Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 142
Filter
1.
Proc Natl Acad Sci U S A ; 121(29): e2401136121, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-38985762

ABSTRACT

Hemostasis relies on a reaction network of serine proteases and their cofactors to form a blood clot. Coagulation factor IXa (protease) plays an essential role in hemostasis as evident from the bleeding disease associated with its absence. RNA aptamers specifically targeting individual coagulation factors have potential as anticoagulants and as probes of the relationship between structure and function. Here, we report X-ray structures of human factor IXa without a ligand bound to the active site either in the apo-form or in complex with an inhibitory aptamer specific for factor IXa. The aptamer binds to an exosite in the catalytic domain and allosterically distorts the active site. Our studies reveal a conformational ensemble of IXa states, wherein large movements of Trp215 near the active site drive functional transitions between the closed (aptamer-bound), latent (apo), and open (substrate-bound) states. The latent state of the apo-enzyme may bear on the uniquely poor catalytic activity of IXa compared to other coagulation proteases. The exosite, to which the aptamer binds, has been implicated in binding VIIIa and heparin, both of which regulate IXa function. Our findings reveal the importance of exosite-driven allosteric modulation of IXa function and new strategies to rebalance hemostasis for therapeutic gain.


Subject(s)
Aptamers, Nucleotide , Factor IXa , Aptamers, Nucleotide/chemistry , Aptamers, Nucleotide/metabolism , Factor IXa/metabolism , Factor IXa/chemistry , Factor IXa/antagonists & inhibitors , Humans , Allosteric Regulation , Catalytic Domain , Crystallography, X-Ray , Models, Molecular , Protein Binding , Anticoagulants/chemistry , Anticoagulants/metabolism , Anticoagulants/pharmacology
2.
J Thromb Haemost ; 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38925492

ABSTRACT

During extracorporeal membrane oxygenation (ECMO) support, the high shear stress in the ECMO circuit results in increased proteolysis of von Willebrand Factor (VWF), loss of VWF high molecular weight (HMW) multimers, and impaired ability to bind to platelets and collagen. These structural changes in VWF are consistent with acquired von Willebrand syndrome (AVWS) type 2A and may contribute to the bleeding diathesis frequently observed in ECMO patients. We performed a systematic review of all clinical studies evaluating the prevalence and associated outcomes of AVWS in ECMO patients. Our findings suggest that almost all ECMO patients develop partial or complete loss of VWF HMW multimers within a few hours of device implantation. The AVWS persists as long as the patient is supported by ECMO. Weaning from ECMO rapidly and completely resolves the AVWS. Nevertheless, few studies have reported bleeding outcomes in ECMO patients with AVWS, and the extent to which AVWS contributes to the bleeding diathesis during ECMO support cannot be answered by current evidence. Data supporting the use of VWF concentrates to prevent bleeding complications in ECMO patients remain limited.

3.
Nat Commun ; 15(1): 3977, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38730234

ABSTRACT

Potent and selective inhibition of the structurally homologous proteases of coagulation poses challenges for drug development. Hematophagous organisms frequently accomplish this by fashioning peptide inhibitors combining exosite and active site binding motifs. Inspired by this biological strategy, we create several EXACT inhibitors targeting thrombin and factor Xa de novo by linking EXosite-binding aptamers with small molecule ACTive site inhibitors. The aptamer component within the EXACT inhibitor (1) synergizes with and enhances the potency of small-molecule active site inhibitors by many hundred-fold (2) can redirect an active site inhibitor's selectivity towards a different protease, and (3) enable efficient reversal of inhibition by an antidote that disrupts bivalent binding. One EXACT inhibitor, HD22-7A-DAB, demonstrates extraordinary anticoagulation activity, exhibiting great potential as a potent, rapid onset anticoagulant to support cardiovascular surgeries. Using this generalizable molecular engineering strategy, selective, potent, and rapidly reversible EXACT inhibitors can be created against many enzymes through simple oligonucleotide conjugation for numerous research and therapeutic applications.


Subject(s)
Aptamers, Nucleotide , Catalytic Domain , Hirudins , Thrombin , Humans , Aptamers, Nucleotide/chemistry , Aptamers, Nucleotide/pharmacology , Thrombin/antagonists & inhibitors , Thrombin/metabolism , Thrombin/chemistry , Hirudins/chemistry , Hirudins/pharmacology , Anticoagulants/pharmacology , Anticoagulants/chemistry , Factor Xa/metabolism , Factor Xa/chemistry , Factor Xa Inhibitors/chemistry , Factor Xa Inhibitors/pharmacology , Animals , Binding Sites , Blood Coagulation/drug effects
4.
Front Immunol ; 15: 1356638, 2024.
Article in English | MEDLINE | ID: mdl-38550590

ABSTRACT

Lymphocyte telomere length (TL) is highly variable and shortens with age. Short telomeres may impede TL-dependent T-cell clonal expansion with viral infection. As SARS-CoV-2 infection can induce prolonged and severe T-cell lymphopenia, infected adults, and particularly older adults with short telomeres, may display severe T-cell lymphopenia. To examine the relationship between T-cell TL parameters and T-cell counts, we studied 40 patients hospitalized with severe COVID-19. T-cells were isolated from lymphocytes, counted using flow cytometry, and their TL parameters were measured using the Telomere Shortest Length Assay. The cohort (median age = 62 years, 27% female) was racially and ethnically diverse (33% White, 35% Black, and 33% Other). On intensive care unit study day 1, T-cell count (mean=1.03 x109/L) was inversely related to age (p=0.007) and higher in females than males (p=0.025). Mean TL was 3.88 kilobases (kb), and 45.3% of telomeres were shorter than 3 kb. Using multiple regression analysis and adjusting for age and sex, T-cell count decreased with increased proportion of T-cell telomeres shorter than 3 kb (p=0.033) and increased with mean TL (p=0.052). Our findings suggest an association between the buildup of short telomeres within T-cells and explain in part reduced peripheral blood T-cell counts in patients with severe COVID-19. Shortened T-cell telomeres may be a risk factor for COVID-19-associated T-cell lymphopenia.


Subject(s)
COVID-19 , Lymphopenia , Male , Humans , Female , Aged , Middle Aged , T-Lymphocytes , SARS-CoV-2 , Lymphocyte Count , Telomere
5.
Pain ; 2024 Mar 06.
Article in English | MEDLINE | ID: mdl-38452223

ABSTRACT

ABSTRACT: Secreted microRNAs (miRNAs) have been detected in various body fluids including the cerebrospinal fluid, yet their direct role in regulating synaptic transmission remains uncertain. We found that intrathecal injection of low dose of let-7b (1 µg) induced short-term (<24 hours) mechanical allodynia and heat hyperalgesia, a response that is compromised in Tlr7-/- or Trpa1-/- mice. Ex vivo and in vivo calcium imaging in GCaMP6-report mice revealed increased calcium signal in spinal cord afferent terminals and doral root ganglion/dorsal root ganglia neurons following spinal perfusion and intraplantar injection of let-7b. Patch-clamp recordings also demonstrated enhanced excitatory synaptic transmission (miniature excitatory postsynaptic currents [EPSCs]) in spinal nociceptive neurons following let-7b perfusion or optogenetic activation of axonal terminals. The elevation in spinal calcium signaling and EPSCs was dependent on the presence of toll-like receptor-7 (TLR7) and transient receptor potential ion channel subtype A1 (TRPA1). In addition, endogenous let-7b is enriched in spinal cord synaptosome, and peripheral inflammation increased let-7b in doral root ganglion/dorsal root ganglia neurons, spinal cord tissue, and the cerebrospinal fluid. Notably, let-7b antagomir inhibited inflammatory pain and inflammation-induced synaptic plasticity (EPSC increase), suggesting an endogenous role of let-7b in regulating pain and synaptic transmission. Furthermore, intrathecal injection of let-7b, at a higher dose (10 µg), induced persistent mechanical allodynia for >2 weeks, which was abolished in Tlr7-/- mice. The high dose of let-7b also induced microgliosis in the spinal cord. Of interest, intrathecal minocycline only inhibited let-7b-induced mechanical allodynia in male but not female mice. Our findings indicate that the secreted microRNA let-7b has the capacity to provoke pain through both neuronal and glial signaling, thereby establishing miRNA as an emerging neuromodulator.

6.
Nucleic Acid Ther ; 34(1): 12-17, 2024 02.
Article in English | MEDLINE | ID: mdl-38285522

ABSTRACT

The ability to reverse the binding of aptamers to their target proteins has received considerable attention for developing controllable therapeutic agents. Recently, use of aptamers as reversible cell-sorting ligands has also sparked interest. Antibodies are currently utilized for isolating cells expressing a particular cell surface receptor. The inability to remove antibodies from isolated cells following sorting greatly limits their utility for many applications. Previously, we described how a particular aptamer-antidote oligonucleotide pair can isolate cells and clean them. Here, we demonstrate that this approach is generalizable; aptamers can simultaneously recognize more than one cell type during fluorescent activated cell sorting (FACS). Moreover, we describe a novel approach to reverse aptamer binding following cell sorting using a nuclease. This alternative strategy represents a cleaning approach that does not require the generation of antidote oligonucleotides for each aptamer and will greatly reduce the cost and expand the utility of Clean FACS.


Subject(s)
Antidotes , Aptamers, Nucleotide , Aptamers, Nucleotide/genetics , Aptamers, Nucleotide/pharmacology , Ligands , Staining and Labeling , Antibodies , SELEX Aptamer Technique
7.
Front Immunol ; 14: 1116034, 2023.
Article in English | MEDLINE | ID: mdl-37575220

ABSTRACT

Background: Monocytes and monocyte-derived tumor infiltrating cells have been implicated in the immunosuppression and immune evasion associated with pancreatic adenocarcinoma (PDAC). Yet, precisely how monocytes in the periphery and tumor microenvironment in patients with intraductal papillary mucinous neoplasm (IPMN), a precursor lesion to PDAC, change during disease progression has not been defined. Here we functionally profiled the peripheral immune system and characterized the tumor microenvironment of patients with both IPMN and PDAC. We also tested if sera from patients with IPMN and PDAC functionally reprogram monocytes relative to that of healthy donors. Methods: Pancreatic tissue and peripheral blood were collected at the time of resection from 16 patients with IPMN and 32 patients with PDAC. Peripheral blood and pancreatic tissue/tumor were immunophenotyped using flow cytometry. Whole blood was plated and incubated with R848 (a TLR 7/8 agonist) or LPS (a TLR4 agonist) for 6 hours and TNF expression in monocytes was measured by flow cytometry to measure monocyte activation. To test if TLR sensitivity is determined by factors in patient sera, we preconditioned healthy donor monocytes in serum from PDAC (n=23), IPMN (n=15), or age-matched healthy donors (n=10) followed by in vitro stimulation with R848 or LPS and multiplex cytokine measurements in the supernatant. Results: TNF expression in R848-stimulated peripheral blood monocytes was higher in patients with low grade vs high grade IPMN (65% vs 32%, p = 0.03) and stage 1 vs stage 2/3 PDAC (58% vs 42%, p = 0.03), this was not observed after LPS stimulation. TLR activation correlated with increasing grade of dysplasia from low grade IPMN to high grade IPMN. Serum from patients with IPMN and PDAC recapitulated suppression of TNF induction after R848 stimulation in naïve, healthy donor monocytes. Conclusion: Peripheral blood monocyte TNF secretion inversely correlates with the degree of dysplasia in IPMN and cancer stage in PDAC, suggesting innate immune reprogramming as IPMNs progress to invasive disease. These effects are, at least in part, mediated by soluble mediators in sera.


Subject(s)
Adenocarcinoma, Mucinous , Adenocarcinoma , Carcinoma, Pancreatic Ductal , Pancreatic Intraductal Neoplasms , Pancreatic Neoplasms , Humans , Pancreatic Neoplasms/pathology , Monocytes/metabolism , Adenocarcinoma/pathology , Carcinoma, Pancreatic Ductal/pathology , Lipopolysaccharides , Hyperplasia/pathology , Tumor Microenvironment , Pancreatic Neoplasms
8.
Cell Chem Biol ; 30(8): 879-892.e5, 2023 08 17.
Article in English | MEDLINE | ID: mdl-37390831

ABSTRACT

CRISPR-based editing has revolutionized genome engineering despite the observation that many DNA sequences remain challenging to target. Unproductive interactions formed between the single guide RNA's (sgRNA) Cas9-binding scaffold domain and DNA-binding antisense domain are often responsible for such limited editing resolution. To bypass this limitation, we develop a functional SELEX (systematic evolution of ligands by exponential enrichment) approach, termed BLADE (binding and ligand activated directed evolution), to identify numerous, diverse sgRNA variants that bind Streptococcus pyogenes Cas9 and support DNA cleavage. These variants demonstrate surprising malleability in sgRNA sequence. We also observe that particular variants partner more effectively with specific DNA-binding antisense domains, yielding combinations with enhanced editing efficiencies at various target sites. Using molecular evolution, CRISPR-based systems could be created to efficiently edit even challenging DNA sequences making the genome more tractable to engineering. This selection approach will be valuable for generating sgRNAs with a range of useful activities.


Subject(s)
CRISPR-Cas Systems , RNA, Guide, CRISPR-Cas Systems , CRISPR-Cas Systems/genetics , RNA , DNA/genetics , DNA/metabolism , Gene Editing
9.
STAR Protoc ; 4(3): 102348, 2023 Sep 15.
Article in English | MEDLINE | ID: mdl-37314924

ABSTRACT

Cell isolation from complex mixtures is a key step in many clinical and research applications, but standard isolation methods may affect the cell's biology and are difficult to reverse. Here, we present a method to isolate and restore cells to their native state using an aptamer that binds epidermal growth factor receptor (EGFR+)cells and a complementary antisense oligonucleotide to reverse binding. For complete details on the use and execution of this protocol, please refer to Gray et al.1.


Subject(s)
Antidotes , Oligonucleotides , Oligonucleotides, Antisense , Cell Separation
10.
Cancers (Basel) ; 15(8)2023 Apr 14.
Article in English | MEDLINE | ID: mdl-37190227

ABSTRACT

Strategies to direct drugs specifically to cancer cells have been increasingly explored, and significant progress has been made toward such targeted therapy. For example, drugs have been conjugated into tumor-targeting antibodies to enable delivery directly to tumor cells. Aptamers are an attractive class of molecules for this type of drug targeting as they are high-affinity/high-specificity ligands, relatively small in size, GMP manufacturable at a large-scale, amenable to chemical conjugation, and not immunogenic. Previous work from our group revealed that an aptamer selected to internalize into human prostate cancer cells, called E3, can also target a broad range of human cancers but not normal control cells. Moreover, this E3 aptamer can deliver highly cytotoxic drugs to cancer cells as Aptamer-highly Toxic Drug Conjugates (ApTDCs) and inhibit tumor growth in vivo. Here, we evaluate its targeting mechanism and report that E3 selectively internalizes into cancer cells utilizing a pathway that involves transferrin receptor 1 (TfR 1). E3 binds to recombinant human TfR 1 with high affinity and competes with transferrin (Tf) for binding to TfR1. In addition, knockdown or knockin of human TfR1 results in a decrease or increase in E3 cell binding. Here, we reported a molecular model of E3 binding to the transferrin receptor that summarizes our findings.

11.
Mol Ther Nucleic Acids ; 31: 383-397, 2023 Mar 14.
Article in English | MEDLINE | ID: mdl-36817723

ABSTRACT

Adeno-associated viruses (AAVs) are commonly used for in vivo gene therapy. Nevertheless, the wide tropism that characterizes these vectors limits specific targeting to a particular cell type or tissue. Here, we developed new chemically modified AAV vectors (Nε-AAVs) displaying a single site substitution on the capsid surface for post-production vector engineering through biorthogonal copper-free click chemistry. We were able to identify AAV vectors that would tolerate the unnatural amino acid substitution on the capsid without disrupting their packaging efficiency. We functionalized the Nε-AAVs through conjugation with DNA (AS1411) or RNA (E3) aptamers or with a folic acid moiety (FA). E3-, AS1411-, and FA-AAVs showed on average a 3- to 9-fold increase in transduction compared with their non-conjugated counterparts in different cancer cell lines. Using specific competitors, we established ligand-specific transduction. In vivo studies confirmed the selective uptake of FA-AAV and AS1411-AAV without off-target transduction in peripheral organs. Overall, the high versatility of these novel Nε-AAVs might pave the way to tailoring gene therapy vectors toward specific types of cells both for ex vivo and in vivo applications.

12.
Mol Ther Nucleic Acids ; 31: 440-451, 2023 Mar 14.
Article in English | MEDLINE | ID: mdl-36817726

ABSTRACT

Pathological blood clotting, or thrombosis, limits vital blood flow to organs; such deprivation can lead to catastrophic events including myocardial infarction, pulmonary embolism, and ischemic stroke. Prompt restoration of blood flow greatly improves outcomes. We explored whether aptamers could serve as molecular imaging probes to rapidly detect thrombi. An aptamer targeting thrombin, Tog25t, was found to rapidly localize to and visualize pre-existing clots in the femoral and jugular veins of mice using fluorescence imaging and, when circulating, was able to image clots as they form. Since free aptamer is quickly cleared from circulation, contrast is rapidly developed, allowing clot visualization within minutes. Moreover, administration of an antidote oligonucleotide further enhanced contrast development, causing the unbound aptamer to clear within 5min while impacting the clot-bound aptamer more slowly. These findings suggest that aptamers can serve as imaging agents for rapid detection of thrombi in acute care and perioperative settings.

13.
RNA ; 29(4): 455-462, 2023 04.
Article in English | MEDLINE | ID: mdl-36697262

ABSTRACT

In this short Perspective, we discuss the history of, and recent progress toward, the development of aptamers that can serve as rapid onset anticoagulants during cardiopulmonary bypass (CPB), extracorporeal membrane oxygenation (ECMO), and catheter-based diagnostic and interventional procedures, several million of which are performed each year worldwide. Aptamer anticoagulants provide potent and antidote-controllable anticoagulation and have low immunogenicity. New methods of aptamer isolation and engineering have not only improved the quality of aptamers, but also accelerated their development. Unfortunately, no aptamer identified to date can produce an anticoagulant effect as potent as that produced by unfractionated heparin (UFH), the standard anticoagulant for CPB. We have suggested several possible strategies to amplify the anticoagulant potency of existing aptamer anticoagulants.


Subject(s)
Aptamers, Nucleotide , Heparin , Heparin/pharmacology , Aptamers, Nucleotide/pharmacology , Aptamers, Nucleotide/therapeutic use , Blood Coagulation , Anticoagulants/pharmacology , Anticoagulants/therapeutic use , Antidotes/pharmacology
14.
Pharmaceuticals (Basel) ; 15(12)2022 Nov 22.
Article in English | MEDLINE | ID: mdl-36558901

ABSTRACT

Von Willebrand Factor (VWF) plays a critical role in thrombus formation, stabilization, and propagation. Previous studies have demonstrated that targeted inhibition of VWF induces thrombolysis when administered in vivo in animal models of ischemic stroke. The study objective was to quantify dose-dependent inhibition of VWF-platelet function and its relationship with thrombolysis using BB-031, an aptamer that binds VWF and inhibits its function. VWF:Ac, VWF:RCo, T-TAS, and ristocetin-induced impedance aggregometry were used to assess BB-031-mediated inhibition of VWF. Reductions in original thrombus surface area and new deposition during administration of treatment were measured in a microfluidic model of arterial thrombolysis. Rotational thromboelastometry was used to assess changes in hemostasis. BB-031 induced maximal inhibition at the highest dose (3384 nM) in VWF:Ac, and demonstrated dose-dependent responses in all other assays. BB-031, but not vehicle, induced recanalization in the microfluidic model. Maximal lytic efficacy in the microfluidic model was seen at 1692 nM and not 3384 nM BB-031 when assessed by surface area. Minor changes in ROTEM parameters were seen at 3384 nM BB-031. Targeted VWF inhibition by BB-031 results in clinically measurable impairment of VWF function, and specifically VWF-GPIb function as measured by VWF:Ac. BB-031 also induced thrombolysis as measured in a microfluidic model of occlusion and reperfusion. Moderate correlation between inhibition and lysis was observed. Additional studies are required to further examine off-target effects of BB-031 at high doses, however, these are expected to be above the range of clinical targeted dosing.

15.
Crit Care Explor ; 4(12): e0799, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36506827

ABSTRACT

The COVID-19 pandemic has claimed over eight hundred thousand lives in the United States alone, with older individuals and those with comorbidities being at higher risk of severe disease and death. Although severe acute respiratory syndrome coronavirus 2-induced hyperinflammation is one of the mechanisms underlying the high mortality, the association between age and innate immune responses in COVID-19 mortality remains unclear. DESIGN: Flow cytometry of fresh blood and multiplexed inflammatory chemokine measurements of sera were performed on samples collected longitudinally from our cohort. Aggregate impact of comorbid conditions was calculated with the Charlson Comorbidity Index, and association between patient factors and outcomes was calculated via Cox proportional hazard analysis and repeated measures analysis of variance. SETTING: A cohort of severely ill COVID-19 patients requiring ICU admission was followed prospectively. PATIENTS: In total, 67 patients (46 male, age 59 ± 14 yr) were included in the study. INTERVENTIONS: None. MEASUREMENTS AND MAIN RESULTS: Mortality in our cohort was 41.8%. We identified older age (hazard ratio [HR] 1.09 [95% CI 1.07-1.11]; p = 0.001), higher comorbidity index (HR 1.24 [95% CI 1.14-1.35]; p = 0.039), and hyponatremia (HR 0.90 [95% CI 0.82-0.99]; p = 0.026) to each independently increase risk for death in COVID-19. We also found that neutrophilia (R = 0.2; p = 0.017), chemokine C-C motif ligand (CCL) 2 (R = 0.3; p = 0.043), and C-X-C motif chemokine ligand 9 (CXCL9) (R = 0.3; p = 0.050) were weakly but significantly correlated with mortality. Older age was associated with lower monocyte (R = -0.2; p = 0.006) and cluster of differentiation (CD) 16+ cell counts (R = -0.2; p = 0.002) and increased CCL11 concentration (R = 0.3; p = 0.050). Similarly, younger patients (< 65 yr) demonstrated a rise in CD4 (b-coefficient = 0.02; p = 0.036) and CD8 (0.01; p = 0.001) counts, as well as CCL20 (b-coefficient = 6.8; p = 0.036) during their ICU stay. This CD8 count rise was also associated with survival (b-coefficient = 0.01; p = 0.023). CONCLUSIONS: Age, comorbidities, and hyponatremia independently predict mortality in severe COVID-19. Neutrophilia and higher CCL2 and CXCL9 levels are also associated with higher mortality, while independent of age.

16.
iScience ; 25(12): 105542, 2022 Dec 22.
Article in English | MEDLINE | ID: mdl-36444294

ABSTRACT

Nucleic acid-binding polymers can have anti-inflammatory properties and beneficial effects in animal models of infection, trauma, cancer, and autoimmunity. PAMAM G3, a polyamidoamine dendrimer, is fully cationic bearing 32 protonable surface amines. However, while PAMAM G3 treatment leads to improved outcomes for mice infected with influenza, at risk of cancer metastasis, or genetically prone to lupus, its administration can lead to serosal inflammation and elevation of biomarkers of liver and kidney damage. Variants with reduced density of cationic charge through the interspersal of hydroxyl groups were evaluated as potentially better-tolerated alternatives. Notably, the variant PAMAM G3 50:50, similar in size as PAMAM G3 but with half the charge, was not toxic in cell culture, less associated with weight loss or serosal inflammation after parenteral administration, and remained effective in reducing glomerulonephritis in lupus-prone mice. Identification of such modified scavengers should facilitate their development as safe and effective anti-inflammatory agents.

17.
Anesthesiology ; 137(1): 67-78, 2022 07 01.
Article in English | MEDLINE | ID: mdl-35412597

ABSTRACT

BACKGROUND: COVID-19 causes hypercoagulability, but the association between coagulopathy and hypoxemia in critically ill patients has not been thoroughly explored. This study hypothesized that severity of coagulopathy would be associated with acute respiratory distress syndrome severity, major thrombotic events, and mortality in patients requiring intensive care unit-level care. METHODS: Viscoelastic testing by rotational thromboelastometry and coagulation factor biomarker analyses were performed in this prospective observational cohort study of critically ill COVID-19 patients from April 2020 to October 2020. Statistical analyses were performed to identify significant coagulopathic biomarkers such as fibrinolysis-inhibiting plasminogen activator inhibitor 1 and their associations with clinical outcomes such as mortality, extracorporeal membrane oxygenation requirement, occurrence of major thrombotic events, and severity of hypoxemia (arterial partial pressure of oxygen/fraction of inspired oxygen categorized into mild, moderate, and severe per the Berlin criteria). RESULTS: In total, 53 of 55 (96%) of the cohort required mechanical ventilation and 9 of 55 (16%) required extracorporeal membrane oxygenation. Extracorporeal membrane oxygenation-naïve patients demonstrated lysis indices at 30 min indicative of fibrinolytic suppression on rotational thromboelastometry. Survivors demonstrated fewer procoagulate acute phase reactants, such as microparticle-bound tissue factor levels (odds ratio, 0.14 [0.02, 0.99]; P = 0.049). Those who did not experience significant bleeding events had smaller changes in ADAMTS13 levels compared to those who did (odds ratio, 0.05 [0, 0.7]; P = 0.026). Elevations in plasminogen activator inhibitor 1 (odds ratio, 1.95 [1.21, 3.14]; P = 0.006), d-dimer (odds ratio, 3.52 [0.99, 12.48]; P = 0.05), and factor VIII (no clot, 1.15 ± 0.28 vs. clot, 1.42 ± 0.31; P = 0.003) were also demonstrated in extracorporeal membrane oxygenation-naïve patients who experienced major thrombotic events. Plasminogen activator inhibitor 1 levels were significantly elevated during periods of severe compared to mild and moderate acute respiratory distress syndrome (severe, 44.2 ± 14.9 ng/ml vs. mild, 31.8 ± 14.7 ng/ml and moderate, 33.1 ± 15.9 ng/ml; P = 0.029 and 0.039, respectively). CONCLUSIONS: Increased inflammatory and procoagulant markers such as plasminogen activator inhibitor 1, microparticle-bound tissue factor, and von Willebrand factor levels are associated with severe hypoxemia and major thrombotic events, implicating fibrinolytic suppression in the microcirculatory system and subsequent micro- and macrovascular thrombosis in severe COVID-19.


Subject(s)
Blood Coagulation Disorders , COVID-19 , Respiratory Distress Syndrome , Thrombophilia , Thrombosis , Blood Coagulation Disorders/complications , COVID-19/complications , Critical Illness , Fibrinolysis , Humans , Hypoxia/complications , Microcirculation , Oxygen , Plasminogen Activator Inhibitor 1 , Prospective Studies , Retrospective Studies , Thrombophilia/complications , Thromboplastin
18.
Transl Res ; 245: 30-40, 2022 07.
Article in English | MEDLINE | ID: mdl-35245691

ABSTRACT

Systemic lupus erythematosus (SLE) is a chronic and often progressive autoimmune disorder marked clinically by a variable constellation of symptoms including fatigue, rash, joint pains, and kidney damage. The lungs, heart, gastrointestinal system, and brain can also be impacted, and individuals with lupus are at higher risk for atherosclerosis, thrombosis, thyroid disease, and other disorders associated with chronic inflammation . Autoimmune diseases are marked by erroneous immune responses in which the target of the immune response is a "self"-antigen, or autoantigen, driven by the development of antigen-specific B or T cells that have overcome the normal systems of self-tolerance built into the development of B and T cells. SLE is specifically characterized by the production of autoantibodies against nucleic acids and their binding proteins, including anti-double stranded DNA, anti-Smith (an RNA binding protein), and many others . These antibodies bind their nuclear-derived antigens to form immune complexes that cause injury and scarring through direct deposition in tissues and activation of innate immune cells . In over 50% of SLE patients, immune complex aggregation in the kidneys drives intrarenal inflammation and injury and leads to lupus nephritis, a progressive destruction of the glomeruli that is one of the most common causes of lupus-related death . To counter this pathology increasing attention has turned to developing approaches to reduce the development and continued generation of such autoantibodies. In particular, the molecular and cellular events that lead to long term, continuous activation of such autoimmune responses have become the focus of new therapeutic strategies to limit renal and other pathologies in lupus patients. The focus of this review is to consider how the innate immune system is involved in the development and progression of lupus nephritis and how a novel approach to inhibit innate immune activation by neutralizing the activators of this response, called Damage Associated Molecular Patterns, may represent a promising approach to treat this and other autoimmune disorders.


Subject(s)
Lupus Erythematosus, Systemic , Lupus Nephritis , Nucleic Acids , Alarmins , Autoantibodies , Humans , Inflammation , Lupus Erythematosus, Systemic/drug therapy , Lupus Nephritis/drug therapy , Nucleic Acids/therapeutic use
19.
Nat Rev Mater ; 7(7): 557-574, 2022.
Article in English | MEDLINE | ID: mdl-35251702

ABSTRACT

Inflammation plays an important role in the response to danger signals arising from damage to our body and in restoring homeostasis. Dysregulated inflammatory responses occur in many diseases, including cancer, sepsis and autoimmunity. The efficacy of anti-inflammatory drugs, developed for the treatment of dysregulated inflammation, can be potentiated using biomaterials, by improving the bioavailability of drugs and by reducing side effects. In this Review, we first outline key elements and stages of the inflammatory environment and then discuss the design of biomaterials for different anti-inflammatory therapeutic strategies. Biomaterials can be engineered to scavenge danger signals, such as reactive oxygen and nitrogen species and cell-free DNA, in the early stages of inflammation. Materials can also be designed to prevent adhesive interactions of leukocytes and endothelial cells that initiate inflammatory responses. Furthermore, nanoscale platforms can deliver anti-inflammatory agents to inflammation sites. We conclude by discussing the challenges and opportunities for biomaterial innovations in addressing inflammation.

20.
Biomaterials ; 283: 121393, 2022 04.
Article in English | MEDLINE | ID: mdl-35349874

ABSTRACT

Millions of COVID-19 patients have succumbed to respiratory and systemic inflammation. Hyperstimulation of toll-like receptor (TLR) signaling is a key driver of immunopathology following infection by viruses. We found that severely ill COVID-19 patients in the Intensive Care Unit (ICU) display hallmarks of such hyper-stimulation with abundant agonists of nucleic acid-sensing TLRs present in their blood and lungs. These nucleic acid-containing Damage and Pathogen Associated Molecular Patterns (DAMPs/PAMPs) can be depleted using nucleic acid-binding microfibers to limit the patient samples' ability to hyperactivate such innate immune receptors. Single-cell RNA-sequencing revealed that CD16+ monocytes from deceased but not recovered ICU patients exhibit a TLR-tolerant phenotype and a deficient anti-viral response after ex vivo TLR stimulation. Plasma proteomics confirmed such myeloid hyperactivation and revealed DAMP/PAMP carrier consumption in deceased patients. Treatment of these COVID-19 patient samples with MnO nanoparticles effectively neutralizes TLR activation by the abundant nucleic acid-containing DAMPs/PAMPs present in their lungs and blood. Finally, MnO nanoscavenger treatment limits the ability of DAMPs/PAMPs to induce TLR tolerance in monocytes. Thus, treatment with microfiber- or nanoparticle-based DAMP/PAMP scavengers may prove useful for limiting SARS-CoV-2 induced hyperinflammation, preventing monocytic TLR tolerance, and improving outcomes in severely ill COVID-19 patients.


Subject(s)
COVID-19 , Nucleic Acids , Humans , Pathogen-Associated Molecular Pattern Molecules , SARS-CoV-2 , Toll-Like Receptors
SELECTION OF CITATIONS
SEARCH DETAIL
...