Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 121
Filter
1.
Microbiol Spectr ; : e0021224, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-39145636

ABSTRACT

Salmonella enterica serotype Cerro (S. Cerro) is an emerging Salmonella serotype isolated from cattle, but the association of S. Cerro with disease is not well understood. While comparative genomic analyses of bovine S. Cerro isolates have indicated mutations in elements associated with virulence, the correlation of S. Cerro fecal shedding with clinical disease in cattle varies between epidemiologic studies. The primary objective of this study was to characterize the infection-relevant phenotypes of S. Cerro fecal isolates obtained from neonatal calves born on a dairy farm in Wisconsin, USA. The S. Cerro isolates varied in biofilm production and sensitivity to the bile salt deoxycholate. All S. Cerro isolates were sensitive to sodium hypochlorite, hydrogen peroxide, and acidic shock. However, S. Cerro isolates were resistant to nitric oxide stress. Two S. Cerro isolates were unable to compete with S. Typhimurium during infection of calf ligated intestinal loops, indicating decreased fitness in vivo. Together, our data suggest that S. Cerro is sensitive to some innate antimicrobial defenses present in the gut, many of which are also used to control Salmonella in the environment. The observed phenotypic variation in S. Cerro isolates from a single farm suggest phenotypic plasticity that could impact infectious potential, transmission, and persistence on a farm.IMPORTANCESalmonella enterica is a zoonotic pathogen that threatens both human and animal health. Salmonella enterica serotype Cerro is being isolated from cattle at increasing frequency over the past two decades; however, its association with clinical disease is unclear. The goal of this study was to characterize infection-relevant phenotypes of S. Cerro isolates obtained from dairy calves from a single farm. Our work shows that there can be variation among temporally related S. Cerro isolates and that these isolates are sensitive to killing by toxic compounds of the innate immune system and those used for environmental control of Salmonella. This work contributes to our understanding of the pathogenic potential of the emerging pathogen S. Cerro.

2.
Sci Rep ; 14(1): 13762, 2024 06 14.
Article in English | MEDLINE | ID: mdl-38877103

ABSTRACT

Selective Serotonin Reuptake Inhibitor (SSRI) therapy is common among perinatal populations for the treatment of mood disorders. Medications can affect diversity and composition of the gut microbiome, which plays a key role in modulating health. While previous studies have examined the effects of antidepressant exposure on the maternal gut microbiome, whether SSRI exposure affects the offspring gut microbiome is unknown. We investigated the effects of maternal fluoxetine exposure on the gut microbiome of maternal and offspring mice during pregnancy and lactation (embryonic day 10-lactation day 21; E10-L21). Stool samples collected on E17, L11, L15, and L21 were examined using 16S rRNA sequencing. Our results suggest that maternal fluoxetine exposure may result in decreased alpha diversity of the offspring gut microbiome in early life. Furthermore, we observed several genera-specific differences in the gut microbiome based on treatment, specifically of Turicibacter, Parasutterella, and Romboutsia. These findings support our understanding of gut health, as dysbiotic development of the gut microbiome has been associated with local and systemic health problems including gastrointestinal morbidities and interrupted growth patterns in infants. Future research should pursue study in human populations and those at high risk for gut microbial dysbiosis and intestinal injury.


Subject(s)
Fluoxetine , Gastrointestinal Microbiome , Lactation , RNA, Ribosomal, 16S , Animals , Gastrointestinal Microbiome/drug effects , Female , Pregnancy , Lactation/drug effects , Fluoxetine/pharmacology , Fluoxetine/adverse effects , Mice , RNA, Ribosomal, 16S/genetics , Prenatal Exposure Delayed Effects/microbiology , Selective Serotonin Reuptake Inhibitors/adverse effects , Selective Serotonin Reuptake Inhibitors/pharmacology , Feces/microbiology , Maternal Exposure/adverse effects , Bacteria/drug effects , Bacteria/classification , Bacteria/genetics , Bacteria/isolation & purification
4.
Animals (Basel) ; 14(8)2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38672336

ABSTRACT

This study aimed to determine the impact of a novel formulation of a supplement composed of the natural ingredients, bromelain, quercetin, and Lentinula edodes, on the gut microbiota of healthy adult dogs. Adult healthy female dogs were administered either a placebo (CTR, n = 15) or the supplement (TRT, n = 15) over 28 days. Stool samples were collected for 16S rRNA sequencing before supplement administration (T0), at completion of supplement administration (T28), and one week after the end of supplement administration (T35) to characterize changes in the gut microbial communities. QIIME was used to determine both alpha- and beta-diversity, and ANCOM-BC was used to identify differences in taxonomic abundances before and after supplementation. We found a significant decrease in overall diversity in the CTR group but no significant differences in overall diversity in the TRT group over time. Furthermore, we found differences in the abundance of several taxa in both the CTR and TRT groups, but differences in the abundance of beneficial bacteria were more pronounced in the TRT group. Specifically, we found increases in the abundance of sequences belonging to the genera Bifidobacterium, Lactobacillus, and Pediococcus at T28 in the TRT group with significant increases in Bifidobacterium and Lactobacillus persisting at T35 when compared to T0. Importantly, members of these genera are considered important for their anti-inflammatory properties, vital for fostering a balanced and robust gut microbiota in dogs. The results of our study show the potential of our supplement to selectively enhance specific beneficial bacterial taxa, offering a targeted approach to modulating the gut microbiome without causing disruptions to the overall equilibrium.

5.
Front Microbiol ; 15: 1132151, 2024.
Article in English | MEDLINE | ID: mdl-38468851

ABSTRACT

Introduction: The variation in bacterial communities among breeds has been previously reported and may be one of the reasons why Holstein × Gyr dairy heifers have better development in grazing systems in tropical conditions. This study aimed to explore the ruminal microbiota composition, the IL-1ß gene variation, tick incidence, and blood parameters of Holstein × Gyr (½ Holstein × ½ Gyr) and Holstein heifers grazing intensely managed Guinea grass (Panicum maximum Jacq. cv. Mombaça). Methods: Sixteen heifers were divided into two groups consisting of 8 Holstein × Gyr and 8 Holstein heifers. The experimental period was comprised of 3 periods of 21 days. Ruminal samples were taken via the stomach tube technique. The sequencing of the V4 hypervariable region of the 16S rRNA gene was performed using the Illumina MiSeq platform. Counting and collection of ticks were conducted each 21 days. Blood and skeletal muscle tissue biopsies were performed at the end of the experiment. Results: Firmicutes were the most abundant phyla present in both breed rumen samples and Bacteroidota showed differences in relative abundance between breed groups, with greater values for Holstein heifers (p < 0.05 with FDR correction). The 10 most abundant unique OTUs identified in each breed included several OTUs of the genus Prevotella. Holstein heifers had a greater tick count and weight (9.8 ticks/animal and 1.6 g/animal, respectively) than Holstein × Gyr (2.56 ticks/animal and 0.4 g/animal, respectively). We found nucleotide substitutions in the IL-1ß gene that might be related to adaptation and resistance phenotypes to tick infestation in Holstein × Gyr heifers. Blood concentrations of urea, albumin, insulin-like growth factor 1, triiodothyronine, and thyroxine were greater in Holstein × Gyr than in Holstein heifers. Conclusion: Adaptations in Holstein × Gyr heifers such as ruminal microbiota, tick resistance, nucleotide substitutions in IL-1ß gene, and hormone concentration suggest a better energy metabolism and thermoregulation resulting in better performance in tropical grazing systems.

6.
mSystems ; 9(2): e0088723, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38259105

ABSTRACT

Disturbance events can impact ecological community dynamics. Understanding how communities respond to disturbances and how those responses can vary is a challenge in microbial ecology. In this study, we grew a previously enriched specialized microbial community on either cellulose or glucose as a sole carbon source and subjected them to one of five different disturbance regimes of varying frequencies ranging from low to high. Using 16S rRNA gene amplicon sequencing, we show that the community structure is largely driven by substrate, but disturbance frequency affects community composition and successional dynamics. When grown on cellulose, bacteria in the genera Cellvibrio, Lacunisphaera, and Asticcacaulis are the most abundant microbes. However, Lacunisphaera is only abundant in the lower disturbance frequency treatments, while Asticcacaulis is more abundant in the highest disturbance frequency treatment. When grown on glucose, the most abundant microbes are two Pseudomonas sequence variants and a Cohnella sequence variant that is only abundant in the highest disturbance frequency treatment. Communities grown on cellulose exhibited a greater range of diversity (1.95-7.33 Hill 1 diversity) that peaks at the intermediate disturbance frequency treatment or one disturbance every 3 days. Communities grown on glucose, however, ranged from 1.63 to 5.19 Hill 1 diversity with peak diversity at the greatest disturbance frequency treatment. These results demonstrate that the dynamics of a microbial community can vary depending on substrate and the disturbance frequency and may potentially explain the variety of diversity-disturbance relationships observed in microbial systems.IMPORTANCEA generalizable diversity-disturbance relationship (DDR) of microbial communities remains a contentious topic. Various microbial systems have different DDRs. Rather than finding support or refuting specific DDRs, we investigated the underlying factors that lead to different DDRs. In this study, we measured a cellulose-enriched microbial community's response to a range of disturbance frequencies from high to low, across two different substrates: cellulose and glucose. We demonstrate that the community displays a unimodal DDR when grown on cellulose and a monotonically increasing DDR when grown on glucose. Our findings suggest that the same community can display different DDRs. These results suggest that the range of DDRs we observe across different microbial systems may be due to the nutritional resources microbial communities can access and the interactions between bacteria and their environment.


Subject(s)
Microbiota , RNA, Ribosomal, 16S/genetics , Microbiota/genetics , Bacteria , Cellulose , Glucose
7.
bioRxiv ; 2023 Aug 26.
Article in English | MEDLINE | ID: mdl-37662195

ABSTRACT

Disturbance events can impact ecological community dynamics. Understanding how communities respond to disturbances, and how those responses can vary, is a challenge in microbial ecology. In this study, we grew a previously enriched specialized microbial community on either cellulose or glucose as a sole carbon source, and subjected them to one of five different disturbance regimes of varying frequencies ranging from low to high. Using 16S rRNA gene amplicon sequencing, we show that community structure is largely driven by substrate, but disturbance frequency affects community composition and successional dynamics. When grown on cellulose, bacteria in the genera Cellvibrio, Lacunisphaera, and Asticaccacaulis are the most abundant microbes. However, Lacunisphaera is only abundant in the lower disturbance frequency treatments, while Asticaccaulis is more abundant in the highest disturbance frequency treatment. When grown on glucose, the most abundant microbes are two Pseudomonas sequence variants, and a Cohnella sequence variant that is only abundant in the highest disturbance frequency treatment. Communities grown on cellulose exhibited a greater range of diversity (0.67-1.99 Shannon diversity and 1.38-5.25 Inverse Simpson diversity) that peak at the intermediate disturbance frequency treatment, or 1 disturbance every 3 days. Communities grown on glucose, however, ranged from 0.49-1.43 Shannon diversity and 1.37- 3.52 Inverse Simpson with peak diversity at the greatest disturbance frequency treatment. These results demonstrate that the dynamics of a microbial community can vary depending on substrate and the disturbance frequency, and may potentially explain the variety of diversity-disturbance relationships observed in microbial ecosystems.

8.
Biol Reprod ; 109(5): 618-634, 2023 11 15.
Article in English | MEDLINE | ID: mdl-37665249

ABSTRACT

OBJECTIVES: The bacterium Listeria monocytogenes (Lm) is associated with adverse pregnancy outcomes. Infection occurs through consumption of contaminated food that is disseminated to the maternal-fetal interface. The influence on the gastrointestinal microbiome during Lm infection remains unexplored in pregnancy. The objective of this study was to determine the impact of listeriosis on the gut microbiota of pregnant macaques. METHODS: A non-human primate model of listeriosis in pregnancy has been previously described. Both pregnant and non-pregnant cynomolgus macaques were inoculated with Lm and bacteremia and fecal shedding were monitored for 14 days. Non-pregnant animal tissues were collected at necropsy to determine bacterial burden, and fecal samples from both pregnant and non-pregnant animals were evaluated by 16S rRNA next-generation sequencing. RESULTS: Unlike pregnant macaques, non-pregnant macaques did not exhibit bacteremia, fecal shedding, or tissue colonization by Lm. Dispersion of Lm during pregnancy was associated with a significant decrease in alpha diversity of the host gut microbiome, compared to non-pregnant counterparts. The combined effects of pregnancy and listeriosis were associated with a significant loss in microbial richness, although there were increases in some genera and decreases in others. CONCLUSIONS: Although pregnancy alone is not associated with gut microbiome disruption, we observed dysbiosis with listeriosis during pregnancy. The macaque model may provide an understanding of the roles that pregnancy and the gut microbiota play in the ability of Lm to establish intestinal infection and disseminate throughout the host, thereby contributing to adverse pregnancy outcomes and risk to the developing fetus.


Subject(s)
Bacteremia , Gastrointestinal Microbiome , Listeria monocytogenes , Listeriosis , Pregnancy , Animals , Female , RNA, Ribosomal, 16S/genetics , Listeriosis/veterinary , Listeriosis/complications , Listeriosis/microbiology , Macaca fascicularis , Bacteremia/complications
9.
bioRxiv ; 2023 Aug 17.
Article in English | MEDLINE | ID: mdl-37645860

ABSTRACT

Background: Streptococcus agalactiae (Group B Streptococcus, GBS) is a commensal Gram-positive bacterium found in the human gastrointestinal and urogenital tracts. Much of what is known about GBS relates to the diseases it causes in pregnant people and neonates. However, GBS is a common cause of disease in the general population with 90% of GBS mortality occurring in non-pregnant people. There are limited data about the predisposing factors for GBS and the reservoirs in the body. To gain an understanding of the determinants of gastrointestinal GBS carriage, we used stool samples and associated metadata to determine the prevalence and abundance of GBS in the gut microbiome of adults and find risk factors for GBS status. Methods: We used 754 stool samples collected from adults in Wisconsin from 2016-2017 to test for the prevalence and abundance of GBS using a Taqman probe-based qPCR assay targeting two GBS-specific genes: cfp and sip. We compared the microbiome compositions of the stool samples by GBS status using 16S rRNA analysis. We compared associations with GBS status and 557 survey variables collected during sample acquisition (demographics, diet, overall health, and reproductive health) using univariate and multivariate analyses. Results: We found 137/754 (18%) of participants had detectable GBS in their stool samples with a median abundance of 104 copies per nanogram of starting DNA. There was no difference in GBS status or abundance based on gender. Beta-diversity, Bray-Curtis and Unweighted UniFrac, was significantly different based on carrier status of the participant. Prior to p-value correction, 59/557 (10.6%) survey variables were significantly associated with GBS carrier status and 11/547 (2.0%) variables were significantly associated with abundance (p-value<0.05). After p-value correction, 2/547 (0.4%) variables were associated with GBS abundance: an increased abundance of GBS was associated with a decreased frequency since last dental checkup (p<0.001) and last dental cleaning (p<0.001). Increased GBS abundance was significantly associated with increased frequency of iron consumption (p=0.007) after p-value correction in multivariate models. Conclusions: GBS is found in stool samples from adults in Wisconsin at similar frequencies as pregnant individuals screened with rectovaginal swabs. We did not find associations between risk factors historically associated with GBS in pregnant people, suggesting that risk factors for GBS carriage in pregnancy may differ from those in the general population. We found that frequency of iron consumption and dental hygiene are risk factors for GBS carriage in Wisconsin adults. Given that these variables were not assayed in previous GBS surveys, it is possible they also influence carriage in pregnant people. Taken together, this work serves as a foundation for future work in developing approaches to decrease GBS abundance in carriers.

10.
NPJ Biofilms Microbiomes ; 9(1): 61, 2023 08 28.
Article in English | MEDLINE | ID: mdl-37640705

ABSTRACT

Social disparities continue to limit universal access to health care, directly impacting both lifespan and quality of life. Concomitantly, the gut microbiome has been associated with downstream health outcomes including the global rise in antibiotic resistance. However, limited evidence exists examining socioeconomic status (SES) associations with gut microbiome composition. To address this, we collected information on the community-level SES, gut microbiota, and other individual cofactors including colonization by multidrug-resistant organisms (MDROs) in an adult cohort from Wisconsin, USA. We found an association between SES and microbial composition that is mediated by food insecurity. Additionally, we observed a higher prevalence of MDROs isolated from individuals with low diversity microbiomes and low neighborhood SES. Our integrated population-based study considers how the interplay of several social and economic factors combine to influence gut microbial composition while providing a framework for developing future interventions to help mitigate the SES health gap.


Subject(s)
Gastrointestinal Microbiome , Microbiota , Adult , Humans , Quality of Life , Social Class , Low Socioeconomic Status
11.
Front Cell Infect Microbiol ; 13: 1165295, 2023.
Article in English | MEDLINE | ID: mdl-37377642

ABSTRACT

PCR amplicon sequencing may lead to detection of spurious operational taxonomic units (OTUs), inflating estimates of gut microbial diversity. There is no consensus in the analytical approach as to what filtering methods should be applied to remove low-abundance OTUs; moreover, few studies have investigated the reliability of OTU detection within replicates. Here, we investigated the reliability of OTU detection (% agreement in detecting OTU in triplicates) and accuracy of their quantification (assessed by coefficient of variation (CV)) in human stool specimens. Stool samples were collected from 12 participants 22-55 years old. We applied several methods for filtering low-abundance OTUs and determined their impact on alpha-diversity and beta-diversity metrics. The reliability of OTU detection without any filtering was only 44.1% (SE=0.9) but increased after filtering low-abundance OTUs. After filtering OTUs with <0.1% abundance in the dataset, the reliability increased to 87.7% (SE=0.6) but at the expense of removing 6.97% reads from the dataset. When filtering was based on individual sample, the reliability increased to 73.1% after filtering OTUs with <10 copies while removing only 1.12% of reads. High abundance OTUs (>10 copies in sample) had lower CV, indicating better accuracy of quantification than low-abundance OTUs. Excluding very low-abundance OTUs had a significant impact on alpha-diversity metrics sensitive to the presence of rare species (observed OTUs, Chao1) but had little impact on relative abundance of major phyla and families and alpha-diversity metrics accounting for both richness and evenness (Shannon, Inverse Simpson). To increase the reliability of microbial composition, we advise removing OTUs with <10 copies in individual samples, particularly in studies where only one subsample per specimen is available for analysis.


Subject(s)
High-Throughput Nucleotide Sequencing , Humans , Young Adult , Adult , Middle Aged , RNA, Ribosomal, 16S/genetics , Reproducibility of Results , Polymerase Chain Reaction , Sequence Analysis, DNA
12.
Toxins (Basel) ; 15(5)2023 05 18.
Article in English | MEDLINE | ID: mdl-37235377

ABSTRACT

Fescue toxicosis is caused by grazing ergot alkaloid-producing endophyte (Epichloë coenophiala)-infected tall fescue (E+). Summer grazing of E+ leads to decreased productivity, associated impaired thermoregulation, and altered behavior. The goal of this study was to determine the role of E+ grazing-climate interaction on animal behavior and thermoregulation during late fall. Eighteen Angus steers were placed on nontoxic (NT), toxic (E+) and endophyte-free (E-) fescue pastures for 28 days. Physiological parameters, such as rectal temperature (RT), respiration rate (RR), ear and ankle surface temperature (ET, AT), and body weights, were measured. Skin surface temperature (SST) and animal activity were recorded continuously with temperature and behavioral activity sensors, respectively. Environmental conditions were collected using paddocks-placed data loggers. Across the trial, steers on E+ gained about 60% less weight than the other two groups. E+ steers also had higher RT than E- and NT, and lower SST than NT post-pasture placement. Importantly, animals grazing E+ spent more time lying, less time standing, and took more steps. These data suggest that late fall E+ grazing impairs core and surface temperature regulation and increases non-productive lying time, which may be partly responsible for the observed decreased weight gains.


Subject(s)
Ergot Alkaloids , Festuca , Lolium , Animals , Endophytes , Ergot Alkaloids/toxicity , Behavior, Animal , Animal Feed/toxicity , Animal Feed/analysis
13.
J Nutr ; 153(7): 1915-1929, 2023 07.
Article in English | MEDLINE | ID: mdl-37116657

ABSTRACT

BACKGROUND: Obesity with metabolic syndrome is highly prevalent and shortens lifespan. OBJECTIVES: In a dose-finding crossover study, we evaluated the effect of glycomacropeptide (GMP) on satiety, glucose homeostasis, amino acid concentrations, inflammation, and the fecal microbiome in 13 obese women. METHODS: Eligible women were ≤10 yr past menopause with a body mass index [BMI (in kg/m2)] of 28 to 35 and no underlying inflammatory condition affecting study outcomes. Participants consumed GMP supplements (15 g GMP + 10 g whey protein) twice daily for 1 wk and thrice daily for 1 wk, with a washout period between the 2 wk. Women completed a meal tolerance test (MTT) on day 1 (soy MTT) and day 7 (GMP MTT) of each week. During each test, subjects underwent measures of glucose homeostasis, satiety, cytokines, and the fecal microbiome compared with that of usual diet, and rated the acceptability of consuming GMP supplements. RESULTS: The mean ± SE age of the 13 women was 57 ± 1 yr, with a median of 8 yr (range: 3-9 yr) past menopause and a BMI of 30 (IQR: 29-32). GMP was highly acceptable to participants, permitting high adherence. Metabolic effects were similar for twice or thrice daily GMP supplementation. Glucose, insulin, and cytokine concentrations were no different. The postprandial area under the curve (AUC) for glucagon concentrations was significantly lower, and the insulin-glucagon ratio was significantly higher with GMP than that with the soy MTT. Postprandial AUC amylin concentration was significantly higher with GMP than that with the soy MTT and correlated with C-peptide (P < 0.001; R2 = 0.52) and greater satiety. Ingestion of GMP supplements twice daily reduced members of the genus Streptococcus (P = 0.009) and thrice daily consumption reduced overall α diversity. CONCLUSIONS: GMP is shown to increase amylin concentrations, improve glucose homeostasis, and alter the fecal microbiome. GMP can be a helpful nutritional supplement in obese postmenopausal women at risk for metabolic syndrome. Further investigation is warranted. This trial was registered at clinicaltrials.gov as NCT05551091.


Subject(s)
Islet Amyloid Polypeptide , Metabolic Syndrome , Humans , Female , Glucagon , Cross-Over Studies , Postmenopause , Obesity/metabolism , Insulin , Glucose , Homeostasis , Postprandial Period , Blood Glucose/metabolism
14.
PLoS One ; 17(12): e0278699, 2022.
Article in English | MEDLINE | ID: mdl-36490265

ABSTRACT

INTRODUCTION: The composition of the nasal microbiota in surgical patients in the context of general anesthesia and nasal povidone-iodine decolonization is unknown. The purpose of this quality improvement study was to determine: (i) if general anesthesia is associated with changes in the nasal microbiota of surgery patients and (ii) if preoperative intranasal povidone-iodine decolonization is associated with changes in the nasal microbiota of surgery patients. MATERIALS AND METHODS: One hundred and fifty-one ambulatory patients presenting for surgery were enrolled in a quality improvement study by convenience sampling. Pre- and post-surgery nasal samples were collected from patients in the no intranasal decolonization group (control group, n = 54). Pre-decolonization nasal samples were collected from the preoperative intranasal povidone-iodine decolonization group (povidone-iodine group, n = 97). Intranasal povidone-iodine was administered immediately prior to surgery and continued for 20 minutes before patients proceeded for surgery. Post-nasal samples were then collected. General anesthesia was administered to both groups. DNA from the samples was extracted for 16S rRNA sequencing on an Illumina MiSeq. RESULTS: In the control group, there was no evidence of change in bacterial diversity between pre- and post-surgery samples. In the povidone-iodine group, nasal bacterial diversity was greater in post-surgery, relative to pre-surgery (Shannon's Diversity Index (P = 0.038), Chao's richness estimate (P = 0.02) and Inverse Simpson index (P = 0.027). Among all the genera, only the relative abundance of the genus Staphylococcus trended towards a decrease in patients after application (FDR adjusted P = 0.06). Abundant genera common to both povidone-iodine and control groups included Staphylococcus, Bradyrhizobium, Corynebacterium, Dolosigranulum, Lactobacillus, and Moraxella. CONCLUSIONS: We found general anesthesia was not associated with changes in the nasal microbiota. Povidone-iodine treatment was associated with nasal microbial diversity and decreased abundance of Staphylococcus. Future studies should examine the nasal microbiota structure and function longitudinally in surgical patients receiving intranasal povidone-iodine.


Subject(s)
Anti-Infective Agents, Local , Povidone-Iodine , Humans , Quality Improvement , RNA, Ribosomal, 16S/genetics , Nose/surgery , Nose/microbiology , Administration, Intranasal , Staphylococcus , Bacteria/genetics , Anti-Infective Agents, Local/therapeutic use
15.
Pathogens ; 11(11)2022 Nov 01.
Article in English | MEDLINE | ID: mdl-36365033

ABSTRACT

The aim of this research was to describe the incidence and treatments of mastitis and other common bovine diseases using one year of retrospective observational data (n = 50,329 cow-lactations) obtained from herd management software of 37 large dairy farms in Wisconsin. Incidence rate (IR) was defined as the number of first cases of each disease divided by the number of lactations per farm. Clinical mastitis (CM) remains the most diagnosed disease of dairy cows. Across all herds, the mean IR (cases per 100 cow-lactations) was 24.4 for clinical mastitis, 14.5 for foot disorders (FD), 11.2 for metritis (ME), 8.6 for ketosis (KE), 7.4 for retained fetal membranes (RFM), 4.5 for diarrhea (DI), 3.1 for displaced abomasum (DA), 2.9 for pneumonia (PN) and 1.9 for milk fever (MF). More than 30% of cows that had first cases of CM, DA, RFM, DI, and FD did not receive antibiotics. Of those treated, more than 50% of cows diagnosed with PN, ME and CM received ceftiofur as a treatment. The IR of mastitis and most other diseases was greater in older cows (parity ≥ 3) during the first 100 days of lactation and these cows were more likely to receive antibiotic treatments (as compared to younger cows diagnosed in later lactation). Cows of first and second parities in early lactation were more likely to remain in the herd after diagnosis of disease, as compared to older cows and cows in later stages of lactation. Most older cows diagnosed with CM in later lactation were culled before completion of the lactation. These results provide baseline data for disease incidence in dairy cows on modern U.S. dairy farms and reinforce the role of mastitis as an important cause of dairy cow morbidity.

16.
PLoS One ; 17(10): e0276684, 2022.
Article in English | MEDLINE | ID: mdl-36288361

ABSTRACT

The gut microbiome is an important factor in human health and disease. While preliminary studies have found some evidence that physical activity is associated with gut microbiome richness, diversity, and composition, this relationship is not fully understood and has not been previously characterized in a large, population-based cohort. In this study, we estimated the association between several measures of physical activity and the gut microbiota in a cohort of 720 Wisconsin residents. Our sample had a mean age of 55 years (range: 18, 94), was 42% male, and 83% of participants self-identified as White. Gut microbial composition was assessed using gene sequencing of the V3-V4 region of 16S rRNA extracted from stool. We found that an increase of one standard deviation in weekly minutes spent in active transportation was associated with an increase in alpha diversity, particularly in Chao1's richness (7.57, 95% CI: 2.55, 12.59) and Shannon's diversity (0.04, 95% CI: 0.0008, 0.09). We identified interactions in the association between Inverse Simpson's diversity and physical activity, wherein active transportation for individuals living in a rural environment was associated with additional increases in diversity (4.69, 95% CI: 1.64, 7.73). We also conducted several permutational ANOVAs (PERMANOVA) and negative binomial regression analyses to estimate the relationship between physical activity and microbiome composition. We found that being physically active and increased physical activity time were associated with increased abundance of bacteria in the family Erysipelotrichaceae. Active transportation was associated with increased abundance of bacteria in the genus Phascolarctobacterium, and decreased abundance of Clostridium. Minutes in active transportation was associated with a decreased abundance of the family Clostridiaceae.


Subject(s)
Gastrointestinal Microbiome , Adult , Humans , Male , Middle Aged , Female , Gastrointestinal Microbiome/genetics , RNA, Ribosomal, 16S/genetics , Wisconsin , Feces/microbiology , Bacteria/genetics , Exercise
17.
PLoS One ; 17(7): e0268479, 2022.
Article in English | MEDLINE | ID: mdl-35901037

ABSTRACT

Gulf War Illness (GWI) affects 25-35% of the 1991 Gulf War Veteran (GWV) population. Patients with GWI experience pain, fatigue, cognitive impairments, gastrointestinal dysfunction, skin disorders, and respiratory issues. In longitudinal studies, many patients with GWI have shown little to no improvement in symptoms since diagnosis. The gut microbiome and diet play an important role in human health and disease, and preliminary studies suggest it may play a role in GWI. To examine the relationship between the gut microbiota, diet, and GWI, we conducted an eight-week prospective cohort study collecting stool samples, medications, health history, and dietary data. Sixty-nine participants were enrolled into the study, 36 of which met the case definition for GWI. The gut microbiota of participants, determined by 16S rRNA sequencing of stool samples, was stable over the duration of the study and showed no within person (alpha diversity) differences. Between group analyses (beta diversity) identified statistically significant different between those with and without GWI. Several taxonomic lineages were identified as differentially abundant between those with and without GWI (n = 9) including a greater abundance of Lachnospiraceae and Ruminococcaceae in those without GWI. Additionally, there were taxonomic differences between those with high and low healthy eating index (HEI) scores including a greater abundance of Ruminococcaceae in those with higher HEI scores. This longitudinal cohort study of GWVs found that participants with GWI had significantly different microbiomes from those without GWI. Further studies are needed to determine the role these differences may play in the development and treatment of GWI.


Subject(s)
Gastrointestinal Microbiome , Persian Gulf Syndrome , Veterans , Gastrointestinal Microbiome/genetics , Gulf War , Humans , Longitudinal Studies , Persian Gulf Syndrome/diagnosis , Prospective Studies , RNA, Ribosomal, 16S/genetics
18.
Animals (Basel) ; 12(7)2022 Mar 24.
Article in English | MEDLINE | ID: mdl-35405810

ABSTRACT

The objective of this study was to examine the relationships among ruminal microbial community, rumen morphometrics, feeding behavior, feedlot performance, and carcass characteristics of Nellore cattle, classified by residual feed intake (RFI). Twenty-seven Nellore yearling bulls with an initial body weight (BW) of 423.84 ± 21.81 kg were fed in feedlot for 107 d in individual pens to determine the RFI phenotype. Bulls were categorized as high RFI (>0.5 SD above the mean, n = 8), medium RFI (±0.5 SD from the mean, n = 9), and low RFI (<0.5 SD below the mean, n = 10). At harvest, whole rumen content samples were collected from each bull to evaluate ruminal microbial community, including bacteria and protozoa. The carcass characteristics were determined by ultrasonography at the beginning and at the end of the experimental period, and behavior data were collected on d 88. As a result of ranking Nellore bulls by RFI, cattle from low-RFI group presented lesser daily dry matter intake (DMI), either in kilograms (p < 0.01) or as percentage of BW (p < 0.01) than high-RFI yearling bulls, resulting in improved gain:feed (G:F). However, variables, such as average daily gain (ADG), final BW, hot carcass weight (HCW) and other carcass characteristics did not differ (p > 0.05) across RFI groups. The eating rate of either dry matter (DM )(p = 0.04) or neutral detergent fiber (NDF) (p < 0.01) was slower in medium-RFI yearling bulls. For ruminal morphometrics an RFI effect was observed only on keratinized layer thickness, in which a thinner layer (p = 0.04) was observed in low-RFI Nellore yearling bulls. Likewise, Nellore yearling bulls classified by the RFI did not differ in terms of Shannon's diversity (p = 0.57) and Chao richness (p = 0.98). Our results suggest that the differences in feed efficiency of Nellore bulls differing in phenotypic RFI should be attributed to metabolic variables other than ruminal microorganisms and epithelium, and deserves further investigation.

19.
Vet Microbiol ; 269: 109428, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35427993

ABSTRACT

The association between changes in the respiratory microbiota and Bovine Respiratory Disease (BRD) in dairy calves is not well understood. We investigated characteristics of the nasopharyngeal (NP) microbiota associated with BRD following Pasteurella multocida infection. We also evaluated the effect of ampicillin on the respiratory microbiota. Calves (n = 30) were inoculated with P. multocida and randomly allocated into an antibiotic group (AMP; n = 17) or placebo group (PLAC; n = 11) when lung lesions developed. Deep NP swabs (DNPS) were collected before and after challenge. Monitoring was performed daily until euthanasia at day 14. Swabs and tissue samples were collected for analysis. The V4 hypervariable region of the 16 S rRNA gene was amplified and sequenced on an Illumina MiSeq. Increased species abundance in the pre-challenge DNPS was associated with a decrease in cumulative respiratory disease over 14 days post-infection. While NP beta diversity was affected by infection, antibiotic therapy showed no effect on the alpha and beta diversity nor the relative abundance (RA) of genera in the NP tonsil, lymph node and lung microbiota. Antibiotic therapy was associated with an increased RA of NP Pasteurella spp. and a decreased RA of NP Prevotella spp. Common taxa among all samples included GIT-associated bacteria, which suggests a possible link between the GIT microbiota and respiratory microbiota in dairy calves.


Subject(s)
Cattle Diseases , Microbiota , Pasteurella multocida , Respiratory Tract Diseases , Ampicillin/pharmacology , Animals , Anti-Bacterial Agents/pharmacology , Bacteria/genetics , Cattle , Cattle Diseases/microbiology , Lung/microbiology , Pasteurella multocida/genetics , Respiratory Tract Diseases/veterinary
20.
Sci Rep ; 12(1): 4899, 2022 03 22.
Article in English | MEDLINE | ID: mdl-35318361

ABSTRACT

Bovine fescue toxicosis (FT) is caused by grazing ergot alkaloid-producing endophyte (Epichloë coenophiala)-infected tall fescue. Endophyte's effects on the animal's microbiota and metabolism were investigated recently, but its effects in planta or on the plant-animal interactions have not been considered. We examined multi-compartment microbiota-metabolome perturbations using multi-'omics (16S and ITS2 sequencing, plus untargeted metabolomics) in Angus steers grazing non-toxic (Max-Q) or toxic (E+) tall fescue for 28 days and in E+ plants. E+ altered the plant/animal microbiota, decreasing most ruminal fungi, with mixed effects on rumen bacteria and fecal microbiota. Metabolic perturbations occurred in all matrices, with some plant-animal overlap (e.g., Vitamin B6 metabolism). Integrative interactomics revealed unique E+ network constituents. Only E+ had ruminal solids OTUs within the network and fecal fungal OTUs in E+ had unique taxa (e.g., Anaeromyces). Three E+-unique urinary metabolites that could be potential biomarkers of FT and targeted therapeutically were identified.


Subject(s)
Ergot Alkaloids , Festuca , Lolium , Mycotoxicosis , Animal Feed/analysis , Animals , Cattle , Ergot Alkaloids/metabolism , Ergot Alkaloids/toxicity , Festuca/metabolism , Lolium/microbiology
SELECTION OF CITATIONS
SEARCH DETAIL