations , Cloning, Molecular , DNA/administration & dosage , DNA/genetics , Escherichia coli/genetics , Fibroins/genetics , HeLa Cells , Humans , Integrins/biosynthesis , Integrins/metabolism , Molecular Sequence Data , Oligopeptides/genetics , Plasmids , Polylysine/chemistry , Protein Binding , Protein Engineering , Recombinant Fusion Proteins/genetics , Transfection
17.
Tissue Eng Part A ; 16(9): 2821-31, 2010 Sep.
Article in English | MEDLINE | ID: mdl-20486787

ABSTRACT

Morphogenesis of epithelial cells involves processes by which kidney shape and function are regulated. The lack of in vitro models that are sustainable for longer time periods and emulating complex intercellular interactions of the kidney have limited understanding about epithelial tissue morphogenesis and its aberrations in diseases such as autosomal dominant polycystic kidney disease (ADPKD). A sustainable three-dimensional (3D) coculture system for normal and diseased kidney tissues is reported here. Tubule- and ADPKD cyst-derived cells were cultured in extracellular matrix molecules infused into 3D porous silk scaffolds, and these cultures were subsequently extended into a perfusion bioreactor. The results indicated collagen-matrigel-mediated morphogenesis for both (normal and disease) cell types and also supported coculturing with fibroblasts. The structural and functional features of the kidney-like tissue structures were validated based on the distribution of E-cadherin, N-cadherin, Na+ K+ ATPase pump, and cellular uptake of the organic anion (6-carboxy fluorescein). Further, the structures were sustained for longer time periods using a perfusion bioreactor to demonstrate the potential utility of this 3D in vitro coculture system for ADPKD research, other epithelial tissue systems, and for in vitro drug screening.


Subject(s)
Bombyx/chemistry , Kidney Diseases/therapy , Tissue Engineering/methods , Tissue Scaffolds/chemistry , Animals , Blotting, Western , Cell Line , Epithelial Cells/cytology , Fibroblasts/cytology , Flow Cytometry , Kidney/metabolism , Kidney/pathology , Kidney/surgery , Mice , Microscopy, Atomic Force
18.
Biomaterials ; 30(29): 5775-84, 2009 Oct.
Article in English | MEDLINE | ID: mdl-19577803

ABSTRACT

Silk proteins self-assemble into mechanically robust material structures that are also biodegradable and non-cytotoxic, suggesting utility for gene delivery. Since silk proteins can also be tailored in terms of chemistry, molecular weight and other design features via genetic engineering, further control of this system for gene delivery can be considered. In the present study, silk-based block copolymers were bioengineered with poly(L-lysine) domains for gene delivery. Ionic complexes of these silk-polylysine based block copolymers with plasmid DNA (pDNA) were prepared for gene delivery to human embryonic kidney (HEK) cells. The material systems were characterized by agarose gel electrophoresis, atomic force microscopy, and dynamic light scattering. The polymers self-assembled in solution and complexed plasmid DNA through ionic interactions. The pDNA complexes with 30 lysine residues prepared at a polymer/nucleotide ratio of 10 and with a solution diameter of 380 nm showed the highest efficiency for transfection. The pDNA complexes were also immobilized on silk films and demonstrated direct cell transfection from these surfaces. The results demonstrate the potential of bioengineered silk proteins as a new family of highly tailored gene delivery systems.


Subject(s)
DNA/administration & dosage , DNA/pharmacokinetics , Drug Carriers/chemistry , Fibroins/chemistry , Kidney/metabolism , Transfection/methods , Cell Line , DNA/chemistry , Humans , Materials Testing
19.
Tissue Eng Part A ; 15(10): 3087-98, 2009 Oct.
Article in English | MEDLINE | ID: mdl-19338449

ABSTRACT

Epithelial-mesenchymal interactions play an important role in regulating normal tissue development as well as tumor development for the mammary gland, but much is yet to uncover to reach a full understanding of their complexity. To address this issue, the establishment of relevant, surrogate, three-dimensional (3D) human tissue culture models is essential. In the present study, a novel 3D coculture system was developed to study the interactions between human mammary epithelial cells (MCF10A) and adipocytes, a prominent stromal cell type in native breast tissue. The MCF10A cells were cultured within a mixture of Matrigel and collagen in 3D porous silk scaffolds with or without predifferentiated human adipose-derived stem cells (hASCs). The presence of hASCs inhibited MCF10A cell proliferation, induced both alveolar and ductal morphogenesis, and enhanced their functional differentiation as evidenced by histology and functional analysis. The alveolar structures formed by cocultures exhibited proper, immature polarity when compared with native breast tissue. In contrast, only alveolar structures with reverted polarity were observed in the MCF10A monocultures. The effect of ductal morphogenesis in cocultures may correlate to hepatocyte growth factor secreted by the predifferentiated hASCs, based on results from a cytokine blocking assay. Taken together, this in vitro coculture model on silk scaffolds effectively reconstitutes a physiologically relevant 3D microenvironment for epithelial cells and stromal cells and provides a useful system to study tissue organization and epithelial morphogenesis in normal or diseased breast development.


Subject(s)
Adipocytes/cytology , Epithelial Cells/cytology , Fibroins/chemistry , Mammary Glands, Human/cytology , Tissue Engineering/methods , Tissue Scaffolds/chemistry , Adipocytes/metabolism , Cell Differentiation/physiology , Cell Line , Cell Proliferation , Cell Survival/physiology , Epithelial Cells/metabolism , Humans , Microscopy, Electron, Scanning , Reverse Transcriptase Polymerase Chain Reaction
20.
Int J Pharm ; 363(1-2): 206-13, 2008 Nov 03.
Article in English | MEDLINE | ID: mdl-18718513

ABSTRACT

The present study investigated whether MicroFluidizer Processor-based nanoemulsions of an antioxidant synergy formulation (ASF), containing delta, alpha and gamma tocopherol influenced inflammation and bioavailability in CD-1 mice. Croton oil was applied to all animals' right ear lobe to induce inflammation. Auricular thickness was measured after 2 and 6h after the various treatments. The animal plasma and ear lobes were collected and frozen for bioavailability and cytokine analyses. The ASF nanoemulsions of alpha, delta, or gamma tocopherol significantly reduced auricular thickness compared to control (57, -57, and -71%, respectively) and blank nanoemulsion (-50, -50, -67%, respectively). Relative to the suspensions of ASF, only the nanoemulsion of ASF containing gamma tocopherol significantly reduced auricular thickness (-60%), whereas the 40% reduction with nanoemulsions of delta tocopherol compared to suspension was not statistically significant. Auricular concentrations of cytokines TNF-alpha and IL-1 alpha were significantly reduced in mice treated only with ASF nanoemulsions of gamma tocopherol compared to control (-53, -46%, respectively) and blank nanoemulsion (-52, -46%, respectively). Auricular thickness was significantly associated with tissue TNF-alpha (r=0.539, p<0.001) and IL-1 alpha concentrations (r=0.404, p=0.01). Bioavailability for gamma and delta was dramatically enhanced (2.2- and 2.4-folds) with the nanoemulsion compared to suspensions. Only the plasma gamma tocopherol concentration was significantly associated with auricular thickness (r=-0.643, P=0.001). In conclusion, nanoemulsions of ASF containing gamma, alpha, and delta tocopherol, have enhanced anti-inflammatory properties and increased bioavailability, with gamma tocopherol, in particular compared to their suspensions.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Antioxidants/pharmacology , Ear Auricle/drug effects , Emulsions , Inflammation/prevention & control , Nanoparticles , gamma-Tocopherol/pharmacology , Animals , Anti-Inflammatory Agents/administration & dosage , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/pharmacokinetics , Antioxidants/administration & dosage , Antioxidants/chemistry , Antioxidants/pharmacokinetics , Biological Availability , Chemistry, Pharmaceutical , Croton Oil , Disease Models, Animal , Ear Auricle/immunology , Ear Auricle/pathology , Inflammation/chemically induced , Inflammation/immunology , Inflammation/pathology , Interleukin-1alpha/metabolism , Male , Mice , Particle Size , Tocopherols/pharmacology , Tumor Necrosis Factor-alpha/metabolism , alpha-Tocopherol/pharmacology , gamma-Tocopherol/administration & dosage , gamma-Tocopherol/chemistry , gamma-Tocopherol/pharmacokinetics
SELECTION OF CITATIONS
SEARCH DETAIL
...