ABSTRACT
The origins of the genus Homo have been a focus of much debate in the paleoanthropological literature due to its importance in understanding the evolutionary trajectories that led to the appearance of archaic humans and our species. On the level of taxonomic classification, the controversies surrounding the origins of Homo are the result of lack of clear classification criteria that separate our genus from australopiths, given the general similarities observed between fossils ascribed to late australopiths and early Homo. The challenge in finding clear autapomorphies for Homo has even led to debates about the classification of Homo habilis and Homo rudolfensis as part of our genus. These debates are further complicated by the scarcity of fossils in the timeframe of appearance of our genus, making any fossils dated to between 3.0 and 2.5 Ma of particular relevance in the context of this discussion. The Ledi-Geraru mandible is one such fossils, which has called the attention of researchers due to its combination of primitive traits seen in Australopithecus and derived traits observed in later Homo. Despite being fragmented and poorly preserved, it is one of the key fossil specimens available from the period mentioned above.
Subject(s)
Hominidae , Humans , Animals , Hominidae/anatomy & histology , Mandible/anatomy & histology , Biological Evolution , Fossils , PhenotypeABSTRACT
Zika virus (ZIKV) may cause febrile illness and neurological damage, such as microcephaly in fetuses. ZIKV is transmitted to humans by Aedes aegypti, a nearly cosmopolitan mosquito. Understanding the virus-vector molecular interactions has been promising to enhance the knowledge towards disease mitigation. Since ZIKV infection alters gene physiology of mosquitoes, we examined the expression profile of ZIKV-infected Ae. aegypti by several approaches to identify genes altered by viral infection. Transcriptomics were performed by comparing between ZIKV-infected and uninfected Ae. aegypti females, which revealed some differentially expressed genes. Most of these genes appear to be involved with immune response as evidenced by an interactome analysis, and a prominent finding was a calreticulin-like (CRT) gene, which was upregulated during the infection. Expression of CRT was also experimentally quantified by qPCR, however, it revealed no significant differences between infected and uninfected females. Instead, expression levels were highly variable among individuals and negatively correlated to viral load. We also tested the possibility of this gene to be silenced, but the double-stranded RNA did not reduce CRT expression, and actually increased the inter-individuals' expressional variability. Present results differed from our original hypothesis of upregulation by infection. They also diverged between them (comparing qPCR to Transcriptomics) and from the literature which reported augmented CRT levels in Aedes species during viral infection. Present case probably underlies a more complex virus-host interaction system than we expected. Regulation of this gene seems not to be a linear correlation between expression and viremy. As infection takes place, a complex homeostatic mechanism may act to prevent expression and other cellular tasks from drifting. It is also possible that CRT expression is simply randomly disturbed by viral infection. Taken together, results show that CRT expression profile during ZIKV infection is complex and requires different investigative approaches to be understood. Studies focused on the biochemical function of CRT protein and on its role in the native mosquito metabolic network could unravel how it is actually influenced by ZIKV. Current work contributes more by getting incidental findings and by posing new hypotheses than by answering the original questions.
ABSTRACT
The origins of the genus Homo have been a focus of much debate in the paleoanthropological literature due to its importance in understanding the evolutionary trajectories that led to the appearance of archaic humans and our species. On the level of taxonomic classification, the controversies surrounding the origins of Homo are the result of lack of clear classification criteria that separate our genus from australopiths, given the general similarities observed between fossils ascribed to late australopiths and early Homo. The challenge in finding clear autapomorphies for Homo has even led to debates about the classification of Homo habilis and Homo rudolfensis as part of our genus. These debates are further complicated by the scarcity of fossils in the timeframe of appearance of our genus, making any fossils dated to between 3.0 and 2.5 Ma of particular relevance in the context of this discussion. The Ledi-Geraru mandible is one such fossils, which has called the attention of researchers due to its combination of primitive traits seen in Australopithecus and derived traits observed in later Homo. Despite being fragmented and poorly preserved, it is one of the key fossil specimens available from the period mentioned above.
ABSTRACT
Zika virus (ZIKV) may cause febrile illness and neurological damage, such as microcephaly in fetuses. ZIKV is transmitted to humans by Aedes aegypti, a nearly cosmopolitan mosquito. Understanding the virus-vector molecular interactions has been promising to enhance the knowledge towards disease mitigation. Since ZIKV infection alters gene physiology of mosquitoes, we examined the expression profile of ZIKV-infected Ae. aegypti by several approaches to identify genes altered by viral infection. Transcriptomics were performed by comparing between ZIKV-infected and uninfected Ae. aegypti females, which revealed some differentially expressed genes. Most of these genes appear to be involved with immune response as evidenced by an interactome analysis, and a prominent finding was a calreticulin-like (CRT) gene, which was upregulated during the infection. Expression of CRT was also experimentally quantified by qPCR, however, it revealed no significant differences between infected and uninfected females. Instead, expression levels were highly variable among individuals and negatively correlated to viral load. We also tested the possibility of this gene to be silenced, but the double-stranded RNA did not reduce CRT expression, and actually increased the inter-individuals' expressional variability. Present results differed from our original hypothesis of upregulation by infection. They also diverged between them (comparing qPCR to Transcriptomics) and from the literature which reported augmented CRT levels in Aedes species during viral infection. Present case probably underlies a more complex virus-host interaction system than we expected. Regulation of this gene seems not to be a linear correlation between expression and viremy. As infection takes place, a complex homeostatic mechanism may act to prevent expression and other cellular tasks from drifting. It is also possible that CRT expression is simply randomly disturbed by viral infection. Taken together, results show that CRT expression profile during ZIKV infection is complex and requires different investigative approaches to be understood. Studies focused on the biochemical function of CRT protein and on its role in the native mosquito metabolic network could unravel how it is actually influenced by ZIKV. Current work contributes more by getting incidental findings and by posing new hypotheses than by answering the original questions.
ABSTRACT
Background Aedes scapularis is a neotropical mosquito that is competent to vector viruses and filariae. It is reputed to be highly morphologically and genetically polymorphic, facts that have raised questions about whether it is a single taxonomic entity. In the last five decades, authors have posed the hypothesis that it could actually be a species complex under incipient speciation. Due to its epidemiological importance, its taxonomic status should be determined with confidence. Aim and method Our objective was to investigate more deeply the polymorphism of Ae. scapularis to detect any evidence of incipient speciation of cryptic species. We then compared populational samples from the Southeastern, Northern and Northeastern regions of Brazil. The biological markers used in the comparison were: the complete mitochondrial DNA, the isolated mitochondrial gene cytochrome oxidase subunit I (COI) and wing geometry. Results and discussion As expected, high morphological/genetic polymorphism was observed in all Ae. scapularis populations, however it was not indicative of segregation or incipient speciation. There was no correlation between wing shape and the geographical origin of the populations analysed. A congruent observation resulted from the analysis of the COI gene, which revealed a high number of haplotypes (51) and no clusterization of populational samples according to the original biomes. In the phylogenetic analysis of the 13 mitochondrial protein-coding genes, the Ae. scapularis clade clustered with maximum support (100% bootstrap support and posterior probability of 1). No significant internal structure was observed in the Ae. scapularis clade, which was nearly a polytomy. Taken together, our results indicate that this species is not a species complex. Conclusion We conclude that there was no indication, in the analysed regions, of the occurrence of more than one taxon in the species Ae. scapularis, despite it being highly polymorphic. By ruling out the former species complex hypothesis, our phylogenetic results reinforce that Ae. scapularis is a single taxonomic unit and should be monitored with standardized surveillance and control methods.
ABSTRACT
The four serotypes of Dengue virus (DENV1-4) are arboviruses (arthropod-borne viruses) that belong to the Flavivirus genus, Flaviviridae family. They are the causative agents of an infectious disease called dengue, an important global public health problem with significant social-economic impact. Thus, the development of safe and effective dengue vaccines is a priority according to the World Health Organization. Only one anti-dengue vaccine has already been licensed in endemic countries and two formulations are under phase III clinical trials. In this study, we aimed to compare the main anti-dengue virus vaccines, DENGVAXIA®, LAV-TDV, and TAK-003, regarding their antigens and potential to protect. We studied the conservation of both, B and T cell epitopes involved in immunological control of DENV infection along with vaccine viruses and viral isolates. In addition, we assessed the population coverage of epitope sets contained in each vaccine formulation with regard to different human populations. As main results, we found that all three vaccines contain the main B cell epitopes involved in viral neutralization. Similarly, LAV-TDV and TAK-003 contain most of T cell epitopes involved in immunological protection, a finding not observed in DENGVAXIA®, which explains main limitations of the only licensed dengue vaccine. In summary, the levels of presence and absence of epitopes that are target for protective immune response in the three main anti-dengue virus vaccines are shown in this study. Our results suggest that investing in vaccines that contain the majority of epitopes involved in protective immunity (cellular and humoral arms) is an important issue to be considered.
Subject(s)
Dengue Vaccines/immunology , Dengue Virus/immunology , Dengue/prevention & control , Epitopes, B-Lymphocyte/immunology , Epitopes, T-Lymphocyte/immunology , Amino Acid Sequence , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Conserved Sequence , Dengue Vaccines/genetics , Epitopes, B-Lymphocyte/chemistry , Epitopes, B-Lymphocyte/genetics , Epitopes, T-Lymphocyte/chemistry , Epitopes, T-Lymphocyte/genetics , Humans , Immunization Programs , Models, Molecular , Structure-Activity Relationship , Vaccination , Vaccines, SyntheticABSTRACT
The four serotypes of Dengue virus (DENV1-4) are arboviruses (arthropod-borne viruses) that belong to the Flavivirus genus, Flaviviridae family. They are the causative agents of an infectious disease called dengue, an important global public health problem with significant social-economic impact. Thus, the development of safe and effective dengue vaccines is a priority according to the World Health Organization. Only one anti-dengue vaccine has already been licensed in endemic countries and two formulations are under phase III clinical trials. In this study, we aimed to compare the main anti-dengue virus vaccines, DENGVAXIA®, LAV-TDV, and TAK-003, regarding their antigens and potential to protect. We studied the conservation of both, B and T cell epitopes involved in immunological control of DENV infection along with vaccine viruses and viral isolates. In addition, we assessed the population coverage of epitope sets contained in each vaccine formulation with regard to different human populations. As main results, we found that all three vaccines contain the main B cell epitopes involved in viral neutralization. Similarly, LAV-TDV and TAK-003 contain most of T cell epitopes involved in immunological protection, a finding not observed in DENGVAXIA®, which explains main limitations of the only licensed dengue vaccine. In summary, the levels of presence and absence of epitopes that are target for protective immune response in the three main anti-dengue virus vaccines are shown in this study. Our results suggest that investing in vaccines that contain the majority of epitopes involved in protective immunity (cellular and humoral arms) is an important issue to be considered.
ABSTRACT
Understanding phylogenetic relationships within the family Culicidae informs mosquito evolution and may have public health implications as this family includes numerous species of medical and veterinary importance. We investigated the mitochondrial genomes of 102 mosquitoes, including six newly sequenced species, representing 21 genera with an emphasis on the Neotropical region. We estimated divergence times based on sequence data and three fossil calibration points, using Bayesian relaxed clock methods. Bayesian and maximum-likelihood phylogenetic analyses based on the DNA sequences of 13 PCGs of the 102 species provided robust support for the monophyly of the subfamily Anophelinae and the tribes Aedini, Culicini, Mansoniini and Sabethini. Despite the current genera of Anophelinae being consistently recovered as monophyletic, relationships among them proved to be quite variable depending on the method used (concatenated or partitioned) and the number of taxa sampled. Molecular divergence time estimates revealed that the two mosquito subfamilies, Anophelinae and Culicinae, diverged in the early Jurassic (approximately 197.5 Mya). However, most major lineages of these groups arose after the Cretaceous, coincident with the emergence of angiosperms and the expansion of mammals and birds. The diversification and worldwide distribution of Culicidae may also be determined in part by geographic isolation as a result of continental drift during the Cretaceous.
ABSTRACT
Mosquito-borne diseases affect millions of people and cause thousands of deaths yearly. Vaccines have been hitherto insufficient to mitigate them, which makes mosquito control the most viable approach. But vector control depends on correct species identification and geographical assignment, and the taxonomic characters of mosquitoes are often inconspicuous to non-taxonomists, which are restricted to a life stage and/or even damaged. Thus, geometric morphometry, a low cost and precise technique that has proven to be efficient for identifying subtle morphological dissimilarities, may contribute to the resolution of these types of problems. We have been applying this technique for more than 10 years and have accumulated thousands of wing images with their metadata. Therefore, the aims of this work were to develop a prototype of a platform for the storage of biological data related to wing morphometry, by means of a relational database and a web system named “WingBank.” In order to build the WingBank prototype, a multidisciplinary team performed a gathering of requirements, modeled and designed the relational database, and implemented a web platform. WingBank was designed to enforce data completeness, to ease data query, to leverage meta-studies, and to support applications of automatic identification of mosquitoes. Currently, the database of the WingBank contains data referring to 77 species belonging to 15 genera of Culicidae. From the 13,287 wing records currently cataloged in the database, 2,138 were already made available for use by third parties. As far as we know, this is the largest database of Culicidae wings of the world
ABSTRACT
Culex is the largest subgenus within the genus Culex that includes important vectors of diseases. The correct identification of mosquitoes is critical for effective control strategies. Wing geometric morphometrics (WGM) has been used to identify mosquito species alongside traditional identification methods. Here, WGM was used for eleven Culex species from São Paulo, Brazil, and one from Esquel, Argentina. Adult mosquitoes were collected using CDC (Centers for Disease Control) traps, morphologically identified and analyzed by WGM. The canonical variate analysis (CVA) was performed and a Neighbor-joining (NJ) tree was constructed to illustrate the patterns of species segregation. A cross-validated reclassification test was also carried out. From 110 comparisons in the cross-validated reclassification test, 87 yielded values higher than 70%, with 13 comparisons yielding 100% reclassification scores. Culexquinquefasciatus yielded the highest reclassification scores among the analyzed species, corroborating with the results obtained by the CVA, in which Cx. quinquefasciatus was the most distinct species. The high values obtained at the cross-validated reclassification test and in the NJ analysis as well as the segregation observed at the CVA made it possible to distinguish among Culex species with high degrees of confidence, suggesting that WGM is a reliable tool to identify Culex species of the subgenus Culex.
ABSTRACT
Abstract Aedes (Stegomyia) aegypti (A. aegypti) transmits arboviral diseases of high public health importance, including those caused by Zika virus (ZIKV), Dengue virus (DENV), Chikungunya virus (CHIKV) and Yellow fever virus (YFV). Barreiras is a city with 157,638 inhabitants in the West of the State of Bahia, Northeast of Brazil. The climate is dry, with well-determined and concentrated seasons of rains. The city is crossed by a Federal Highway and by the Rio Grande river. In this study, we aimed to understand the dynamics of mosquito vectors and arboviral diseases in Barreiras. We used correlation statistics to investigate a possible relationship among rains, mosquito abundance and transmission of diseases. In addition, as a preliminary population genetics estimate, we used geometric morphometrics to compare mosquitoes from areas limited by a highway and a river. We found that i) infestation occurs in rain-dependent cycles and that ii) both, the river and the highway segregate populations of A. aegypti in different areas of the studied city. Our results indicate that it is necessary to treat anthropic containers with mosquito breading capacity during both, the dry and rain seasons in urban areas similar to Barreiras.
ABSTRACT
Culex is the largest subgenus within the genus Culex that includes important vectors of diseases. The correct identification of mosquitoes is critical for effective control strategies. Wing geometric morphometrics (WGM) has been used to identify mosquito species alongside traditional identification methods. Here, WGM was used for eleven Culex species from São Paulo, Brazil, and one from Esquel, Argentina. Adult mosquitoes were collected using CDC (Centers for Disease Control) traps, morphologically identified and analyzed by WGM. The canonical variate analysis (CVA) was performed and a Neighbor-joining (NJ) tree was constructed to illustrate the patterns of species segregation. A cross-validated reclassification test was also carried out. From 110 comparisons in the cross-validated reclassification test, 87 yielded values higher than 70%, with 13 comparisons yielding 100% reclassification scores. Culexquinquefasciatus yielded the highest reclassification scores among the analyzed species, corroborating with the results obtained by the CVA, in which Cx. quinquefasciatus was the most distinct species. The high values obtained at the cross-validated reclassification test and in the NJ analysis as well as the segregation observed at the CVA made it possible to distinguish among Culex species with high degrees of confidence, suggesting that WGM is a reliable tool to identify Culex species of the subgenus Culex.
ABSTRACT
Aedes (Stegomyia) aegypti (A. aegypti) transmits arboviral diseases of high public health importance, including those caused by Zika virus (ZIKV), Dengue virus (DENV), Chikungunya virus (CHIKV) and Yellow fever virus (YFV). Barreiras is a city with 157,638 inhabitants in the West of the State of Bahia, Northeast of Brazil. The climate is dry, with well-determined and concentrated seasons of rains. The city is crossed by a Federal Highway and by the Rio Grande river. In this study, we aimed to understand the dynamics of mosquito vectors and arboviral diseases in Barreiras. We used correlation statistics to investigate a possible relationship among rains, mosquito abundance and transmission of diseases. In addition, as a preliminary population genetics estimate, we used geometric morphometrics to compare mosquitoes from areas limited by a highway and a river. We found that i) infestation occurs in rain-dependent cycles and that ii) both, the river and the highway segregate populations of A. aegypti in different areas of the studied city. Our results indicate that it is necessary to treat anthropic containers with mosquito breading capacity during both, the dry and rain seasons in urban areas similar to Barreiras.
ABSTRACT
The wing form of culicid mosquitoes shows considerable variation among groups: this phenomenon has been addressed by several studies through space-time analyses in mosquito populations, species, and genera. The observed variation results from a combination of two distinct factors: heredity and phenotypic plasticity. The first is usually related to wing shape, a complex character that may serve as a taxonomic marker in specific cases. We hypothesized that wing shape might be phylogenetically meaningful in Culicidae. In this study, we applied a geometric morphometrical approach based on 18 landmarks in 81 species of mosquitoes, representing 19 different genera, to investigate whether wing shape can help retrieve macroevolutionary patterns or identify any phylogenetic signals. We observed that wing shape differed considerably among groups, especially between Anophelinae and Culicinae subfamilies; thus, some wing shape elements may be synapomorphic. Comparisons among wing consensus after Procrustes superimposition revealed that landmark #1, located between the veins RS and R1, was the most variable. Sabethini tribe was distinguished from other taxa owing to a strong phylogenetic signal of its wings, whereas other culicids presented weaker signals and were not that distinguishable. Evolutionary forces such as natural selection, evolutionary limitation/constraint, or canalization mechanisms might drive the evolution of wing phenotype. These findings suggest that the wing undergoes evolution over long periods, but is not neutral enough to reconstruct the phylogenetic history of these insects. Gene-based studies should be performed to understand the driving forces in wing evolution.
ABSTRACT
BACKGROUND: The tribe Sabethini (Diptera: Culicidae) contains important vectors of the yellow fever virus and presents remarkable morphological and ecological diversity unequalled in other mosquito groups. However, there is limited information about mitochondrial genomes (mitogenomes) from these species. As mitochondrial genetics has been fundamental for posing evolutionary hypotheses and identifying taxonomical markers, in this study we sequenced the first sabethine mitogenomes: Sabethes undosus, Trichoprosopon pallidiventer, Runchomyia reversa, Limatus flavisetosus, and Wyeomyia confusa. In addition, we performed phylogenetic analyses of Sabethini within Culicidae and compared its mitogenomic architecture to that of other insects. RESULTS: Similar to other insects, the Sabethini mitogenome contains 13 protein-coding genes, 22 transfer RNA genes, two ribosomal RNA genes, and a control region. However, the gene order is not the same as that in other mosquitoes; the tyrosine (Y) and cysteine (C) tRNA genes have translocated. In general, mitogenome rearrangements within insects are uncommon events; the translocation reported here is unparalleled among Culicidae and can be considered an autapomorphy for the Neotropical sabethines. CONCLUSIONS: Our study provides clear evidence of gene rearrangements in the mitogenomes of these Neotropical genera in the tribe Sabethini. Gene order can be informative at the taxonomic level of tribe. The translocations found, along with the mitogenomic sequence data and other recently published findings, reinforce the status of Sabethini as a well-supported monophyletic taxon. Furthermore, T. pallidiventer was recovered as sister to R. reversa, and both were placed as sisters of other Sabethini genera (Sabethes, Wyeomyia, and Limatus).
Subject(s)
Culicidae/classification , Mitochondria/genetics , Sequence Analysis, DNA/methods , Animals , Culicidae/genetics , Evolution, Molecular , Gene Order , Gene Rearrangement , Genome Size , Genome, Mitochondrial , PhylogenyABSTRACT
BACKGROUND: Mosquito larvae feed on organic detritus from the environment, particularly microorganisms comprising bacteria, protozoa, and algae as well as crustaceans, plant debris, and insect exuviae. Little attention has been paid to nutritional studies in Aedes aegypti larvae. OBJECTIVES: We investigated the effects of yeast, bacteria and microalgae diets on larval development, pupation time, adult size, emergence, survivorship, lifespan, and wing morphology. MATERIALS AND METHODS: Microorganisms (or Tetramin® as control) were offered as the only source of food to recently hatched first instar larvae and their development was followed until the adult stage. Protein, carbohydrate, glycogen, and lipid were analyzed in single larvae to correlate energetic reserve accumulation by larva with the developmental rates and nutritional content observed. FITC-labeled microorganisms were offered to fourth instar larvae, and its ingestion was recorded by fluorescence microscopy and quantitation. RESULTS AND DISCUSSION: Immature stages developed in all diets, however, larvae fed with bacteria and microalgae showed a severe delay in development rates, pupation time, adult emergence and low survivorship. Adult males emerged earlier as expected and had longer survival than females. Diets with better nutritional quality resulted in adults with bigger wings. Asaia sp. and Escherichia coli resulted in better nutrition and developmental parameters and seemed to be the best bacterial candidates to future studies using symbiont-based control. The diet quality was measured and presented different protein and carbohydrate amounts. Bacteria had the lowest protein and carbohydrate rates, yeasts had the highest carbohydrate amount and microalgae showed the highest protein content. Larvae fed with microalgae seem not to be able to process and store these diets properly. Larvae were shown to be able to process yeast cells and store their energetic components efficiently. CONCLUSION: Together, our results point that Ae. aegypti larvae show high plasticity to feed, being able to develop under different microorganism-based diets. The important role of Ae. aegypti in the spread of infectious diseases requires further biological studies in order to understand the vector physiology and thus to manage the larval natural breeding sites aiming a better mosquito control.
ABSTRACT
Background: The tribe Sabethini (Diptera: Culicidae) contains important vectors of the yellow fever virus and presents remarkable morphological and ecological diversity unequalled in other mosquito groups. However, there is limited information about mitochondrial genomes (mitogenomes) from these species. As mitochondrial genetics has been fundamental for posing evolutionary hypotheses and identifying taxonomical markers, in this study we sequenced the first sabethine mitogenomes: Sabethes undosus, Trichoprosopon pallidiventer, Runchomyia reversa, Limatus flavisetosus, and Wyeomyia confusa. In addition, we performed phylogenetic analyses of Sabethini within Culicidae and compared its mitogenomic architecture to that of other insects. Results: Similar to other insects, the Sabethini mitogenome contains 13 protein-coding genes, 22 transfer RNA genes, two ribosomal RNA genes, and a control region. However, the gene order is not the same as that in other mosquitoes; the tyrosine (Y) and cysteine (C) tRNA genes have translocated. In general, mitogenome rearrangements within insects are uncommon events; the translocation reported here is unparalleled among Culicidae and can be considered an autapomorphy for the Neotropical sabethines. Conclusions: Our study provides clear evidence of gene rearrangements in the mitogenomes of these Neotropical genera in the tribe Sabethini. Gene order can be informative at the taxonomic level of tribe. The translocations found, along with the mitogenomic sequence data and other recently published findings, reinforce the status of Sabethini as a well-supported monophyletic taxon. Furthermore, T. pallidiventer was recovered as sister to R. reversa, and both were placed as sisters of other Sabethini genera (Sabethes, Wyeomyia, and Limatus).
ABSTRACT
Background: Mosquito larvae feed on organic detritus from the environment, particularly microorganisms comprising bacteria, protozoa, and algae as well as crustaceans, plant debris, and insect exuviae. Little attention has been paid to nutritional studies in Aedes aegypti larvae. Objectives: We investigated the effects of yeast, bacteria and microalgae diets on larval development, pupation time, adult size, emergence, survivorship, lifespan, and wing morphology. Materials and Methods: Microorganisms (or Tetramin® as control) were offered as the only source of food to recently hatched first instar larvae and their development was followed until the adult stage. Protein, carbohydrate, glycogen, and lipid were analyzed in single larvae to correlate energetic reserve accumulation by larva with the developmental rates and nutritional content observed. FITC-labeled microorganisms were offered to fourth instar larvae, and its ingestion was recorded by fluorescence microscopy and quantitation. Results and Discussion: Immature stages developed in all diets, however, larvae fed with bacteria and microalgae showed a severe delay in development rates, pupation time, adult emergence and low survivorship. Adult males emerged earlier as expected and had longer survival than females. Diets with better nutritional quality resulted in adults with bigger wings. Asaia sp. and Escherichia coli resulted in better nutrition and developmental parameters and seemed to be the best bacterial candidates to future studies using symbiont-based control. The diet quality was measured and presented different protein and carbohydrate amounts. Bacteria had the lowest protein and carbohydrate rates, yeasts had the highest carbohydrate amount and microalgae showed the highest protein content. Larvae fed with microalgae seem not to be able to process and store these diets properly. Larvae were shown to be able to process yeast cells and store their energetic components efficiently. Conclusion: Together, our results point that Ae. aegypti larvae show high plasticity to feed, being able to develop under different microorganism-based diets. The important role of Ae. aegypti in the spread of infectious diseases requires further biological studies in order to understand the vector physiology and thus to manage the larval natural breeding sites aiming a better mosquito control.
ABSTRACT
This review intends to discuss central issues regarding the microevolution of mosquito (Culicidae) vectors of several pathogens and how this process impacts vector biology, disease transmission, and vector control attempts. On the microevolutionary context, it comparatively discusses the current knowledge on the population genetics of representatives of the genera Aedes, Anopheles and Culex, and comments on insecticide resistance of culicids. It also discusses other biological aspects of culicids that are not usually addressed in microevolutionary studies, such as vectorial competence, endosymbiosis, and wing morphology. One conclusion is that mosquitoes are highly genetically variable, adaptable, fast evolving, and have versatile vectorial competence. Unveiling microevolutionary patterns is fundamental for the design and maintenance of all control programs. Sampling methods for assessing microevolution must be standardized and must follow meaningful guidelines, such as those of "landscape genetics". A good understanding of microevolution requires more than a collection of case studies on population genetics and resistance. Future research could deal not only with the microevolution sensu stricto, but also with evolutionarily meaningful issues, such as inheritable characters, epigenetics, physiological cost-free plasticity, vector immunity, symbiosis, pathogen-mosquito co-evolution and environmental variables. A genotyping panel for seeking adaptive phenotypes as part of the standardization of population genetics methods is proposed. The investigative paradigm should not only be retrospective but also prospective, despite the unpredictability of evolution. If we integrate all suggestions to tackle mosquito evolution, a global revolution to counter vector-borne diseases can be provoked.
ABSTRACT
Nyssorhynchus strodei (Root) is an understudied species of potential epidemiological importance, having been found naturally infected in Brazil with Plasmodium falciparum Welch, Plasmodium vivax Grassi & Feletti, and Plasmodium malariae Feletti & Grassi. It belongs to the strodei subgroup that includes Nyssorhynchus albertoi (Unti), Nyssorhynchus arthuri (Unti), Nyssorhynchus rondoni (Neiva & Pinto), Nyssorhynchus striatus (Sant'Ana & Sallum), and three unnamed species, Nyssorhynchus arthuri B, Nyssorhynchus arthuri C, and Nyssorhynchus arthuri D. As the accurate identification of vector species is of fundamental importance for public health entomology, the aim of the study was to provide additional information for the presence of seven species that had been previously misidentified as Ny. strodei. Bayesian phylogenetic analyses using DNA sequences of the genes COI mtDNA, white, CAD and CAT nuclear genes confirmed Ny. albertoi, Ny. arthuri, Ny. strodei, and Ny. striatus as distinct groups within the strodei subgroup and corroborated the presence of three undescribed species under the name Ny. arthuri. Results of the GMYC model analysis corroborated Ny. arthuri B, Ny. arthuri C, and Ny. arthuri D; however, they did not distinguish between Ny. strodei and Ny. albertoi. Predicted distribution of seven species based on maximum entropy in MaxEnt showed that each species has its specific ecological niche suitability.