Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
3.
Biomedicines ; 10(8)2022 Aug 03.
Article in English | MEDLINE | ID: mdl-36009420

ABSTRACT

Symptomatic heart failure with reduced ejection fraction (HFrEF) is characterized by edema and chronic pathological activation of the classical renin-angiotensin-aldosterone system (RAAS). The soluble (pro)renin receptor (s(P)RR) is released into circulation by proteolytic cleavage of tissue expressed (P)RR and is a candidate biomarker of RAAS activation. However, previous studies linked elevated levels of s(P)RR in patients with HFrEF to renal dysfunction. Utilizing prospectively enrolled patients with comparable rEF, we show that increased plasma levels of s(P)RR are associated with symptomatic HF (characterized by edema), independent of chronic renal dysfunction. We also found that s(P)RR levels were positively correlated with patient plasma renin activity (PRA). Normotensive mice with dilated cardiomyopathy (DCM) and HFrEF, without renal dysfunction, showed plasma s(P)RR and PRA patterns similar to human HFrEF patients. Plasma s(P)RR levels positively correlated with PRA and systemic edema, but not with EF, resembling findings in patients with HFrEF without chronic kidney dysfunction. In female DCM mice with elevated PRA levels and plasma s(P)RR levels, a randomized, blinded trial comparing the direct renin inhibitor, aliskiren vs. vehicle control, showed that direct renin inhibition normalized PRA, lowered s(P)RR, and prevented symptomatic HFrEF. Considered in light of previous findings, these data suggest that, in HFrEF, in the absence of renal dysfunction, elevation of plasma s(P)RR levels is caused by increased PRA and associated with the development of systemic edema.

4.
Biomedicines ; 10(8)2022 Aug 19.
Article in English | MEDLINE | ID: mdl-36009562

ABSTRACT

In heart failure with reduced ejection fraction (HFrEF), cardiogenic edema develops from impaired cardiac function, pathological remodeling, chronic inflammation, endothelial dysfunction, neurohormonal activation, and altered nitric oxide-related pathways. Pre-clinical HFrEF studies have shown that treatment with sodium-glucose cotransporter-2 inhibitors (SGLT-2i) stimulates natriuretic and osmotic/diuretic effects, improves overall cardiac function, attenuates maladaptive cardiac remodeling, and reduces chronic inflammation, oxidative stress, and endothelial dysfunction. Here, we review the mechanisms and effects of SGLT-2i therapy on cardiogenic edema in various models of HFrEF. Overall, the data presented suggest a high translational importance of these studies, and pre-clinical studies show that SGLT-2i therapy has a marked effect on suppressing the progression of HFrEF through multiple mechanisms, including those that affect the development of cardiogenic edema.

5.
Diagnostics (Basel) ; 12(5)2022 Apr 28.
Article in English | MEDLINE | ID: mdl-35626259

ABSTRACT

The prevalence of heart failure (HF) with reduced (r) and preserved (p) ejection fraction (EF) continues to rise globally despite current advances in diagnostics and improvements to medical management [...].

6.
Diagnostics (Basel) ; 12(4)2022 Apr 14.
Article in English | MEDLINE | ID: mdl-35454037

ABSTRACT

Pathological sodium-water retention or edema/congestion is a primary cause of heart failure (HF) decompensation, clinical symptoms, hospitalization, reduced quality of life, and premature mortality. Sodium-glucose cotransporter-2 inhibitors (SGLT-2i) based therapies reduce hospitalization due to HF, improve functional status, quality, and duration of life in patients with HF with reduced ejection fraction (HFrEF) independently of their glycemic status. The pathophysiologic mechanisms and molecular pathways responsible for the benefits of SGLT-2i in HFrEF remain inconclusive, but SGLT-2i may help HFrEF by normalizing salt-water homeostasis to prevent clinical edema/congestion. In HFrEF, edema and congestion are related to compromised cardiac function. Edema and congestion are further aggravated by renal and pulmonary abnormalities. Treatment of HFrEF patients with SGLT-2i enhances natriuresis/diuresis, improves cardiac function, and reduces natriuretic peptide plasma levels. In this review, we summarize current clinical research studies related to outcomes of SGLT-2i treatment in HFrEF with a specific focus on their contribution to relieving or preventing edema and congestion, slowing HF progression, and decreasing the rate of rehospitalization and cardiovascular mortality.

7.
Circulation ; 145(21): 1609-1624, 2022 05 24.
Article in English | MEDLINE | ID: mdl-35437032

ABSTRACT

BACKGROUND: Arrhythmogenic cardiomyopathy (ACM) is an inherited genetic disorder of desmosomal dysfunction, and PKP2 (plakophilin-2) has been reported to be the most common disease-causing gene when mutation-positive. In the early concealed phase, the ACM heart is at high risk of sudden cardiac death before cardiac remodeling occurs because of mistargeted ion channels and altered Ca2+ handling. However, the results of pathogenic PKP2 variants on myocyte contraction in ACM pathogenesis remain unknown. METHODS: We studied the outcomes of a human truncating variant of PKP2 on myocyte contraction using a novel knock-in mouse model with insertion of thymidine in exon 5 of Pkp2, which mimics a familial case of ACM (PKP2-L404fsX5). We used serial echocardiography, electrocardiography, blood pressure measurements, histology, cardiomyocyte contraction, intracellular calcium measurements, and gene and protein expression studies. RESULTS: Serial echocardiography of Pkp2 heterozygous (Pkp2-Het) mice revealed progressive failure of the right ventricle (RV) in animals older than 3 months. By contrast, left ventricular function remained normal. ECGs of 6-month-old anesthetized Pkp2-Het mice showed normal baseline heart rates and QRS complexes. Cardiac responses to ß-adrenergic agonist isoproterenol (2 mg/kg) plus caffeine (120 mg/kg) were also normal. However, adrenergic stimulation enhanced the susceptibility of Pkp2-Het hearts to tachyarrhythmia and sudden cardiac death. Histological staining showed no significant fibrosis or adipocyte infiltration in the RVs and left ventricles of 6- and 12-month-old Pkp2-Het hearts. Contractility assessment of isolated myocytes demonstrated progressively reduced Pkp2-Het RV cardiomyocyte function consistent with RV failure measured by echocardiography. However, aging Pkp2-Het and control RV myocytes loaded with intracellular Ca2+ indicator Fura-2 showed comparable Ca2+ transients. Western blotting of Pkp2-RV homogenates revealed a 40% decrease in actin, whereas actin immunoprecipitation followed by a 2,4-dinitrophenylhydrazine staining showed doubled oxidation level. This correlated with a 39% increase in troponin-I phosphorylation. In contrast, Pkp2-Het left ventricular myocytes had normal contraction, actin expression and oxidation, and troponin-I phosphorylation. Last, Western blotting of cardiac biopsies revealed that actin expression was 40% decreased in RVs of patients with end-stage ACM. CONCLUSIONS: During the early concealed phase of ACM, reduced actin expression drives loss of RV myocyte contraction, contributing to progressive RV dysfunction.


Subject(s)
Arrhythmogenic Right Ventricular Dysplasia , Cardiomyopathies , Actins , Aging , Animals , Arrhythmogenic Right Ventricular Dysplasia/pathology , Cardiomyopathies/genetics , Death, Sudden, Cardiac , Disease Models, Animal , Humans , Mice , Plakophilins/genetics , Troponin I
8.
Am J Physiol Heart Circ Physiol ; 321(2): H309-H317, 2021 08 01.
Article in English | MEDLINE | ID: mdl-34170196

ABSTRACT

Pulmonary hypertension (PH) observed during respiratory syncytial virus (RSV) bronchiolitis is associated with morbidity and mortality, especially in children with congenital heart disease. Yet, the pathophysiological mechanisms of RSV-associated PH remain unclear. Therefore, this study aimed to investigate the pathophysiological mechanism of RSV-associated PH. We used a translational mouse model of RSV-associated PH, in which wild-type (WT) and suppression of tumorigenicity 2 (ST2) knockout neonatal mice were infected with RSV at 5 days old and reinfected 4 wk later. The development of PH in WT mice following RSV reinfection was evidenced by elevated right ventricle systolic pressure, shortened pulmonary artery acceleration time (PAT), and decreased PAT/ejection time (ET) ratio. It coincided with the augmentation of periostin and IL-13 expression and increased arginase bioactivity by both arginase 1 and 2 as well as induction of nitric oxide synthase (NOS) uncoupling. Absence of ST2 signaling prevented RSV-reinfected mice from developing PH by suppressing NOS uncoupling. In summary, ST2 signaling was involved in the development of RSV-associated PH. ST2 signaling inhibition may be a novel therapeutic target for RSV-associated PH.NEW & NOTEWORTHY We report that the pathogenic role of ST2-mediated type 2 immunity and mechanisms contribute to RSV-associated pulmonary hypertension. Inhibiting ST2 signaling may be a novel therapeutic target for this condition.


Subject(s)
Bronchiolitis, Viral/genetics , Hypertension, Pulmonary/genetics , Interleukin-1 Receptor-Like 1 Protein/genetics , Lung/metabolism , Respiratory Syncytial Virus Infections/genetics , Animals , Animals, Newborn , Arginase/genetics , Arginase/metabolism , Bronchiolitis, Viral/complications , Bronchiolitis, Viral/metabolism , Cell Adhesion Molecules/genetics , Cell Adhesion Molecules/metabolism , Hypertension, Pulmonary/etiology , Hypertension, Pulmonary/metabolism , Interleukin-13/genetics , Interleukin-13/metabolism , Mice , Mice, Knockout , Nitric Oxide Synthase Type I/genetics , Nitric Oxide Synthase Type I/metabolism , Nitric Oxide Synthase Type II/genetics , Nitric Oxide Synthase Type II/metabolism , Nitric Oxide Synthase Type III/genetics , Nitric Oxide Synthase Type III/metabolism , Reinfection , Respiratory Syncytial Virus Infections/complications , Respiratory Syncytial Virus Infections/metabolism , Respiratory Syncytial Viruses
9.
Int J Mol Sci ; 22(8)2021 Apr 14.
Article in English | MEDLINE | ID: mdl-33919841

ABSTRACT

Sodium restriction is often recommended in heart failure (HF) to block symptomatic edema, despite limited evidence for benefit. However, a low-sodium diet (LSD) activates the classical renin-angiotensin-aldosterone system (RAAS), which may adversely affect HF progression and mortality in patients with dilated cardiomyopathy (DCM). We performed a randomized, blinded pre-clinical trial to compare the effects of a normal (human-equivalent) sodium diet and a LSD on HF progression in a normotensive model of DCM in mice that has translational relevance to human HF. The LSD reduced HF progression by suppressing the development of pleural effusions (p < 0.01), blocking pathological increases in systemic extracellular water (p < 0.001) and prolonging median survival (15%, p < 0.01). The LSD activated the classical RAAS by increasing plasma renin activity, angiotensin II and aldosterone levels. However, the LSD also significantly up-elevated the counter-regulatory RAAS by boosting plasma angiotensin converting enzyme 2 (ACE2) and angiotensin (1-7) levels, promoting nitric oxide bioavailability and stimulating 3'-5'-cyclic guanosine monophosphate (cGMP) production. Plasma HF biomarkers associated with poor outcomes, such as B-type natriuretic peptide and neprilysin were decreased by a LSD. Cardiac systolic function, blood pressure and renal function were not affected. Although a LSD activates the classical RAAS system, we conclude that the LSD delayed HF progression and mortality in experimental DCM, in part through protective stimulation of the counter-regulatory RAAS to increase plasma ACE2 and angiotensin (1-7) levels, nitric oxide bioavailability and cGMP production.


Subject(s)
Angiotensin I/biosynthesis , Cyclic GMP/metabolism , Diet, Sodium-Restricted , Edema/prevention & control , Heart Failure/complications , Nitric Oxide/metabolism , Peptide Fragments/biosynthesis , Animals , Biological Availability , Biomarkers/blood , Blood Pressure , Cardiomyopathy, Dilated/complications , Cardiomyopathy, Dilated/physiopathology , Edema/blood , Heart Failure/blood , Heart Failure/physiopathology , Kidney/physiopathology , Male , Mice, Inbred C57BL , Natriuretic Peptide, Brain/metabolism , Nitric Oxide/blood , Nitric Oxide Synthase/metabolism , Phosphoric Diester Hydrolases/metabolism , Pleural Effusion , Renin-Angiotensin System , Survival Analysis , Systole
11.
Neuroscience ; 460: 120-129, 2021 04 15.
Article in English | MEDLINE | ID: mdl-33465414

ABSTRACT

Matrix metalloproteinase-9 (MMP-9) degrades collagen and other cellular matrix proteins. After acute ischemic stroke, increased MMP-9 levels are correlated with hemorrhage, lack of reperfusion and stroke severity. Nevertheless, definitive data that MMP-9 itself causes poor outcomes in ischemic stroke are limited. In a model of experimental ischemic stroke with reperfusion, we examined whether ischemia and recombinant tissue plasminogen activator (r-tPA) therapy affected MMP-9 expression, and we used specific inhibitors to test if MMP-9 affects brain injury and recovery. After stroke, MMP-9 expression increased significantly in the ischemic vs. non-ischemic hemisphere of the brain (p < 0.001). MMP-9 expression in the ischemic, but not the non-ischemic hemisphere, was further increased by r-tPA treatment (p < 0.001). To determine whether MMP-9 expression contributed to stroke outcomes after r-tPA treatment, we tested three different antibody MMP-9 inhibitors. When compared to treatment with r-tPA and saline, treatment with r-tPA and MMP-9 antibody inhibitors significantly reduced brain hemorrhage by 11.3 to 38.6-fold (p < 0.01), brain swelling by 2.8 to 4.3-fold (p < 0.001) and brain infarction by 2.5 to 3.9-fold (p < 0.0001). Similarly, when compared to treatment with r-tPA and saline, treatment with r-tPA and an MMP-9 antibody inhibitor significantly improved neurobehavioral outcomes (p < 0.001), decreased weight loss (p < 0.001) and prolonged survival (p < 0.01). In summary, both prolonged ischemia and r-tPA selectively enhanced MMP-9 expression in the ischemic hemisphere. When administered with r-tPA, specific MMP-9 inhibitors markedly reduced brain hemorrhage, swelling, infarction, disability and death, which suggests that blocking the deleterious effects of MMP-9 may improve outcomes after ischemic stroke.


Subject(s)
Brain Ischemia , Stroke , Animals , Brain Ischemia/drug therapy , Disease Models, Animal , Fibrinolytic Agents/therapeutic use , Ischemia/drug therapy , Matrix Metalloproteinase 9 , Stroke/drug therapy , Tissue Plasminogen Activator
12.
Int J Mol Sci ; 21(15)2020 Jul 30.
Article in English | MEDLINE | ID: mdl-32751757

ABSTRACT

Nearly one in three people in the U.S. will develop heart failure (HF), characterized by fluid retention (edema) in the lungs and elsewhere. This leads to difficult breathing, deterioration of physical capacity, restriction of normal activities and death. There is little data about the safety and effects of sexual interactions in patients with HF. We tested whether a lack of sexual interactions affected pathophysiological outcomes in a pre-clinical mouse model of dilated cardiomyopathy that recapitulates the progressive stages of human HF. Male mice were randomly given access to, or deprived from, sexual interactions with female mice, which were confirmed by videography and generation of offspring. Cohousing with access to sexual interactions markedly prolonged survival, while cohousing without access to sexual activity did not. Sexual interactions improved systolic function, reduced HF-associated edema, altered transcription of heart contractile protein genes and decreased plasma testosterone levels. To determine whether testosterone levels contributed to survival, testosterone levels were experimentally reduced. Reduction of testosterone levels significantly prolonged survival. Taken together, in mice with dilated cardiomyopathy, sexual activity altered cardiac contractile gene transcription, improved systolic function, reduced edema and prolonged survival which may be in part due to lower testosterone levels.


Subject(s)
Cardiomyopathy, Dilated/prevention & control , Coitus/physiology , Heart Failure/prevention & control , Sexual Behavior/physiology , Animals , Cardiomyopathy, Dilated/physiopathology , Disease Models, Animal , Female , Heart Failure/physiopathology , Humans , Male , Mice , Myocardial Contraction , Survival/physiology
13.
Int J Mol Sci ; 21(10)2020 May 14.
Article in English | MEDLINE | ID: mdl-32422879

ABSTRACT

Altered expression of corin, a cardiac transmembrane serine protease, has been linked to dilated and ischemic cardiomyopathy. However, the potential role of corin in myocardial infarction (MI) is lacking. This study examined the outcomes of MI in wild-type vs. cardiac-specific overexpressed corin transgenic (Corin-Tg) mice during pre-MI, early phase (3, 24, 72 h), and late phase (1, 4 weeks) post-MI. Corin overexpression significantly reduced cardiac cell apoptosis (p < 0.001), infarct size (p < 0.001), and inhibited cleavage of procaspases 3, 9, and 8 (p < 0.05 to p < 0.01), as well as altered the expression of Bcl2 family proteins, Bcl-xl, Bcl2 and Bak (p < 0.05 to p < 0.001) at 24 h post-MI. Overexpressed cardiac corin also significantly modulated heart function (ejection fraction, p < 0.0001), lung congestion (lung weight to body weight ratio, p < 0.0001), and systemic extracellular water (edema, p < 0.05) during late phase post-MI. Overall, cardiac corin overexpression significantly reduced apoptosis, infarct size, and modulated cardiac expression of key members of the apoptotic pathway in early phase post-MI; and led to significant improvement in heart function and reduced congestion in late phase post-MI. These findings suggest that corin may be a useful target to protect the heart from ischemic injury and subsequent post-infarction remodeling.


Subject(s)
Apoptosis/genetics , Myocardial Infarction/genetics , Myocardium/metabolism , Serine Endopeptidases/genetics , Animals , Cell Death/genetics , Gene Expression Regulation/genetics , Humans , Mice , Mice, Transgenic , Myocardial Infarction/pathology , Myocardium/pathology , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , Proto-Oncogene Proteins c-bcl-2/genetics , Ventricular Remodeling/genetics , bcl-2 Homologous Antagonist-Killer Protein/genetics , bcl-X Protein/genetics
14.
Int J Mol Sci ; 20(16)2019 Aug 09.
Article in English | MEDLINE | ID: mdl-31404946

ABSTRACT

Heart failure (HF) patients frequently have elevated plasma renin activity. We examined the significance of elevated plasma renin activity in a translationally-relevant model of dilated cardiomyopathy (DCM), which replicates the progressive stages (A-D) of human HF. Female mice with DCM and elevated plasma renin activity concentrations were treated with a direct renin inhibitor (aliskiren) in a randomized, blinded fashion beginning at Stage B HF. By comparison to controls, aliskiren treatment normalized pathologically elevated plasma renin activity (p < 0.001) and neprilysin levels (p < 0.001), but did not significantly alter pathological changes in plasma aldosterone, angiotensin II, atrial natriuretic peptide, or corin levels. Aliskiren improved cardiac systolic function (ejection fraction, p < 0.05; cardiac output, p < 0.01) and significantly reduced the longitudinal development of edema (extracellular water, p < 0.0001), retarding the transition from Stage B to Stage C HF. The normalization of elevated plasma renin activity reduced the loss of body fat and lean mass (cachexia/sarcopenia), p < 0.001) and prolonged survival (p < 0.05). In summary, the normalization of plasma renin activity retards the progression of experimental HF by improving cardiac systolic function, reducing the development of systemic edema, cachexia/sarcopenia, and mortality. These data suggest that targeting pathologically elevated plasma renin activity may be beneficial in appropriately selected HF patients.


Subject(s)
Amides/therapeutic use , Cardiomyopathy, Dilated/drug therapy , Fumarates/therapeutic use , Renin/antagonists & inhibitors , Renin/blood , Animals , Cachexia/blood , Cachexia/complications , Cachexia/drug therapy , Cardiomyopathy, Dilated/blood , Cardiomyopathy, Dilated/complications , Disease Models, Animal , Edema/blood , Edema/complications , Edema/drug therapy , Female , Heart Failure/blood , Heart Failure/complications , Heart Failure/drug therapy , Humans , Mice , Mice, Inbred C57BL
15.
Int J Mol Sci ; 20(13)2019 Jun 28.
Article in English | MEDLINE | ID: mdl-31261774

ABSTRACT

Regardless of the cause, symptomatic heart failure (HF) with reduced ejection fraction (rEF) is characterized by pathological activation of the renin-angiotensin-aldosterone system (RAAS) with sodium retention and extracellular fluid expansion (edema). Here, we review the role of active renin, a crucial, upstream enzymatic regulator of the RAAS, as a prognostic and diagnostic plasma biomarker of heart failure with reduced ejection fraction (HFrEF) progression; we also discuss its potential as a pharmacological bio-target in HF therapy. Clinical and experimental studies indicate that plasma renin activity is elevated with symptomatic HFrEF with edema in patients, as well as in companion animals and experimental models of HF. Plasma renin activity levels are also reported to be elevated in patients and animals with rEF before the development of symptomatic HF. Modulation of renin activity in experimental HF significantly reduces edema formation and the progression of systolic dysfunction and improves survival. Thus, specific assessment and targeting of elevated renin activity may enhance diagnostic and therapeutic precision to improve outcomes in appropriate patients with HFrEF.


Subject(s)
Heart Failure/blood , Renin/blood , Animals , Biomarkers/blood , Cardiac Output , Cardiovascular Agents/pharmacology , Cardiovascular Agents/therapeutic use , Heart Failure/drug therapy , Heart Failure/physiopathology , Humans , Renin/antagonists & inhibitors , Systole
16.
Article in English | MEDLINE | ID: mdl-31057979

ABSTRACT

Alcohol (ethanol) is one of the most widely consumed drugs. Alcohol consumption by pregnant women may result in a range of fetal abnormalities termed fetal alcohol spectrum disorders (FASDs). The cerebrovascular system is emerging as a critical target of alcohol in the developing brain. We recently showed that three episodes of prenatal alcohol exposure resulting in 80 mg/dL alcohol in maternal blood during mid-pregnancy up-regulated anandamide-induced dilation of fetal cerebral arteries. Moreover, ethanol dilated fetal cerebral arteries via cannabinoid (CB) receptors. Whether a critical role of fetal cerebral artery CB system in responses to alcohol was maintained throughout the gestation, remains unknow. MAIN METHODS: Pregnant baboons (second trimester equivalent) were subjected to three episodes of either alcohol or control drink infusion via gavage. Cerebral arteries from mothers and near-term female fetuses were in vitro pressurized for diameter monitoring. KEY FINDINGS: Near-term fetal and maternal arteries exhibited similar ability to develop myogenic tone, to constrict in presence of 60 mM KCl, and to respond to 10 µM anandamide. Fetal and maternal arteries largely failed to dilate in presence of 63 mM ethanol. No differences were detected between arteries from control and alcohol-exposed baboon donors. Therefore, previously observed ethanol-induced dilation of fetal cerebral arteries and up-regulation of CB components in response to fetal alcohol exposure during mid-pregnancy was transient and disappeared by near-term.

17.
Int J Mol Sci ; 21(1)2019 Dec 27.
Article in English | MEDLINE | ID: mdl-31892216

ABSTRACT

Humans with dilated cardiomyopathy (DCM) and heart failure (HF) develop low levels of corin, a multi-domain, cardiac-selective serine protease involved in natriuretic peptide cleavage and sodium and water regulation. However, experimental restoration of corin levels markedly attenuates HF progression. To determine whether the beneficial effects of corin in HF require catalytic activity, we engineered cardiac overexpression of an enzymatically inactive corin transgene (corin-Tg(i)). On a wild-type (WT) background, corin-Tg(i) had no evident phenotypic effects. However, in a well-established genetic model of DCM, corin-Tg(i)/DCM mice had increased survival (p < 0.01 to 0.001) vs. littermate corin-WT/DCM controls. Pleural effusion (p < 0.01), lung edema (p < 0.05), systemic extracellular free water (p < 0.01), and heart weight were decreased (p < 0.01) in corin-Tg(i)/DCM vs. corin-WT/DCM mice. Cardiac ejection fraction and fractional shortening improved (p < 0.01), while ventricular dilation decreased (p < 0.0001) in corin-Tg(i)/DCM mice. Plasma atrial natriuretic peptide, cyclic guanosine monophosphate, and neprilysin were significantly decreased. Cardiac phosphorylated glycogen synthase kinase-3ß (pSer9-GSK3ß) levels were increased in corin(i)-Tg/DCM mice (p < 0.01). In summary, catalytically inactive corin-Tg(i) decreased fluid retention, improved contractile function, decreased HF biomarkers, and diminished cardiac GSK3ß activity. Thus, the protective effects of cardiac corin on HF progression and survival in experimental DCM do not require the serine protease activity of the molecule.


Subject(s)
Cardiomyopathy, Dilated/metabolism , Edema/metabolism , Myocardial Contraction/physiology , Serine Endopeptidases/metabolism , Animals , Biomarkers/metabolism , Female , Glycogen Synthase Kinase 3 beta/metabolism , Heart/physiopathology , Heart Failure/metabolism , Humans , Male , Mice , Mice, Inbred C57BL , Myocardium/metabolism
18.
PLoS One ; 13(9): e0202571, 2018.
Article in English | MEDLINE | ID: mdl-30192780

ABSTRACT

Following acute myocardial infarction, clinical studies show alterations in the blood levels of corin, a cardiac-selective activator of the natriuretic peptides pro-atrial natriuretic peptide (pro-ANP) and pro-B-type natriuretic peptide (pro-BNP). However, the temporal changes in circulating and cardiac corin levels and their relationships to the severity of myocardial infarction have not been studied. The main objective of this study was to examine the relationship between cardiac and circulating corin levels and their association with cardiac systolic function and infarct size during the early phase of acute myocardial infarction (<72 h) in a translationally relevant induced coronary ligation mouse model. This acute phase timeline was chosen to correlate with the clinical practice within which blood samples are collected from myocardial infarction patients. Heart and plasma samples were examined at 3, 24, and 72 hours post acute myocardial infarction. Plasma corin levels were examined by enzyme-linked immunosorbent assay, transcripts of cardiac corin, pro-ANP and pro-BNP by quantitative real-time polymerase chain reaction, cardiac corin expression by immunohistology, infarct size by histology and heart function by echocardiography. Plasma corin levels were significantly increased at 3 (P<0.05), 24 (P<0.001), and 72 hours (P<0.01) post-acute myocardial infarction. In contrast, cardiac corin transcript levels dropped by 5% (P>0.05), 69% (P<0.001) and 65% (P<0.001) and immunoreactive cardiac corin protein levels dropped by 30% (P<0.05), 76% (P<0.001) and 75% (P<0.001), while cardiac pro-ANP and pro-BNP transcript levels showed an opposite pattern. Plasma corin levels were negatively correlated with immunoreactive cardiac corin (P<0.01), ejection fraction (P<0.05) and fractional shortening (P<0.05), but positively correlated with infarct size (P<0.01). In conclusion, acute myocardial infarction induces rapid increases in plasma corin and decreases in cardiac corin levels. In the early phase of acute myocardial infarction, plasma corin levels are inversely correlated with heart function and may reflect the severity of myocardial damage.


Subject(s)
Myocardial Infarction/complications , Myocardial Ischemia/blood , Myocardial Ischemia/complications , Serine Endopeptidases/blood , Animals , Atrial Natriuretic Factor/genetics , Heart/physiopathology , Male , Mice , Myocardial Ischemia/pathology , Myocardial Ischemia/physiopathology , Natriuretic Peptide, Brain/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism , Time Factors
19.
Am J Physiol Heart Circ Physiol ; 315(3): H581-H589, 2018 09 01.
Article in English | MEDLINE | ID: mdl-29906223

ABSTRACT

Pulmonary hypertension (PH) has been observed in up to 75% of infants with moderate to severe respiratory syncytial virus (RSV) bronchiolitis and is associated with significant morbidity and mortality in infants with congenital heart disease. The purpose of the present study was to establish a mouse model of PH secondary to RSV bronchiolitis that mimics the disease etiology as it occurs in infants. Neonatal mice were infected with RSV at 5 days of age and then reinfected 4 wk later. Serum-free medium was administered to age-matched mice as a control. Echocardiography and right ventricular systolic pressure (RVSP) measurements via right jugular vein catheterization were conducted 5 and 6 days after the second infection, respectively. Peripheral capillary oxygen saturation monitoring did not indicate hypoxia at 2-4 days post-RSV infection, before reinfection, and at 2-7 days after reinfection. RSV-infected mice had significantly higher RVSP than control mice. Pulsed-wave Doppler recording of the pulmonary blood flow by echocardiogram demonstrated a significantly shortened pulmonary artery acceleration time and decreased pulmonary artery acceleration time-to-ejection time ratio in RSV-infected mice. Morphometry showed that RSV-infected mice exhibited a significantly higher pulmonary artery medial wall thickness and had an increased number of muscularized pulmonary arteries compared with control mice. These findings, confirmed by RVSP measurements, demonstrate the development of PH in the lungs of mice infected with RSV as neonates. This animal model can be used to study the pathogenesis of PH secondary to RSV bronchiolitis and to assess the effect of treatment interventions. NEW & NOTEWORTHY This is the first mouse model of respiratory syncytial virus-induced pulmonary hypertension, to our knowledge. This model will allow us to decipher molecular mechanisms responsible for the pathogenesis of pulmonary hypertension secondary to respiratory syncytial virus bronchiolitis with the use of knockout and/or transgenic animals and to monitor therapeutic effects with echocardiography.


Subject(s)
Bronchiolitis, Viral/complications , Disease Models, Animal , Hypertension, Pulmonary/virology , Respiratory Syncytial Virus Infections/complications , Animals , Blood Pressure , Bronchiolitis, Viral/pathology , Hypertension, Pulmonary/etiology , Hypertension, Pulmonary/pathology , Mice , Mice, Inbred BALB C , Pulmonary Artery/pathology , Respiratory Syncytial Virus Infections/pathology
20.
Reprod Sci ; 25(7): 1116-1123, 2018 07.
Article in English | MEDLINE | ID: mdl-28982294

ABSTRACT

Prenatal alcohol exposure often results in an array of fetal developmental abnormalities termed fetal alcohol spectrum disorders (FASDs). Despite the high prevalence of FASDs, the pathophysiology of fetal damage by alcohol remains poorly understood. One of the major obstacles in studying fetal development in response to alcohol exposure is the inability to standardize the amount, pattern of alcohol consumption, and peak blood alcohol levels in pregnant mothers. In the present study, we used Doppler ultrasonography to assess fetal growth and cardiovascular parameters in response to alcohol exposure in pregnant baboons. Baboons were subjected to gastric alcohol infusion 3 times during the second trimester equivalent to human pregnancy, with maternal blood alcohol levels reaching 80 mg/dL within 30 to 60 minutes following alcohol infusion. The control group received a drink that was isocaloric to the alcohol-containing one. Doppler ultrasonography was used for longitudinal assessment of fetal biometric parameters and fetal cardiovascular indices. Fetal abdominal and head circumferences, but not femur length, were significantly decreased in alcohol-exposed fetuses near term. Peak systolic velocity of anterior and middle cerebral arteries decreased during episodes of alcohol intoxication, but there was no difference in Doppler indices between groups near term. Acute alcohol intoxication affected fetal cerebral blood flow independent of changes in the fetal cardiac output. Unlike fetal growth parameters, changes in vascular indices did not persist over gestation. In summary, alcohol effects on fetal growth and on fetal vascular function have different time courses.


Subject(s)
Ethanol/administration & dosage , Fetal Alcohol Spectrum Disorders/physiopathology , Fetal Development/drug effects , Fetal Heart/drug effects , Animals , Cardiovascular Physiological Phenomena , Cerebral Arteries/drug effects , Female , Fetal Alcohol Spectrum Disorders/etiology , Fetal Heart/physiopathology , Papio , Pregnancy , Ultrasonography, Doppler , Umbilical Arteries/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...