Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 35
Filter
1.
Acta Neuropathol ; 147(1): 70, 2024 04 10.
Article in English | MEDLINE | ID: mdl-38598053

ABSTRACT

The risk of developing Alzheimer's disease (AD) significantly increases in individuals carrying the APOEε4 allele. Elderly cognitively healthy individuals with APOEε4 also exist, suggesting the presence of cellular mechanisms that counteract the pathological effects of APOEε4; however, these mechanisms are unknown. We hypothesized that APOEε4 carriers without dementia might carry genetic variations that could protect them from developing APOEε4-mediated AD pathology. To test this, we leveraged whole-genome sequencing (WGS) data in the National Institute on Aging Alzheimer's Disease Family Based Study (NIA-AD FBS), Washington Heights/Inwood Columbia Aging Project (WHICAP), and Estudio Familiar de Influencia Genetica en Alzheimer (EFIGA) cohorts and identified potentially protective variants segregating exclusively among unaffected APOEε4 carriers. In homozygous unaffected carriers above 70 years old, we identified 510 rare coding variants. Pathway analysis of the genes harboring these variants showed significant enrichment in extracellular matrix (ECM)-related processes, suggesting protective effects of functional modifications in ECM proteins. We prioritized two genes that were highly represented in the ECM-related gene ontology terms, (FN1) and collagen type VI alpha 2 chain (COL6A2) and are known to be expressed at the blood-brain barrier (BBB), for postmortem validation and in vivo functional studies. An independent analysis in a large cohort of 7185 APOEε4 homozygous carriers found that rs140926439 variant in FN1 was protective of AD (OR = 0.29; 95% CI [0.11, 0.78], P = 0.014) and delayed age at onset of disease by 3.37 years (95% CI [0.42, 6.32], P = 0.025). The FN1 and COL6A2 protein levels were increased at the BBB in APOEε4 carriers with AD. Brain expression of cognitively unaffected homozygous APOEε4 carriers had significantly lower FN1 deposition and less reactive gliosis compared to homozygous APOEε4 carriers with AD, suggesting that FN1 might be a downstream driver of APOEε4-mediated AD-related pathology and cognitive decline. To validate our findings, we used zebrafish models with loss-of-function (LOF) mutations in fn1b-the ortholog for human FN1. We found that fibronectin LOF reduced gliosis, enhanced gliovascular remodeling, and potentiated the microglial response, suggesting that pathological accumulation of FN1 could impair toxic protein clearance, which is ameliorated with FN1 LOF. Our study suggests that vascular deposition of FN1 is related to the pathogenicity of APOEε4, and LOF variants in FN1 may reduce APOEε4-related AD risk, providing novel clues to potential therapeutic interventions targeting the ECM to mitigate AD risk.


Subject(s)
Alzheimer Disease , Fibronectins , Aged , Animals , Humans , Alzheimer Disease/genetics , Fibronectins/genetics , Genetic Variation/genetics , Gliosis , Zebrafish
2.
J Invest Dermatol ; 144(7): 1633-1648.e14, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38237729

ABSTRACT

Wound research has typically been performed without regard for where the wounds are located on the body, despite well-known heterogeneities in physical and biological properties between different skin areas. The skin covering the palms and soles is highly specialized, and plantar ulcers are one of the most challenging and costly wound types to manage. Using primarily the porcine model, we show that plantar skin is molecularly and functionally more distinct from nonplantar skin than previously recognized, with unique gene and protein expression profiles, broad alterations in cellular functions, constitutive activation of many wound-associated phenotypes, and inherently delayed healing. This unusual physiology is likely to play a significant but underappreciated role in the pathogenesis of plantar ulcers as well as the last 25+ years of futility in therapy development efforts. By revealing this critical yet unrecognized pitfall, we hope to contribute to the development of more effective therapies for these devastating nonhealing wounds.


Subject(s)
Phenotype , Skin , Wound Healing , Animals , Wound Healing/physiology , Swine , Skin/pathology , Skin/injuries , Skin/metabolism , Disease Models, Animal , Foot Ulcer/physiopathology , Foot Ulcer/pathology , Humans , Female , Skin Physiological Phenomena , Foot
3.
Biol Psychiatry ; 96(1): 15-25, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38141912

ABSTRACT

BACKGROUND: Suicide is a societal and public health concern of global scale. Identifying genetic risk factors for suicide attempt can characterize underlying biology and enable early interventions to prevent deaths. Recent studies have described common genetic variants for suicide-related behaviors. Here, we advance this search for genetic risk by analyzing the association between suicide attempt and uncommon variation exome-wide in a large, ancestrally diverse sample. METHODS: We sequenced whole genomes of 13,584 soldiers from the Army STARRS (Army Study to Assess Risk and Resilience in Servicemembers), including 979 individuals with a history of suicide attempt. Uncommon, nonsilent protein-coding variants were analyzed exome-wide for association with suicide attempt using gene-collapsed and single-variant analyses. RESULTS: We identified 19 genes with variants enriched in individuals with history of suicide attempt, either through gene-collapsed or single-variant analysis (Bonferroni padjusted < .05). These genes were CIB2, MLF1, HERC1, YWHAE, RCN2, VWA5B1, ATAD3A, NACA, EP400, ZNF585A, LYST, RC3H2, PSD3, STARD9, SGMS1, ACTR6, RGS7BP, DIRAS2, and KRTAP10-1. Most genes had variants across multiple genomic ancestry groups. Seventeen of these genes were expressed in healthy brain tissue, with 9 genes expressed at the highest levels in the brain versus other tissues. Brains from individuals deceased from suicide aberrantly expressed RGS7BP (padjusted = .035) in addition to nominally significant genes including YWHAE and ACTR6, all of which have reported associations with other mental disorders. CONCLUSIONS: These results advance the molecular characterization of suicide attempt behavior and support the utility of whole-genome sequencing for complementing the findings of genome-wide association studies in suicide research.


Subject(s)
Military Personnel , Suicide, Attempted , Humans , Military Personnel/psychology , Male , United States/epidemiology , Female , Adult , Young Adult , Genetic Predisposition to Disease/genetics , Genetic Variation/genetics , Genome-Wide Association Study , Polymorphism, Single Nucleotide
4.
Acta Neuropathol ; 146(4): 585-610, 2023 10.
Article in English | MEDLINE | ID: mdl-37578550

ABSTRACT

Traumatic brain injury (TBI) causes diffuse axonal injury which can produce chronic white matter pathology and subsequent post-traumatic neurodegeneration with poor patient outcomes. Tau modulates axon cytoskeletal functions and undergoes phosphorylation and mis-localization in neurodegenerative disorders. The effects of tau pathology on neurodegeneration after TBI are unclear. We used mice with neuronal expression of human mutant tau to examine effects of pathological tau on white matter pathology after TBI. Adult male and female hTau.P301S (Tg2541) transgenic and wild-type (Wt) mice received either moderate single TBI (s-TBI) or repetitive mild TBI (r-mTBI; once daily × 5), or sham procedures. Acutely, s-TBI produced more extensive axon damage in the corpus callosum (CC) as compared to r-mTBI. After s-TBI, significant CC thinning was present at 6 weeks and 4 months post-injury in Wt and transgenic mice, with homozygous tau expression producing additional pathology of late demyelination. In contrast, r-mTBI did not produce significant CC thinning except at the chronic time point of 4 months in homozygous mice, which exhibited significant CC atrophy (- 29.7%) with increased microgliosis. Serum neurofilament light quantification detected traumatic axonal injury at 1 day post-TBI in Wt and homozygous mice. At 4 months, high tau and neurofilament in homozygous mice implicated tau in chronic axon pathology. These findings did not have sex differences detected. Conclusions: Neuronal tau pathology differentially exacerbated CC pathology based on injury severity and chronicity. Ongoing CC atrophy from s-TBI became accompanied by late demyelination. Pathological tau significantly worsened CC atrophy during the chronic phase after r-mTBI.


Subject(s)
Brain Injuries, Traumatic , Demyelinating Diseases , Tauopathies , White Matter , Adult , Animals , Female , Humans , Male , Mice , Atrophy/pathology , Brain Injuries, Traumatic/pathology , Demyelinating Diseases/pathology , Mice, Transgenic , tau Proteins/genetics , tau Proteins/metabolism , White Matter/pathology
5.
Clin Immunol ; 255: 109732, 2023 10.
Article in English | MEDLINE | ID: mdl-37562721

ABSTRACT

Subcutaneous panniculitis-like T-cell lymphoma (SPTCL) is a rare primary cutaneous non-Hodgkin lymphoma involving CD8+ T cells, the genetic underpinnings of which remain incompletely understood. Here we report two unrelated patients with B cell Expansion with NF-κB and T cell Anergy (BENTA) disease and a novel presentation of SPTCL. Patient 1 presented early in life with recurrent infections and B cell lymphocytosis, linked to a novel gain-of-function (GOF) CARD11 mutation (p.Lys238del). He developed SPTCL-like lesions and membranoproliferative glomerulonephritis by age 2, treated successfully with cyclosporine. Patient 2 presented at 13 months with splenomegaly, lymphadenopathy, and SPTCL with evidence of hemophagocytic lymphohistiocytosis. Genetic analysis revealed two in cis germline GOF CARD11 variants (p.Glu121Asp/p.Gly126Ser). Autologous bone marrow transplant resulted in SPTCL remission despite persistent B cell lymphocytosis. These cases illuminate an unusual pathological manifestation for BENTA disease, suggesting that CARD11 GOF mutations can manifest in cutaneous CD4+and CD8+ T cell malignancies.


Subject(s)
Immunologic Deficiency Syndromes , Lymphocytosis , Lymphoma, T-Cell , Panniculitis , Male , Humans , Child, Preschool , CD8-Positive T-Lymphocytes/pathology , Panniculitis/genetics , Panniculitis/pathology , Panniculitis/therapy , Lymphoma, T-Cell/genetics , Lymphoma, T-Cell/therapy
6.
Front Cell Dev Biol ; 10: 1011974, 2022.
Article in English | MEDLINE | ID: mdl-36544903

ABSTRACT

Fetal Alcohol Spectrum Disorder (FASD) encompasses an array of effects of prenatal alcohol exposure (PAE), including physical abnormalities and cognitive and behavioral deficits. Disruptions of cortical development have been implicated in multiple PAE studies, with deficits including decreased progenitor proliferation, disrupted neuronal differentiation, aberrant radial migration of pyramidal neurons, and decreased cortical thickness. While several mechanisms of alcohol teratogenicity have been explored, how specific cell types in the brain at different developmental time points may be differentially affected by PAE is still poorly understood. In this study, we used single nucleus RNA sequencing (snRNAseq) to investigate whether moderate PAE from neurulation through peak cortical neurogenesis induces cell type-specific transcriptomic changes in the developing murine brain. Cluster analysis identified 25 neuronal cell types, including subtypes of radial glial cells (RGCs), intermediate progenitor cells (IPCs), projection neurons, and interneurons. Only Wnt-expressing cortical hem RGCs showed a significant decrease in the percentage of cells after PAE, with no cell types showing PAE-induced apoptosis as measured by caspase expression. Cell cycle analysis revealed only a subtype of RGCs expressing the downstream Wnt signaling transcription factor Tcf7l2 had a decreased percentage of cells in the G2/M phase of the cell cycle, suggesting decreased proliferation in this RGC subtype and further implicating disrupted Wnt signaling after PAE at this early developmental timepoint. An increased pseudotime score in IPC and projection neuron cell types indicated that PAE led to increased or premature differentiation of these cells. Biological processes affected by PAE included the upregulation of pathways related to synaptic activity and neuronal differentiation and downregulation of pathways related to chromosome structure and the cell cycle. Several cell types showed a decrease in Wnt signaling pathways, with several genes related to Wnt signaling altered by PAE in multiple cell types. As Wnt has been shown to promote proliferation and inhibit differentiation at earlier stages in development, the downregulation of Wnt signaling may have resulted in premature neuronal maturation of projection neurons and their intermediate progenitors. Overall, these findings provide further insight into the cell type-specific effects of PAE during early corticogenesis.

7.
Blood Adv ; 6(12): 3821-3834, 2022 06 28.
Article in English | MEDLINE | ID: mdl-35500221

ABSTRACT

Interferon γ (IFNγ) is an essential and pleiotropic activator of human monocytes, but little is known about the changes in cellular metabolism required for IFNγ-induced activation. We sought to elucidate the mechanisms by which IFNγ reprograms monocyte metabolism to support its immunologic activities. We found that IFNγ increased oxygen consumption rates (OCR) in monocytes, indicative of reactive oxygen species generation by both mitochondria and nicotinamide adenine dinucleotide phosphate (NADPH) oxidase. Transcriptional profiling revealed that this oxidative phenotype was driven by IFNγ-induced reprogramming of NAD+ metabolism, which is dependent on nicotinamide phosphoribosyltransferase (NAMPT)-mediated NAD+ salvage to generate NADH and NADPH for oxidation by mitochondrial complex I and NADPH oxidase, respectively. Consistent with this pathway, monocytes from patients with gain-of-function mutations in STAT1 demonstrated higher-than-normal OCR, whereas chemical or genetic disruption of mitochondrial complex I (rotenone treatment or Leigh syndrome patient monocytes) or NADPH oxidase (diphenyleneiodonium treatment or chronic granulomatous disease [CGD] patient monocytes) reduced OCR. Interestingly, inhibition of NAMPT in healthy monocytes completely abrogated the IFNγ-induced oxygen consumption, comparable to levels observed in CGD monocytes. These data identify an IFNγ-induced, NAMPT-dependent, NAD+ salvage pathway that is critical for IFNγ activation of human monocytes.


Subject(s)
Granulomatous Disease, Chronic , Monocytes , Granulomatous Disease, Chronic/metabolism , Humans , Interferon-gamma/pharmacology , Monocytes/metabolism , NAD/metabolism , NADP/metabolism , NADPH Oxidases/metabolism , Respiratory Burst
8.
Cancers (Basel) ; 14(10)2022 May 10.
Article in English | MEDLINE | ID: mdl-35625955

ABSTRACT

While BRCA1 and BRCA2 mutations are known to confer the largest risk of breast cancer and ovarian cancer, the incomplete penetrance of the mutations and the substantial variability in age at cancer onset among carriers suggest additional factors modifying the risk of cancer in BRCA1/2 mutation carriers. To identify genetic modifiers of BRCA1/2, we carried out a whole-genome sequencing study of 66 ovarian cancer patients that were enriched with BRCA carriers, followed by validation using data from the Pan-Cancer Analysis of Whole Genomes Consortium. We found PPARGC1A, a master regulator of mitochondrial biogenesis and function, to be highly mutated in BRCA carriers, and patients with both PPARGC1A and BRCA1/2 mutations were diagnosed with breast or ovarian cancer at significantly younger ages, while the mutation status of each gene alone did not significantly associate with age of onset. Our study suggests PPARGC1A as a possible BRCA modifier gene. Upon further validation, this finding can help improve cancer risk prediction and provide personalized preventive care for BRCA carriers.

9.
Nat Commun ; 13(1): 1361, 2022 03 15.
Article in English | MEDLINE | ID: mdl-35292633

ABSTRACT

In prostate cancer, emerging data highlight the role of DNA damage repair genes (DDRGs) in aggressive forms of the disease. However, DDRG mutations in African American men are not yet fully defined. Here, we profile germline mutations in all known DDRGs (N = 276) using whole genome sequences from blood DNA of a matched cohort of patients with primary prostate cancer comprising of 300 African American and 300 European Ancestry prostate cancer patients, to determine whether the mutation status can enhance patient stratification for specific targeted therapies. Here, we show that only 13 of the 46 DDRGs identified with pathogenic/likely pathogenic mutations are present in both African American and European ancestry patients. Importantly, RAD family genes (RAD51, RAD54L, RAD54B), which are potentially targetable, as well as PMS2 and BRCA1, are among the most frequently mutated DDRGs in African American, but not in European Ancestry patients.


Subject(s)
Black or African American , Prostatic Neoplasms , Black or African American/genetics , DNA Damage/genetics , Germ-Line Mutation , Humans , Male , Mutation , Prostatic Neoplasms/genetics , Prostatic Neoplasms/pathology
10.
Oncotarget ; 12(26): 2500-2513, 2021 Dec 21.
Article in English | MEDLINE | ID: mdl-34966482

ABSTRACT

The rising incidence and mortality of endometrial cancer (EC) in the United States calls for an improved understanding of the disease's progression. Current methodologies for diagnosis and treatment rely on the use of cell lines as models for tumor biology. However, due to inherent heterogeneity and differential growing environments between cell lines and tumors, these comparative studies have found little parallels in molecular signatures. As a consequence, the development and discovery of preclinical models and reliable drug targets are delayed. In this study, we established transcriptome parallels between cell lines and tumors from The Cancer Genome Atlas (TCGA) with the use of optimized normalization methods. We identified genes and signaling pathways associated with regulating the transformation and progression of EC. Specifically, the LXR/RXR activation, neuroprotective role for THOP1 in Alzheimer's disease, and glutamate receptor signaling pathways were observed to be mostly downregulated in advanced cancer stage. While some of these highlighted markers and signaling pathways are commonly found in the central nervous system (CNS), our results suggest a novel function of these genes in the periphery. Finally, our study underscores the value of implementing appropriate normalization methods in comparative studies to improve the identification of accurate and reliable markers.

11.
PLoS One ; 16(8): e0256148, 2021.
Article in English | MEDLINE | ID: mdl-34407144

ABSTRACT

In females, estrogens have two main modes of action relating to gonadotropin secretion: positive feedback and negative feedback. Estrogen positive and negative feedback are controlled by different regions of the hypothalamus: the preoptic area/anterior portion (mainly the anteroventral periventricular nucleus, AVPV) of the hypothalamus is associated with estrogen positive feedback while the mediobasal hypothalamus (mainly the arcuate nucleus of the hypothalamus, ARH), is associated with estrogen negative feedback. In this study, we examined the temporal pattern of gene transcription in these two regions following estrogen treatment. Adult, ovariectomized, Long Evans rats received doses of estradiol benzoate (EB) or oil every 4 days for 3 cycles. On the last EB priming cycle, hypothalamic tissues were dissected into the AVPV+ and ARH+ at 0 hrs (baseline/oil control), 6 hrs, or 24 hrs after EB treatment. RNA was extracted and sequenced using bulk RNA sequencing. Differential gene analysis, gene ontology, and weighted correlation network analysis (WGCNA) was performed. Overall, we found that the AVPV+ and ARH+ respond differently to estradiol stimulation. In both regions, estradiol treatment resulted in more gene up-regulation than down-regulation. S100g was very strongly up-regulated by estradiol in both regions at 6 and 24 hrs after EB treatment. In the AVPV+ the highest number of differentially expressed genes occurred 24 hrs after EB. In the ARH+, the highest number of genes differentially expressed by EB occurred between 6 and 24 hrs after EB, while in the AVPV+, the fewest genes changed their expression between these time points, demonstrating a temporal difference in the way that EB regulates transcription these two areas. Several genes strongly implicated in gonadotropin release were differentially affected by estradiol including Esr1, encoding estrogen receptor-α and Kiss1, encoding kisspeptin. As an internal validation, Kiss1 was up-regulated in the AVPV+ and down-regulated in the ARH+. Gene network analysis revealed the vastly different clustering of genes modulated by estradiol in the AVPV+ compared with the ARH+. These results indicate that gene expression in these two hypothalamic regions have specific responses to estradiol in timing and direction.


Subject(s)
Arcuate Nucleus of Hypothalamus/metabolism , Estradiol/pharmacology , Gene Expression Regulation/drug effects , Gonadotropin-Releasing Hormone/metabolism , Hypothalamus, Anterior/metabolism , Hypothalamus/metabolism , Sequence Analysis, RNA/methods , Animals , Arcuate Nucleus of Hypothalamus/drug effects , Estrogen Receptor alpha/metabolism , Estrogens/pharmacology , Female , Hypothalamus/drug effects , Hypothalamus, Anterior/drug effects , Kisspeptins/metabolism , Models, Animal , Ovariectomy/methods , Rats , Rats, Long-Evans
12.
Blood Cancer Discov ; 2(4): 319-325, 2021 07.
Article in English | MEDLINE | ID: mdl-34258102

ABSTRACT

Genetic mutations associated with acute myeloid leukemia (AML) also occur in age-related clonal hematopoiesis, often in the same individual. This makes confident assignment of detected variants to malignancy challenging. The issue is particularly crucial for AML post-treatment measurable residual disease monitoring, where results can be discordant between genetic sequencing and flow cytometry. We show here, that it is possible to distinguish AML from clonal hematopoiesis and to resolve the immunophenotypic identity of clonal architecture. To achieve this, we first design patient-specific DNA probes based on patient's whole-genome sequencing, and then use them for patient-personalized single-cell DNA sequencing with simultaneous single-cell antibody-oligonucleotide sequencing. Examples illustrate AML arising from DNMT3A and TET2 mutated clones as well as independently. The ability to personalize single-cell proteogenomic assessment for individual patients based on leukemia-specific genomic features has implications for ongoing AML precision medicine efforts.


Subject(s)
Leukemia, Myeloid, Acute , Proteogenomics , Clonal Hematopoiesis , Clone Cells/pathology , Humans , Leukemia, Myeloid, Acute/diagnosis , Neoplasm, Residual
13.
Medicina (Kaunas) ; 57(3)2021 Mar 01.
Article in English | MEDLINE | ID: mdl-33804348

ABSTRACT

Background and Objectives: Stress can overload adaptive mechanisms, leading to epigenetic effects harmful to health. Research on the reversal of these effects is in its infancy. Early results suggest some meditation techniques have health benefits that grow with repeated practice. This study focused on possible transcriptomic effects of 38 years of twice-daily Transcendental Meditation® (TM®) practice. Materials and Methods: First, using Illumina® BeadChip microarray technology, differences in global gene expression in peripheral blood mononuclear cells (PBMCs) were sought between healthy practitioners and tightly matched controls (n = 12, age 65). Second, these microarray results were verified on a subset of genes using quantitative polymerase chain reaction (qPCR) and were validated using qPCR in larger TM and control groups (n = 45, age 63). Bioinformatics investigation employed Ingenuity® Pathway Analysis (IPA®), DAVID, Genomatix, and R packages. Results: The 200 genes and loci found to meet strict criteria for differential expression in the microarray experiment showed contrasting patterns of expression that distinguished the two groups. Differential expression relating to immune function and energy efficiency were most apparent. In the TM group, relative to the control, all 49 genes associated with inflammation were downregulated, while genes associated with antiviral and antibody components of the defense response were upregulated. The largest expression differences were shown by six genes related to erythrocyte function that appeared to reflect a condition of lower energy efficiency in the control group. Results supporting these gene expression differences were obtained with qPCR-measured expression both in the well-matched microarray groups and in the larger, less well-matched groups. Conclusions: These findings are consistent with predictions based on results from earlier randomized trials of meditation and may provide evidence for stress-related molecular mechanisms underlying reductions in anxiety, post-traumatic stress disorder (PTSD), cardiovascular disease (CVD), and other chronic disorders and diseases.


Subject(s)
Meditation , Computational Biology , Leukocytes, Mononuclear , Stress, Psychological/prevention & control , Transcriptome
14.
PLoS Pathog ; 17(2): e1009305, 2021 02.
Article in English | MEDLINE | ID: mdl-33556144

ABSTRACT

Ionizing radiation-induced tissue damage recruits monocytes into the exposed area where they are differentiated to macrophages. These implement phagocytic removal of dying cells and elicit an acute inflammatory response, but can also facilitate tumorigenesis due to production of anti-inflammatory cytokines. Using primary human monocyte-derived macrophages (MDMs) and the THP1 monocytic cell line, we demonstrate that gamma radiation triggers monocyte differentiation toward the macrophage phenotype with increased expression of type I interferons (IFN-I) and both pro- and anti-inflammatory macrophage activation markers. We found that these changes correlate with significantly upregulated expression of 622 retroelements from various groups, particularly of several clades of human endogenous retroviruses (HERVs). Elevated transcription was detected in both sense and antisense directions in the HERV subgroups tested, including the most genetically homogeneous clade HML-2. The level of antisense transcription was three- to five-fold higher than of the sense strand levels. Using a proximity ligation assay and immunoprecipitation followed by RNA quantification, we identified an increased amount of the dsRNA receptors MDA-5 and TLR3 bound to an equivalent number of copies of sense and antisense chains of HERVK HML-2 RNA. This binding triggered MAVS-associated signaling pathways resulting in increased expression of IFN-I and inflammation related genes that enhanced the cumulative inflammatory effect of radiation-induced senescence. HML-2 knockdown was accompanied with reduced expression and secretion of IFNα, pro-inflammatory (IL-1ß, IL-6, CCL2, CCL3, CCL8, and CCL20) and anti-inflammatory (IL10) modulators in irradiated monocytes and MDMs. Taken together, our data indicate that radiation stress-induced HERV expression enhances the IFN-I and cytokine response and results in increased levels of pro-inflammatory modulators along with expression of anti-inflammatory factors associated with the macrophage tumorigenic phenotype.


Subject(s)
Endogenous Retroviruses/genetics , Gamma Rays , Inflammation/immunology , Macrophage Activation/immunology , Macrophages/immunology , Monocytes/immunology , Retroelements/genetics , Cell Differentiation , Cytokines/metabolism , Humans , Inflammation/metabolism , Inflammation/pathology , Macrophages/metabolism , Macrophages/radiation effects , Monocytes/metabolism , Monocytes/radiation effects , Transcriptome
15.
Chest ; 159(2): 549-563, 2021 02.
Article in English | MEDLINE | ID: mdl-32946850

ABSTRACT

BACKGROUND: Chronic tobacco smoke exposure results in a broad range of lung pathologies including emphysema, airway disease and parenchymal fibrosis as well as a multitude of extra-pulmonary comorbidities. Prior work using CT imaging has identified several clinically relevant subgroups of smoking related lung disease, but these investigations have generally lacked organ specific molecular correlates. RESEARCH QUESTION: Can CT imaging be used to identify clinical phenotypes of smoking related lung disease that have specific bronchial epithelial gene expression patterns to better understand disease pathogenesis? STUDY DESIGN AND METHODS: Using K-means clustering, we clustered participants from the COPDGene study (n = 5,273) based on CT imaging characteristics and then evaluated their clinical phenotypes. These clusters were replicated in the Detection of Early Lung Cancer Among Military Personnel (DECAMP) cohort (n = 360), and were further characterized using bronchial epithelial gene expression. RESULTS: Three clusters (preserved, interstitial predominant and emphysema predominant) were identified. Compared to the preserved cluster, the interstitial and emphysema clusters had worse lung function, exercise capacity and quality of life. In longitudinal follow-up, individuals from the emphysema group had greater declines in exercise capacity and lung function, more emphysema, more exacerbations, and higher mortality. Similarly, genes involved in inflammatory pathways (tumor necrosis factor-α, interferon-ß) are more highly expressed in bronchial epithelial cells from individuals in the emphysema cluster, while genes associated with T-cell related biology are decreased in these samples. Samples from individuals in the interstitial cluster generally had intermediate levels of expression of these genes. INTERPRETATION: Using quantitative CT imaging, we identified three groups of individuals in older ever-smokers that replicate in two cohorts. Airway gene expression differences between the three groups suggests increased levels of inflammation in the most severe clinical phenotype, possibly mediated by the tumor necrosis factor-α and interferon-ß pathways. CLINICAL TRIAL REGISTRATION: COPDGene (NCT00608764), DECAMP-1 (NCT01785342), DECAMP-2 (NCT02504697).


Subject(s)
Pulmonary Disease, Chronic Obstructive/chemically induced , Pulmonary Disease, Chronic Obstructive/diagnostic imaging , Smoking/adverse effects , Tomography, X-Ray Computed , Academic Medical Centers , Aged , Female , Hospitals, Veterans , Humans , Longitudinal Studies , Male , Middle Aged , Phenotype , Pulmonary Disease, Chronic Obstructive/epidemiology , Pulmonary Disease, Chronic Obstructive/genetics , United States/epidemiology
16.
Cell Mol Immunol ; 18(1): 194-205, 2021 01.
Article in English | MEDLINE | ID: mdl-31659245

ABSTRACT

The adaptive immune response relies on specific apoptotic programs to maintain homeostasis. Conventional effector T cell (Tcon) expansion is constrained by both forkhead box P3 (FOXP3)+-regulatory T cells (Tregs) and restimulation-induced cell death (RICD), a propriocidal apoptosis pathway triggered by repeated stimulation through the T-cell receptor (TCR). Constitutive FOXP3 expression protects Tregs from RICD by suppressing SLAM-associated protein (SAP), a key adaptor protein that amplifies TCR signaling strength. The role of transient FOXP3 induction in activated human CD4 and CD8 Tcons remains unresolved, but its expression is inversely correlated with acquired RICD sensitivity. Here, we describe a novel role for FOXP3 in protecting human Tcons from premature RICD during expansion. Unlike FOXP3-mediated protection from RICD in Tregs, FOXP3 protects Tcons through a distinct mechanism requiring de novo transcription that does not require SAP suppression. Transcriptome profiling and functional analyses of expanding Tcons revealed that FOXP3 enhances expression of the SLAM family receptor CD48, which in turn sustains basal autophagy and suppresses pro-apoptotic p53 signaling. Both CD48 and FOXP3 expression reduced p53 accumulation upon TCR restimulation. Furthermore, silencing FOXP3 expression or blocking CD48 decreased the mitochondrial membrane potential in expanding Tcons with a concomitant reduction in basal autophagy. Our findings suggest that FOXP3 governs a distinct transcriptional program in early-stage effector Tcons that maintains RICD resistance via CD48-dependent protective autophagy and p53 suppression.


Subject(s)
CD48 Antigen/metabolism , Cell Death , Forkhead Transcription Factors/metabolism , Lymphocyte Activation , Receptors, Antigen, T-Cell/metabolism , Signaling Lymphocytic Activation Molecule Associated Protein/metabolism , T-Lymphocytes, Regulatory/immunology , Apoptosis , Autophagy , CD48 Antigen/genetics , Forkhead Transcription Factors/genetics , Humans , Receptors, Antigen, T-Cell/genetics , Signal Transduction , Signaling Lymphocytic Activation Molecule Associated Protein/genetics , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism
17.
Front Immunol ; 11: 1219, 2020.
Article in English | MEDLINE | ID: mdl-32595650

ABSTRACT

Formation of pathological anti-FVIII antibodies, or "inhibitors," is the most serious complication of therapeutic FVIII infusions, affecting up to 1/3 of severe Hemophilia A (HA) patients. Inhibitor formation is a classical T-cell dependent adaptive immune response. As such, it requires help from the innate immune system. However, the roles of innate immune cells and mechanisms of inhibitor development vs. immune tolerance, achieved with or without Immune Tolerance Induction (ITI) therapy, are not well-understood. To address these questions, temporal transcriptomics profiling of FVIII-stimulated peripheral blood mononuclear cells (PBMCs) was carried out for HA subjects with and without a current or historic inhibitor using RNA-Seq. PBMCs were isolated from 40 subjects in the following groups: HA with an inhibitor that resolved either following ITI or spontaneously; HA with a current inhibitor; HA with no inhibitor history and non-HA controls. PBMCs were stimulated with 5 nM FVIII and RNA was isolated 4, 16, 24, and 48 h following stimulation. Time-series differential expression analysis was performed and distinct transcriptional signatures were identified for each group, providing clues as to cellular mechanisms leading to or accompanying their disparate anti-FVIII antibody responses. Subjects with a current inhibitor showed differential expression of 56 genes and a clustering analysis identified three major temporal profiles. Interestingly, gene ontology enrichments featured innate immune modulators, including NLRP3, TLR8, IL32, CLEC10A, and COLEC12. NLRP3 and TLR8 are associated with enhanced secretion of the pro-inflammatory cytokines IL-1ß and TNFα, while IL32, which has several isoforms, has been associated with both inflammatory and regulatory immune processes. RNA-Seq results were validated by RT-qPCR, ELISAs, multiplex cytokine analysis, and flow cytometry. The inflammatory status of HA patients suffering from an ongoing inhibitor includes up-regulated innate immune modulators, which may act as ongoing danger signals that influence the responses to, and eventual outcomes of, ITI therapy.


Subject(s)
Factor VIII/immunology , Factor VIII/therapeutic use , Hemophilia A/drug therapy , Immune Tolerance/immunology , Immunity, Innate/immunology , Adult , Aged , Antibodies, Neutralizing/immunology , Autoantibodies/immunology , Child , Child, Preschool , Female , Hemophilia A/immunology , Humans , Leukocytes, Mononuclear/immunology , Male , Middle Aged , Transcriptome , Young Adult
18.
Article in English | MEDLINE | ID: mdl-32509590

ABSTRACT

To discern if there was a particular genotype associated with clinical enteroaggregative Escherichia coli (EAEC) strains isolated from deployed military personnel (DMP) with travelers' diarrhea (TD), we characterized a collection of EAEC from DMP deployed to Afghanistan, Djibouti, Kenya, or Honduras. Although we did not identify a specific EAEC genotype associated with TD in DMP, we found that EAEC isolated at the first clinic visit were more likely to encode the dispersin gene aap than EAEC collected at follow-up visits. A majority of the EAEC isolates were typical EAEC that adhered to HEp-2 cells, formed biofilms, and harbored genes for aggregative adherence fimbriae (AAF), AggR, and serine protease autotransporters of Enterobacteriaceae (SPATEs). A separate subset of the EAEC had aggR and genes for SPATEs but encoded a gene highly homologous to that for CS22, a fimbriae more commonly found in enterotoxigenic E. coli. None of these CS22-encoding EAEC formed biofilms in vitro or adhered to HEp-2 cells. Whole genome sequence and single nucleotide polymorphism analyses demonstrated that most of the strains were genetically diverse, but that a few were closely related. Isolation of these related strains occurred within days to more than a year apart, a finding that suggests a persistent source and genomic stability. In an ampicillin-treated mouse model we found that an agg4A+ aar- isolate formed a biofilm in the intestine and caused reduced weight gain in mice, whereas a strain that did not form an in vivo biofilm caused no morbidity. Our diverse strain collection from DMP displays the heterogeneity of EAEC strains isolated from human patients, and our mouse model of infection indicated the genotype agg4A+ aar- and/or capacity to form biofilm in vivo may correlate to disease severity.


Subject(s)
Escherichia coli Infections , Escherichia coli Proteins , Military Personnel , Animals , Diarrhea , Escherichia coli/genetics , Escherichia coli Proteins/genetics , Humans , Kenya , Mice , Travel , Virulence
19.
Blood Adv ; 4(2): 367-379, 2020 Jan 28.
Article in English | MEDLINE | ID: mdl-31985806

ABSTRACT

Acute myeloid leukemia (AML) is a genetically heterogeneous disease that is characterized by abnormal clonal proliferation of myeloid progenitor cells found predominantly within the bone marrow (BM) and blood. Recent studies suggest that genetic and phenotypic alterations in the BM microenvironment support leukemogenesis and allow leukemic cells to survive and evade chemotherapy-induced death. However, despite substantial evidence indicating the role of tumor-host interactions in AML pathogenesis, little is known about the complex microenvironment of the BM. To address this, we performed novel proteomic profiling of the noncellular compartment of the BM microenvironment in patients with AML (n = 10) and age- and sex-matched healthy control subjects (n = 10) using an aptamer-based, highly multiplexed, affinity proteomics platform (SOMAscan). We show that proteomic assessment of blood or RNA-sequencing of BM are suboptimal alternate screening strategies to determine the true proteomic composition of the extracellular soluble compartment of AML patient BM. Proteomic analysis revealed that 168 proteins significantly differed in abundance, with 91 upregulated and 77 downregulated in leukemic BM. A highly connected signaling network of cytokines and chemokines, including IL-8, was found to be the most prominent proteomic signature associated with AML in the BM microenvironment. We report the first description of significantly elevated levels of the myelosuppressive chemokine CCL23 (myeloid progenitor inhibitory factor-1) in both AML and myelodysplastic syndrome patients and perform functional experiments supportive of a role in the suppression of normal hematopoiesis. This unique paired RNA-sequencing and proteomics data set provides innovative mechanistic insights into AML and healthy aging and should serve as a useful public resource.


Subject(s)
Bone Marrow/pathology , Leukemia, Myeloid, Acute/pathology , Proteomics/methods , Case-Control Studies , Cellular Microenvironment , Chemokines/analysis , Chemokines, CC/metabolism , Cytokines/analysis , Gene Expression Regulation, Leukemic , Humans , Interleukin-8/metabolism , Neoplasm Proteins/analysis
20.
Article in English | MEDLINE | ID: mdl-31649619

ABSTRACT

Poor sleep hygiene is a growing problem, with detrimental effects on many biological systems. The pituitary gland plays a crucial role in the regulation of sleep and the stress response, and its dysfunction leads to sleep-related disorders. However, the interaction between these critical functions remains unclear. Thus, we performed a comparative, whole-transcriptome, analysis to identify stress-induced genes and relevant pathways that may be affected by sleep deprivation. One day following 12 h of Paradoxical Sleep Deprivation (PSD), mice were restrained for 20 min. Gene expression changes in the pituitary were assessed via RNA-Seq and Gene Ontology in PSD and/or restrained groups compared to controls. We show that restraint triggers transcriptional responses involved in hormone secretion, the glucocorticoid response, and apoptosis in both sexes, with 285 differentially expressed genes in females and 93 in males. When PSD preceded restraint stress, the numbers of differentially expressed genes increased to 613 in females and 580 in males. The pituitary transcriptome of restraint+PSD animals was enriched for microglia and macrophage proliferation, cellular response to corticosteroids, and apoptosis, among others. Finally, we identify sex-specific differences in restraint-induced genes following PSD. These findings provide genetic targets to consider when studying sleep and the response to stress.

SELECTION OF CITATIONS
SEARCH DETAIL