Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Proc Natl Acad Sci U S A ; 120(52): e2313693120, 2023 Dec 26.
Article in English | MEDLINE | ID: mdl-38117852

ABSTRACT

Ectonucleotide pyrophosphatase/phosphodiesterase 1 (ENPP1) expression correlates with poor prognosis in many cancers, and we previously discovered that ENPP1 is the dominant hydrolase of extracellular cGAMP: a cancer-cell-produced immunotransmitter that activates the anticancer stimulator of interferon genes (STING) pathway. However, ENPP1 has other catalytic activities and the molecular and cellular mechanisms contributing to its tumorigenic effects remain unclear. Here, using single-cell RNA-seq, we show that ENPP1 in both cancer and normal tissues drives primary breast tumor growth and metastasis by dampening extracellular 2'3'-cyclic-GMP-AMP (cGAMP)-STING-mediated antitumoral immunity. ENPP1 loss-of-function in both cancer cells and normal tissues slowed primary tumor growth and abolished metastasis. Selectively abolishing the cGAMP hydrolysis activity of ENPP1 phenocopied ENPP1 knockout in a STING-dependent manner, demonstrating that restoration of paracrine cGAMP-STING signaling is the dominant anti-cancer mechanism of ENPP1 inhibition. Finally, ENPP1 expression in breast tumors deterministically predicated whether patients would remain free of distant metastasis after pembrolizumab (anti-PD-1) treatment followed by surgery. Altogether, ENPP1 blockade represents a strategy to exploit cancer-produced extracellular cGAMP for controlled local activation of STING and is therefore a promising therapeutic approach against breast cancer.


Subject(s)
Breast Neoplasms , Female , Humans , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Immunity, Innate , Membrane Proteins/genetics , Membrane Proteins/metabolism , Phosphoric Diester Hydrolases/genetics , Phosphoric Diester Hydrolases/metabolism , Pyrophosphatases/metabolism
2.
bioRxiv ; 2023 Jun 05.
Article in English | MEDLINE | ID: mdl-37333273

ABSTRACT

ENPP1 expression correlates with poor prognosis in many cancers, and we previously discovered that ENPP1 is the dominant hydrolase of extracellular cGAMP: a cancer-cell-produced immunotransmitter that activates the anticancer STING pathway. However, ENPP1 has other catalytic activities and the molecular and cellular mechanisms contributing to its tumorigenic effects remain unclear. Here, using single cell RNA-seq (scRNA-seq), we show that ENPP1 overexpression drives primary breast tumor growth and metastasis by synergistically dampening extracellular cGAMP-STING mediated antitumoral immunity and activating immunosuppressive extracellular adenosine (eADO) signaling. In addition to cancer cells, stromal and immune cells in the tumor microenvironment (TME) also express ENPP1 that restrains their response to tumor-derived cGAMP. Enpp1 loss-of-function in both cancer cells and normal tissues slowed primary tumor initiation and growth and prevented metastasis in an extracellular cGAMP- and STING-dependent manner. Selectively abolishing the cGAMP hydrolysis activity of ENPP1 phenocopied total ENPP1 knockout, demonstrating that restoration of paracrine cGAMP-STING signaling is the dominant anti-cancer mechanism of ENPP1 inhibition. Strikingly, we find that breast cancer patients with low ENPP1 expression have significantly higher immune infiltration and improved response to therapeutics impacting cancer immunity upstream or downstream of the cGAMP-STING pathway, like PARP inhibitors and anti-PD1. Altogether, selective inhibition of ENPP1's cGAMP hydrolase activity alleviates an innate immune checkpoint to boost cancer immunity and is therefore a promising therapeutic approach against breast cancer that may synergize with other cancer immunotherapies.

3.
PLoS One ; 16(11): e0259353, 2021.
Article in English | MEDLINE | ID: mdl-34731223

ABSTRACT

Low plasma levels of Proprotein Convertase Subtilisin/Kexin 9 (PCSK9) are associated with decreased low-density lipoprotein (LDL) cholesterol and a reduced risk of cardiovascular disease. PCSK9 binds to the epidermal growth factor-like repeat A (EGFA) domain of LDL receptors (LDLR), very low-density lipoprotein receptors (VLDLR), apolipoprotein E receptor 2 (ApoER2), and lipoprotein receptor-related protein 1 (LRP1) and accelerates their degradation, thus acting as a key regulator of lipid metabolism. Antibody and RNAi-based PCSK9 inhibitor treatments lower cholesterol and prevent cardiovascular incidents in patients, but their high-cost hampers market penetration. We sought to develop a safe, long-term and one-time solution to treat hyperlipidemia. We created a cDNA encoding a chimeric protein in which the extracellular N- terminus of red blood cells (RBCs) specific glycophorin A was fused to the LDLR EGFA domain and introduced this gene into mouse bone marrow hematopoietic stem and progenitor cells (HSPCs). Following transplantation into irradiated mice, the animals produced RBCs with the EGFA domain (EGFA-GPA RBCs) displayed on their surface. These animals showed significantly reduced plasma PCSK9 (66.5% decrease) and reduced LDL levels (40% decrease) for as long as 12 months post-transplantation. Furthermore, the EGFA- GPA mice remained lean for life and maintained normal body weight under a high-fat diet. Hematopoietic stem cell gene therapy can generate red blood cells expressing an EGFA-glycophorin A chimeric protein as a practical and long-term strategy for treating chronic hyperlipidemia and obesity.


Subject(s)
Cholesterol, LDL/blood , Down-Regulation , Glycophorins/genetics , Hyperlipidemias/prevention & control , Proprotein Convertase 9/blood , Receptors, LDL/genetics , Animals , Body Weight , Cells, Cultured , Diet, High-Fat/adverse effects , Erythrocytes/metabolism , Female , Genetic Engineering , Glycophorins/chemistry , HEK293 Cells , Humans , Hyperlipidemias/chemically induced , Hyperlipidemias/metabolism , Mice , Pregnancy , Receptors, LDL/chemistry , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism , Stem Cell Transplantation , Transduction, Genetic
4.
Nat Commun ; 8(1): 423, 2017 09 04.
Article in English | MEDLINE | ID: mdl-28871080

ABSTRACT

A short half-life in the circulation limits the application of therapeutics such as single-domain antibodies (VHHs). We utilize red blood cells to prolong the circulatory half-life of VHHs. Here we present VHHs against botulinum neurotoxin A (BoNT/A) on the surface of red blood cells by expressing chimeric proteins of VHHs with Glycophorin A or Kell. Mice whose red blood cells carry the chimeric proteins exhibit resistance to 10,000 times the lethal dose (LD50) of BoNT/A, and transfusion of these red blood cells into naive mice affords protection for up to 28 days. We further utilize an improved CD34+ culture system to engineer human red blood cells that express these chimeric proteins. Mice transfused with these red blood cells are resistant to highly lethal doses of BoNT/A. We demonstrate that engineered red blood cells expressing VHHs can provide prolonged prophylactic protection against bacterial toxins without inducing inhibitory immune responses and illustrates the potentially broad translatability of our strategy for therapeutic applications.The therapeutic use of single-chain antibodies (VHHs) is limited by their short half-life in the circulation. Here the authors engineer mouse and human red blood cells to express VHHs against botulinum neurotoxin A (BoNT/A) on their surface and show that an infusion of these cells into mice confers long lasting protection against a high dose of BoNT/A.


Subject(s)
Botulinum Toxins, Type A/toxicity , Erythrocytes/metabolism , Genetic Engineering , Single-Domain Antibodies/genetics , Animals , Antibodies, Neutralizing/administration & dosage , Antibodies, Neutralizing/genetics , Antibodies, Neutralizing/metabolism , Botulinum Toxins, Type A/metabolism , Botulism/etiology , Botulism/therapy , Erythrocyte Transfusion , Erythrocytes/virology , Erythroid Precursor Cells/metabolism , Erythroid Precursor Cells/transplantation , Erythroid Precursor Cells/virology , Genetic Vectors/genetics , Genetic Vectors/metabolism , Glycophorins/genetics , Glycophorins/metabolism , Humans , Membrane Glycoproteins/genetics , Membrane Glycoproteins/metabolism , Metalloendopeptidases/genetics , Metalloendopeptidases/metabolism , Mice , Mice, Inbred C57BL , Retroviridae/genetics , Retroviridae/metabolism , Single-Domain Antibodies/administration & dosage , Single-Domain Antibodies/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...