Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Pollut ; 341: 122997, 2024 Jan 15.
Article in English | MEDLINE | ID: mdl-38000727

ABSTRACT

Exposure to air pollution fine particulate matter (PM2.5) aggravates respiratory and cardiovascular diseases. It has been proposed that PM2.5 uptake by alveolar macrophages promotes local inflammation that ignites a systemic response, but precise underlying mechanisms remain unclear. Here, we demonstrate that PM2.5 phagocytosis leads to NLRP3 inflammasome activation and subsequent release of the pro-inflammatory master cytokine IL-1ß. Inflammasome priming and assembly was time- and dose-dependent in inflammasome-reporter THP-1-ASC-GFP cells, and consistent across PM2.5 samples of variable chemical composition. While inflammasome activation was promoted by different PM2.5 surrogates, significant IL-1ß release could only be observed after stimulation with transition-metal rich Residual Oil Fly Ash (ROFA) particles. This effect was confirmed in primary human monocyte-derived macrophages and murine bone marrow-derived macrophages (BMDMs), and by confocal imaging of inflammasome-reporter ASC-Citrine BMDMs. IL-1ß release by ROFA was dependent on the NLRP3 inflammasome, as indicated by lack of IL-1ß production in ROFA-exposed NLRP3-deficient (Nlrp3-/-) BMDMs, and by specific NLRP3 inhibition with the pharmacological compound MCC950. In addition, while ROFA promoted the upregulation of pro-inflammatory gene expression and cytokines release, MCC950 reduced TNF-α, IL-6, and CCL2 production. Furthermore, inhibition of TNF-α with a neutralizing antibody decreased IL-1ß release in ROFA-exposed BMDMs. Using electron tomography, ROFA particles were observed inside intracellular vesicles and mitochondria, which showed signs of ultrastructural damage. Mechanistically, we identified lysosomal rupture, K+ efflux, and impaired mitochondrial function as important prerequisites for ROFA-mediated IL-1ß release. Interestingly, specific inhibition of superoxide anion production (O2•-) from mitochondrial respiratory Complex I, but not III, blunted IL-1ß release in ROFA-exposed BMDMs. Our findings unravel the mechanism by which PM2.5 promotes IL-1ß release in macrophages and provide a novel link between innate immune response and exposure to air pollution PM2.5.


Subject(s)
Air Pollution , Inflammasomes , Humans , Animals , Mice , Inflammasomes/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , Particulate Matter/metabolism , Tumor Necrosis Factor-alpha/metabolism , Macrophages/metabolism , Cytokines/metabolism , Coal Ash/pharmacology
2.
Purinergic Signal ; 2023 Jul 06.
Article in English | MEDLINE | ID: mdl-37410223

ABSTRACT

The NLRP3-inflammasome is a cytosolic multiprotein complex that triggers an inflammatory response to certain danger signals. Recently adenosine diphosphate (ADP) was found to activate the NLRP3-inflammasome in murine macrophages via the P2Y1 receptor. Blockade of this signaling pathway reduced disease severity in a murine colitis-model. However, the role of the ADP/P2Y1-axis has not yet been studied in humans. This present study confirmed ADP-dependent NLRP3-inflammasome activation in murine macrophages, but found no evidence for a role of ADP in inflammasome activation in humans. We investigated the THP1 cell line as well as primary monocytes and further looked at macrophages. Although all cells express the three human ADP-receptors P2Y1, P2Y12 and P2Y13, independent of priming, neither increased ASC-speck formation could be detected with flow cytometry nor additional IL-1ß release be found in the culture supernatant of ADP stimulated cells. We now show for the first time that the responsiveness of monocytes and macrophages to ADP as well as the regulation of its purinergic receptors is very much dependent on the species. Therefore the signaling pathway found to contribute to colitis in mice is likely not applicable to humans.

3.
Sci Rep ; 12(1): 2801, 2022 02 18.
Article in English | MEDLINE | ID: mdl-35181718

ABSTRACT

Extracellular adenosine-5'-triphosphate (ATP) acts as an import signaling molecule mediating inflammation via purinergic P2 receptors. ATP binds to the purinergic receptor P2X4 and promotes inflammation via increased expression of pro-inflammatory cytokines. Because of the central role of inflammation, we assumed a functional contribution of the ATP-P2X4-axis in atherosclerosis. Expression of P2X4 was increased in atherosclerotic aortic arches from low-density lipoprotein receptor-deficient mice being fed a high cholesterol diet as assessed by real-time polymerase chain reaction and immunohistochemistry. To investigate the functional role of P2X4 in atherosclerosis, P2X4-deficient mice were crossed with low-density lipoprotein receptor-deficient mice and fed high cholesterol diet. After 16 weeks, P2X4-deficient mice developed smaller atherosclerotic lesions compared to P2X4-competent mice. Furthermore, intravital microscopy showed reduced ATP-induced leukocyte rolling at the vessel wall in P2X4-deficient mice. Mechanistically, we found a reduced RNA expression of CC chemokine ligand 2 (CCL-2), C-X-C motif chemokine-1 (CXCL-1), C-X-C motif chemokine-2 (CXCL-2), Interleukin-6 (IL-6) and tumor necrosis factor α (TNFα) as well as a decreased nucleotide-binding oligomerization domain-like receptor protein 3 (NLRP3)-inflammasome priming in atherosclerotic plaques from P2X4-deficient mice. Moreover, bone marrow derived macrophages isolated from P2X4-deficient mice revealed a reduced ATP-mediated release of CCL-2, CC chemokine ligand 5 (CCL-5), Interleukin-1ß (IL-1ß) and IL-6. Additionally, P2X4-deficient mice shared a lower proportion of pro-inflammatory Ly6Chigh monocytes and a higher proportion of anti-inflammatory Ly6Clow monocytes, and expressend less endothelial VCAM-1. Finally, increased P2X4 expression in human atherosclerotic lesions from carotid endarterectomy was found, indicating the importance of potential implementations of this study's findings for human atherosclerosis. Collectively, P2X4 deficiency reduced experimental atherosclerosis, plaque inflammation and inflammasome priming, pointing to P2X4 as a potential therapeutic target in the fight against atherosclerosis.


Subject(s)
Atherosclerosis/genetics , Inflammation/genetics , Receptors, LDL/genetics , Receptors, Purinergic P2X4/genetics , Adenosine Triphosphate/metabolism , Animals , Atherosclerosis/pathology , Blood Vessels/drug effects , Blood Vessels/pathology , Chemokine CCL2/genetics , Chemokine CXCL1/genetics , Cholesterol/pharmacology , Diet, High-Fat/adverse effects , Endarterectomy, Carotid , Humans , Inflammation/pathology , Interleukin-6/genetics , Macrophages/metabolism , Macrophages/pathology , Mice , Mice, Knockout , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , Plaque, Atherosclerotic/genetics , Plaque, Atherosclerotic/pathology , Signal Transduction/genetics , Tumor Necrosis Factor-alpha/genetics , Vascular Cell Adhesion Molecule-1/genetics
4.
J Neurophysiol ; 106(6): 3035-44, 2011 Dec.
Article in English | MEDLINE | ID: mdl-21849616

ABSTRACT

Alternating epochs of activity and silence are a characteristic feature of neocortical networks during certain sleep cycles and deep states of anesthesia. The mechanism and functional role of these slow oscillations (<1 Hz) have not yet been fully characterized. Experimental and theoretical studies show that slow-wave oscillations can be generated autonomously by neocortical tissue but become more regular through a thalamo-cortical feedback loop. Evidence for a functional role of slow-wave activity comes from EEG recordings in humans during sleep, which show that activity travels as stereotypical waves over the entire brain, thought to play a role in memory consolidation. We used an animal model to investigate activity wave propagation on a smaller scale, namely within the rat somatosensory cortex. Signals from multiple extracellular microelectrodes in combination with one intracellular recording in the anesthetized animal in vivo were utilized to monitor the spreading of activity. We found that activity propagation in most animals showed a clear preferred direction, suggesting that it often originated from a similar location in the cortex. In addition, the breakdown of active states followed a similar pattern with slightly weaker direction preference but a clear correlation to the direction of activity spreading, supporting the notion of a wave-like phenomenon similar to that observed after strong sensory stimulation in sensory areas. Taken together, our findings support the idea that activity waves during slow-wave sleep do not occur spontaneously at random locations within the network, as was suggested previously, but follow preferred synaptic pathways on a small spatial scale.


Subject(s)
Action Potentials/physiology , Brain Waves/physiology , Models, Neurological , Neocortex/cytology , Neocortex/physiology , Neurons/physiology , Animals , Biophysical Phenomena/physiology , Brain Mapping , Electroencephalography , Nerve Net/physiology , Neural Pathways/physiology , Rats , Rats, Sprague-Dawley , Sleep/physiology , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL