Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Expert Opin Drug Discov ; : 1-19, 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38898679

ABSTRACT

BACKGROUND: Despite the progress in comprehending molecular design principles and biochemical processes associated with thrombin inhibition, there is a crucial need to optimize efforts and curtail the recurrence of synthesis-testing cycles. Nitrogen and N-heterocycles are key features of many anti-thrombin drugs. Hence, a pragmatic analysis of nitrogen and N-heterocycles in thrombin inhibitors is important throughout the drug discovery pipeline. In the present work, the authors present an analysis with a specific focus on understanding the occurrence and distribution of nitrogen and selected N-heterocycles in the realm of thrombin inhibitors. RESEARCH DESIGN AND METHODS: A dataset comprising 4359 thrombin inhibitors is used to scrutinize various categories of nitrogen atoms such as ring, non-ring, aromatic, and non-aromatic. In addition, selected aromatic and aliphatic N-heterocycles have been analyzed. RESULTS: The analysis indicates that ~62% of thrombin inhibitors possess five or fewer nitrogen atoms. Substituted N-heterocycles have a high occurrence, like pyrrolidine (23.24%), pyridine (20.56%), piperidine (16.10%), thiazole (9.61%), imidazole (7.36%), etc. in thrombin inhibitors. CONCLUSIONS: The majority of active thrombin inhibitors contain nitrogen atoms close to 5 and a combination of N-heterocycles like pyrrolidine, pyridine, piperidine, etc. This analysis provides crucial insights to optimize the transformation of lead compounds into potential anti-thrombin inhibitors.

2.
Spectrochim Acta A Mol Biomol Spectrosc ; 310: 123913, 2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38271846

ABSTRACT

Herein, two different sustainable and green signal processing spectrophotometric approaches, namely, derivative spectroscopy and wavelet transform, have been utilized for effective measurement of the antiretroviral therapy abacavir and lamivudine in their pharmaceutical formulations. These methods were used to enhance the spectral data and differentiate between the absorption bands of abacavir and lamivudine in order to accurately measure their concentrations. For determining abacavir and lamivudine, the first derivative spectrophotometric method has been applied to the zero-order and ratio spectra of both drugs. The same approach has been tested using the continuous wavelet transform method where a second order 2.4 of rbio and bior wavelet families were found to be optimum for measuring both drugs. Validation of the proposed methods affirmed their reliability in terms of linearity over the concentration range 1.5-30 µg/mL and 1.5-36 µg/mL for abacavir and lamivudine, respectively, precision (RSD < 2 %), and accuracy with mean recoveries ranging between 98 % and 102 %. Additionally, these spectrophotometric methodologies were applied to real pharmaceutical preparations and yielded results congruent with a prior chromatographic method. Most prominently, the proposed methods stood out for their greenness and sustainability with 97 points as evaluated by the analytical eco-scale method and a score value of 0.79 as analyzed by AGREE method, thereby making them suitable for resource-limited settings and highlighting the potential for broader application of green analytical methods in pharmaceutical analysis.


Subject(s)
Cyclopropanes , Dideoxyadenosine/analogs & derivatives , Lamivudine , Wavelet Analysis , Humans , Lamivudine/chemistry , Reproducibility of Results , Spectrophotometry , Pharmaceutical Preparations
SELECTION OF CITATIONS
SEARCH DETAIL
...