Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 132
Filter
1.
Genes Cells ; 2024 Aug 10.
Article in English | MEDLINE | ID: mdl-39126279

ABSTRACT

The membrane-integrated NADPH oxidases DUOX1 and DUOX2 are recruited to the apical plasma membrane in epithelial cells to release hydrogen peroxide, thereby playing crucial roles in various functions such as thyroid hormone synthesis and host defense. However, it has remained unknown about the molecular mechanism for apical sorting of DUOX1 and DUOX2. Here we show that DUOX1 and DUOX2 are correctly sorted to the apical membrane via the membrane-spanning DUOX maturation proteins DUOXA1 and DUOXA2, respectively, when co-expressed in MDCK epithelial cells. Impairment of N-glycosylation of DUOXA1 results in mistargeting of DUOX1 to the basolateral membrane. Similar to DUOX1 complexed with the glycosylation-defective DUOXA1, the naturally non-glycosylated oxidase NOX5, which forms a homo-oligomer, is targeted basolaterally. On the other hand, a mutant DUOXA2 deficient in N-glycosylation is less stable than the wild-type protein but still capable of recruiting DUOX2 to the apical membrane, whereas DUOX2 is missorted to the basolateral membrane when paired with DUOXA1. These findings indicate that DUOXA2 is crucial but its N-glycosylation is dispensable for DUOX2 apical recruitment; instead, its C-terminal region seems to be involved. Thus, apical sorting of DUOX1 and DUOX2 is likely regulated in a distinct manner by their respective partners DUOXA1 and DUOXA2.

2.
PLoS Genet ; 20(3): e1011211, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38498576

ABSTRACT

Age-related hearing loss (ARHL) is a common sensory impairment with complex underlying mechanisms. In our previous study, we performed a meta-analysis of genome-wide association studies (GWAS) in mice and identified a novel locus on chromosome 18 associated with ARHL specifically linked to a 32 kHz tone burst stimulus. Consequently, we investigated the role of Formin Homology 2 Domain Containing 3 (Fhod3), a newly discovered candidate gene for ARHL based on the GWAS results. We observed Fhod3 expression in auditory hair cells (HCs) primarily localized at the cuticular plate (CP). To understand the functional implications of Fhod3 in the cochlea, we generated Fhod3 overexpression mice (Pax2-Cre+/-; Fhod3Tg/+) (TG) and HC-specific conditional knockout mice (Atoh1-Cre+/-; Fhod3fl/fl) (KO). Audiological assessments in TG mice demonstrated progressive high-frequency hearing loss, characterized by predominant loss of outer hair cells, and a decreased phalloidin intensities of CP. Ultrastructural analysis revealed loss of the shortest row of stereocilia in the basal turn of the cochlea, and alterations in the cuticular plate surrounding stereocilia rootlets. Importantly, the hearing and HC phenotype in TG mice phenocopied that of the KO mice. These findings suggest that balanced expression of Fhod3 is critical for proper CP and stereocilia structure and function. Further investigation of Fhod3 related hearing impairment mechanisms may lend new insight towards the myriad mechanisms underlying ARHL, which in turn could facilitate the development of therapeutic strategies for ARHL.


Subject(s)
Actins , Hearing Loss, High-Frequency , Animals , Mice , Actins/genetics , Actins/metabolism , Cochlea/metabolism , Formins/genetics , Genome-Wide Association Study , Hearing , Mice, Knockout , Polymerization
3.
EMBO Rep ; 25(1): 144-167, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38177906

ABSTRACT

The tight junction (TJ) in epithelial cells is formed by integral membrane proteins and cytoplasmic scaffolding proteins. The former contains the claudin family proteins with four transmembrane segments, while the latter includes Par3, a PDZ domain-containing adaptor that organizes TJ formation. Here we show the single membrane-spanning protein TMEM25 localizes to TJs in epithelial cells and binds to Par3 via a PDZ-mediated interaction with its C-terminal cytoplasmic tail. TJ development during epithelial cell polarization is accelerated by depletion of TMEM25, and delayed by overexpression of TMEM25 but not by that of a C-terminally deleted protein, indicating a regulatory role of TMEM25. TMEM25 associates via its N-terminal extracellular domain with claudin-1 and claudin-2 to suppress their cis- and trans-oligomerizations, both of which participate in TJ strand formation. Furthermore, Par3 attenuates TMEM25-claudin association via binding to TMEM25, implying its ability to affect claudin oligomerization. Thus, the TJ protein TMEM25 appears to negatively regulate claudin assembly in TJ formation, which regulation is modulated by its interaction with Par3.


Subject(s)
Claudins , Tight Junctions , Tight Junctions/metabolism , Claudins/genetics , Claudins/metabolism , Carrier Proteins/metabolism , Epithelial Cells , Claudin-1/genetics , Claudin-1/metabolism
4.
Genes Cells ; 29(1): 63-72, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37985134

ABSTRACT

The hydrogen peroxide (H2 O2 )-producing NADPH oxidase Nox4, forming a heterodimer with p22phox , is expressed in a variety of cells including those in the heart to mediate adaptive responses to cellular stresses such as hypoxia. Since Nox4 is constitutively active, H2 O2 production is controlled by its protein abundance. Hypoxia-induced Nox4 expression is observed in various types of cells and generally thought to be regulated at the transcriptional level. Here we show that hypoxia upregulates the Nox4 protein level and Nox4-catalyzed H2 O2 production without increasing the Nox4 mRNA in rat H9c2 cardiomyocytes. In these cells, the Nox4 protein is stabilized under hypoxic conditions in a manner dependent on the presence of p22phox . Cell treatment with the proteasome inhibitor MG132 results in a marked decrease of the Nox4 protein under both normoxic and hypoxic conditions, indicating that the proteasome pathway does not play a major role in Nox4 degradation. The decrease is partially restored by the autophagy inhibitor 3-methyladenine. Furthermore, the Nox4 protein level is upregulated by the lysosome inhibitors bafilomycin A1 and chloroquine. Thus, in cardiomyocytes, Nox4 appears to be degraded via an autophagy-related pathway, and its suppression by hypoxia likely stabilizes Nox4, leading to upregulation of Nox4-catalyzed H2 O2 production.


Subject(s)
Myocytes, Cardiac , Oxidoreductases , Rats , Animals , NADPH Oxidase 4/genetics , NADPH Oxidase 4/metabolism , Myocytes, Cardiac/metabolism , NADPH Oxidases/genetics , NADPH Oxidases/metabolism , Hypoxia , Autophagy , Reactive Oxygen Species/metabolism
5.
bioRxiv ; 2023 Aug 27.
Article in English | MEDLINE | ID: mdl-37546952

ABSTRACT

Age-related hearing loss (ARHL) is a common sensory impairment with comlex underlying mechanisms. In our previous study, we performed a meta-analysis of genome-wide association studies (GWAS) in mice and identified a novel locus on chromosome 18 associated with ARHL specifically linked to a 32 kHz tone burst stimulus. Consequently, we investigated the role of Formin Homology 2 Domain Containing 3 (Fhod3), a newly discovered candidate gene for ARHL based on the GWAS results. We observed Fhod3 expression in auditory hair cells (HCs) and primarily localized at the cuticular plate (CP). To understand the functional implications of Fhod3 in the cochlea, we generated Fhod3 overexpression mice (Pax2-Cre+/-; Fhod3Tg/+) (TG) and HC-specific conditional knockout mice (Atoh1-Cre+/-; Fhod3fl/fl) (KO). Audiological assessments in TG mice demonstrated progressive high-frequency hearing loss, characterized by predominant loss of outer HCs and decrease phalloidin intensities of CP. Ultrastructural analysis revealed shortened stereocilia in the basal turn cochlea. Importantly, the hearing and HC phenotype in TG mice were replicated in KO mice. These findings indicate that Fhod3 plays a critical role in regulating actin dynamics in CP and stereocilia. Further investigation of Fhod3-related hearing impairment mechanisms may facilitate the development of therapeutic strategies for ARHL in humans.

6.
J Biol Chem ; 298(10): 102475, 2022 10.
Article in English | MEDLINE | ID: mdl-36089063

ABSTRACT

The adhesion family of G protein-coupled receptors (GPCRs) is defined by an N-terminal large extracellular region that contains various adhesion-related domains and a highly-conserved GPCR-autoproteolysis-inducing (GAIN) domain, the latter of which is located immediately before a canonical seven-transmembrane domain. These receptors are expressed widely and involved in various functions including development, angiogenesis, synapse formation, and tumorigenesis. GPR125 (ADGRA3), an orphan adhesion GPCR, has been shown to modulate planar cell polarity in gastrulating zebrafish, but its biochemical properties and role in mammalian cells have remained largely unknown. Here, we show that human GPR125 likely undergoes cis-autoproteolysis when expressed in canine kidney epithelial MDCK cells and human embryonic kidney HEK293 cells. The cleavage appears to occur at an atypical GPCR proteolysis site within the GAIN domain during an early stage of receptor biosynthesis. The products, i.e., the N-terminal and C-terminal fragments, seem to remain associated after self-proteolysis, as observed in other adhesion GPCRs. Furthermore, in polarized MDCK cells, GPR125 is exclusively recruited to the basolateral domain of the plasma membrane. The recruitment likely requires the C-terminal PDZ-domain-binding motif of GPR125 and its interaction with the cell polarity protein Dlg1. Knockdown of GPR125 as well as that of Dlg1 results in formation of aberrant cysts with multiple lumens in Matrigel 3D culture of MDCK cells. Consistent with the multilumen phenotype, mitotic spindles are incorrectly oriented during cystogenesis in GPR125-KO MDCK cells. Thus, the basolateral protein GPR125, an autocleavable adhesion GPCR, appears to play a crucial role in apicobasal polarization in epithelial cells.


Subject(s)
Receptors, G-Protein-Coupled , Zebrafish , Animals , Dogs , Humans , Cell Adhesion , Cell Membrane/metabolism , Cell Polarity , Discs Large Homolog 1 Protein/metabolism , HEK293 Cells , Mammals/metabolism , Protein Binding , Receptors, G-Protein-Coupled/metabolism , Zebrafish/metabolism , Cell Line , Gene Knockdown Techniques , Amino Acid Motifs
7.
J Biol Chem ; 297(6): 101354, 2021 12.
Article in English | MEDLINE | ID: mdl-34717957

ABSTRACT

Hepatocytes differ from columnar epithelial cells by their multipolar organization, which follows the initial formation of central lumen-sharing clusters of polarized cells as observed during liver development and regeneration. The molecular mechanism for hepatocyte polarity establishment, however, has been comparatively less studied than those for other epithelial cell types. Here, we show that the tight junction protein Par3 organizes hepatocyte polarization via cooperating with the small GTPase Cdc42 to target atypical protein kinase C (aPKC) to a cortical site near the center of cell-cell contacts. In 3D Matrigel culture of human hepatocytic HepG2 cells, which mimics a process of liver development and regeneration, depletion of Par3, Cdc42, or aPKC results in an impaired establishment of apicobasolateral polarity and a loss of subsequent apical lumen formation. The aPKC activity is also required for bile canalicular (apical) elongation in mouse primary hepatocytes. The lateral membrane-associated proteins Lgl1 and Lgl2, major substrates of aPKC, seem to be dispensable for hepatocyte polarity establishment because Lgl-depleted HepG2 cells are able to form a single apical lumen in 3D culture. On the other hand, Lgl depletion leads to lateral invasion of aPKC, and overexpression of Lgl1 or Lgl2 prevents apical lumen formation, indicating that they maintain proper lateral integrity. Thus, hepatocyte polarity establishment and apical lumen formation are organized by Par3, Cdc42, and aPKC; Par3 cooperates with Cdc42 to recruit aPKC, which plays a crucial role in apical membrane development and regulation of the lateral maintainer Lgl.


Subject(s)
Adaptor Proteins, Signal Transducing/analysis , Cell Cycle Proteins/analysis , Cytoskeletal Proteins/analysis , Hepatocytes/cytology , Isoenzymes/analysis , Protein Kinase C/analysis , cdc42 GTP-Binding Protein/analysis , Adaptor Proteins, Signal Transducing/metabolism , Animals , Cell Cycle Proteins/metabolism , Cell Polarity , Cells, Cultured , Cytoskeletal Proteins/metabolism , Hep G2 Cells , Hepatocytes/metabolism , Humans , Isoenzymes/metabolism , Male , Mice , Mice, Inbred ICR , Protein Kinase C/metabolism , cdc42 GTP-Binding Protein/metabolism
8.
Cereb Cortex ; 31(4): 2205-2219, 2021 03 05.
Article in English | MEDLINE | ID: mdl-33251537

ABSTRACT

Changes in the shape and size of the dendritic spines are critical for synaptic transmission. These morphological changes depend on dynamic assembly of the actin cytoskeleton and occur differently in various types of neurons. However, how the actin dynamics are regulated in a neuronal cell type-specific manner remains largely unknown. We show that Fhod3, a member of the formin family proteins that mediate F-actin assembly, controls the dendritic spine morphogenesis of specific subpopulations of cerebrocortical pyramidal neurons. Fhod3 is expressed specifically in excitatory pyramidal neurons within layers II/III and V of restricted areas of the mouse cerebral cortex. Immunohistochemical and biochemical analyses revealed the accumulation of Fhod3 in postsynaptic spines. Although targeted deletion of Fhod3 in the brain did not lead to any defects in the gross or histological appearance of the brain, the dendritic spines in pyramidal neurons within presumptive Fhod3-positive areas were morphologically abnormal. In primary cultures prepared from the Fhod3-depleted cortex, defects in spine morphology were only detected in Fhod3 promoter-active cells, a small population of pyramidal neurons, and not in Fhod3 promoter-negative pyramidal neurons. Thus, Fhod3 plays a crucial role in dendritic spine morphogenesis only in a specific population of pyramidal neurons in a cell type-specific manner.


Subject(s)
Cerebral Cortex/metabolism , Dendritic Spines/metabolism , Formins/biosynthesis , Pyramidal Cells/metabolism , Animals , Cells, Cultured , Cerebral Cortex/ultrastructure , Dendritic Spines/genetics , Dendritic Spines/ultrastructure , Formins/genetics , HEK293 Cells , Humans , Mice , Mice, Transgenic , Pyramidal Cells/ultrastructure
9.
J Biol Chem ; 294(51): 19655-19666, 2019 12 20.
Article in English | MEDLINE | ID: mdl-31732560

ABSTRACT

Proper mitotic spindle orientation requires that astral microtubules are connected to the cell cortex by the microtubule-binding protein NuMA, which is recruited from the cytoplasm. Cortical recruitment of NuMA is at least partially mediated via direct binding to the adaptor protein LGN. LGN normally adopts a closed conformation via an intramolecular interaction between its N-terminal NuMA-binding domain and its C-terminal region that contains four GoLoco (GL) motifs, each capable of binding to the membrane-anchored Gαi subunit of heterotrimeric G protein. Here we show that the intramolecular association with the N-terminal domain in LGN involves GL3, GL4, and a region between GL2 and GL3, whereas GL1 and GL2 do not play a major role. This conformation renders GL1 but not the other GL motifs in a state easily accessible to Gαi To interact with full-length LGN in a closed state, NuMA requires the presence of Gαi; both NuMA and Gαi are essential for cortical recruitment of LGN in mitotic cells. In contrast, mInsc, a protein that competes with NuMA for binding to LGN and regulates mitotic spindle orientation in asymmetric cell division, efficiently binds to full-length LGN without Gαi and induces its conformational change, enhancing its association with Gαi In nonpolarized symmetrically dividing HeLa cells, disruption of the LGN-NuMA interaction by ectopic expression of mInsc results in a loss of cortical localization of NuMA during metaphase and anaphase and promotes mitotic spindle misorientation and a delayed anaphase progression. These findings highlight a specific role for LGN-mediated cell cortex recruitment of NuMA.


Subject(s)
Cell Cycle Proteins/metabolism , Intracellular Signaling Peptides and Proteins/metabolism , Microtubules/metabolism , Spindle Apparatus/metabolism , Animals , Carrier Proteins/metabolism , Cell Cycle , Dogs , HEK293 Cells , HeLa Cells , Humans , Madin Darby Canine Kidney Cells , Mitosis , Nuclear Proteins/metabolism , Protein Domains
10.
Mucosal Immunol ; 12(5): 1104-1117, 2019 09.
Article in English | MEDLINE | ID: mdl-31285535

ABSTRACT

The AP-1 transcription factor JunB plays crucial roles in multiple biological processes, including placental formation and bone homeostasis. We recently reported that JunB is essential for development of Th17 cells, and thus Junb-deficient mice are resistant to experimental autoimmune encephalomyelitis. However, the role of JunB in CD4+ T cells under other inflammatory disease conditions is unknown. Here we show that mice lacking JunB in CD4+ T cells (Junbfl/flCd4-Cre mice) were more susceptible to dextran sulfate sodium (DSS)-induced colitis because of impaired development of regulatory T (Treg) cells. Production of interleukin (IL)-2 and expression of CD25, a high affinity IL-2 receptor component, were decreased in Junb-deficient CD4+ T cells in vitro and in vivo. Naive CD4+ T cells from Junbfl/flCd4-Cre mice failed to differentiate into Treg cells in the absence of exogenously added IL-2 in vitro. A mixed bone marrow transfer experiment revealed that defective Treg development of Junb-deficient CD4+ T cells was not rescued by co-transferred wild-type cells, indicating a significance of the cell-intrinsic defect. Injection of IL-2-anti-IL-2 antibody complexes induced expansion of Treg cells and alleviated DSS-induced colitis in Junbfl/flCd4-Cre mice. Thus JunB plays a crucial role in the development of Treg cells by facilitating IL-2 signaling.


Subject(s)
Interleukin-2/metabolism , Signal Transduction , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/metabolism , Transcription Factors/metabolism , Animals , Binding Sites , Colitis/etiology , Colitis/metabolism , Colitis/pathology , Dextran Sulfate/adverse effects , Disease Models, Animal , Gene Expression Profiling , Gene Expression Regulation , Interferon-gamma/metabolism , Mice , Mice, Transgenic , Protein Binding , T-Lymphocyte Subsets/immunology , T-Lymphocyte Subsets/metabolism
11.
Methods Mol Biol ; 1982: 121-137, 2019.
Article in English | MEDLINE | ID: mdl-31172470

ABSTRACT

NOX family NADPH oxidases deliberately produce reactive oxygen species and thus contribute to a variety of biological functions. Of seven members in the human family, the three oxidases NOX2, NOX1, and NOX3 form a heterodimer with p22phox and are regulated by soluble regulatory proteins: p47phox, its related organizer NOXO1; p67phox, its related activator NOXA1; p40phox; and the small GTPase Rac. Activation of the phagocyte oxidase NOX2 requires p47phox, p67phox, and GTP-bound Rac. In addition to these regulators, p40phox plays a crucial role when NOX2 is activated during phagocytosis. On the other hand, NOX1 activation prefers NOXO1 and NOXA1, although Rac is also involved. NOX3 constitutively produces superoxide, which is enhanced by regulatory proteins such as p47phox, NOXO1, and p67phox. Here we describe mechanisms for NOX activation with special attention to the soluble regulatory proteins.


Subject(s)
Carrier Proteins/metabolism , NADPH Oxidases/chemistry , NADPH Oxidases/metabolism , Carrier Proteins/chemistry , Enzyme Activation , Humans , Isoenzymes , NADPH Oxidases/genetics , Oxidation-Reduction , Phagocytes/enzymology , Phagocytes/metabolism , Phagocytosis , Protein Binding , Protein Interaction Domains and Motifs , Reactive Oxygen Species/metabolism
12.
Cytoskeleton (Hoboken) ; 76(2): 219-229, 2019 02.
Article in English | MEDLINE | ID: mdl-31008549

ABSTRACT

The formin family proteins have the ability to regulate actin filament assembly, thereby functioning in diverse cytoskeletal processes. Fhod3, a cardiac member of the family, plays a crucial role in development and functional maintenance of the heart. Although Fhod1, a protein closely-related to Fhod3, has been reported to be expressed in cardiomyocytes, the role of Fhod1 in the heart has still remained elusive. To know the physiological role of Fhod1 in the heart, we disrupted the Fhod1 gene in mice by replacement of exon 1 with a lacZ reporter gene. Histological lacZ staining unexpectedly revealed no detectable expression of Fhod1 in the heart, in contrast to intensive staining in the lung, a Fhod1-containing organ. Consistent with this, expression level of the Fhod1 protein in the heart was below the lower limit of detection of the present immunoblot analysis with three independent anti-Fhod1 antibodies. Homozygous Fhod1-null mice did not show any defects in gross and histological appearance of the heart or upregulate fetal cardiac genes that are induced under stress conditions. Furthermore, Fhod1 ablation did not elicit compensatory increase in expression of other formins. Thus, Fhod1 appears to be dispensable for normal development and function of the mouse heart, even if a marginal amount of Fhod1 is expressed in the heart.


Subject(s)
Actins/metabolism , Fetal Proteins/metabolism , Formins/metabolism , Heart/embryology , Animals , Cardiomyopathies/embryology , Cardiomyopathies/genetics , Cardiomyopathies/pathology , Fetal Proteins/deficiency , Fetal Proteins/genetics , Formins/deficiency , Formins/genetics , Gene Deletion , Gene Expression Regulation, Developmental , Gene Targeting , Heart/diagnostic imaging , Mice, Knockout , Sarcomeres/metabolism
13.
Genes Cells ; 23(6): 480-493, 2018 Jun.
Article in English | MEDLINE | ID: mdl-29718541

ABSTRACT

Transmembrane glycoproteins, synthesized at the endoplasmic reticulum (ER), generally reach the Golgi apparatus in COPII-coated vesicles en route to the cell surface. Here, we show that the bona fide nonglycoprotein Nox5, a transmembrane superoxide-producing NADPH oxidase, is transported to the cell surface in a manner resistant to co-expression of Sar1 (H79G), a GTP-fixed mutant of the small GTPase Sar1, which blocks COPII vesicle fission from the ER. In contrast, Sar1 (H79G) effectively inhibits ER-to-Golgi transport of glycoproteins including the Nox5-related oxidase Nox2. The trafficking of Nox2, but not that of Nox5, is highly sensitive to over-expression of syntaxin 5 (Stx5), a t-SNARE required for COPII ER-to-Golgi transport. Thus, Nox2 and Nox5 mainly traffic via the Sar1/Stx5-dependent and -independent pathways, respectively. Both participate in Nox1 trafficking, as Nox1 advances to the cell surface in two differentially N-glycosylated forms, one complex and one high mannose, in a Sar1/Stx5-dependent and -independent manner, respectively. Nox2 and Nox5 also can use both pathways: a glycosylation-defective mutant Nox2 is weakly recruited to the plasma membrane in a less Sar1-dependent manner; N-glycosylated Nox5 mutants reach the cell surface in part as the complex form Sar1-dependently, albeit mainly as the high-mannose form in a Sar1-independent manner.


Subject(s)
Cell Membrane/metabolism , Monomeric GTP-Binding Proteins/metabolism , NADPH Oxidase 5/metabolism , Superoxides/metabolism , Amino Acid Sequence , Endoplasmic Reticulum/metabolism , Glycosylation , Golgi Apparatus/metabolism , HeLa Cells , Humans , Mutation , NADPH Oxidase 1/genetics , NADPH Oxidase 1/metabolism , NADPH Oxidase 2/genetics , NADPH Oxidase 2/metabolism , Protein Transport , Sequence Homology
14.
Proc Natl Acad Sci U S A ; 115(19): E4386-E4395, 2018 05 08.
Article in English | MEDLINE | ID: mdl-29686099

ABSTRACT

Mutations in cardiac myosin-binding protein C (cMyBP-C) are a major cause of familial hypertrophic cardiomyopathy. Although cMyBP-C has been considered to regulate the cardiac function via cross-bridge arrangement at the C-zone of the myosin-containing A-band, the mechanism by which cMyBP-C functions remains unclear. We identified formin Fhod3, an actin organizer essential for the formation and maintenance of cardiac sarcomeres, as a cMyBP-C-binding protein. The cardiac-specific N-terminal Ig-like domain of cMyBP-C directly interacts with the cardiac-specific N-terminal region of Fhod3. The interaction seems to direct the localization of Fhod3 to the C-zone, since a noncardiac Fhod3 variant lacking the cMyBP-C-binding region failed to localize to the C-zone. Conversely, the cardiac variant of Fhod3 failed to localize to the C-zone in the cMyBP-C-null mice, which display a phenotype of hypertrophic cardiomyopathy. The cardiomyopathic phenotype of cMyBP-C-null mice was further exacerbated by Fhod3 overexpression with a defect of sarcomere integrity, whereas that was partially ameliorated by a reduction in the Fhod3 protein levels, suggesting that Fhod3 has a deleterious effect on cardiac function under cMyBP-C-null conditions where Fhod3 is aberrantly mislocalized. Together, these findings suggest the possibility that Fhod3 contributes to the pathogenesis of cMyBP-C-related cardiomyopathy and that Fhod3 is critically involved in cMyBP-C-mediated regulation of cardiac function via direct interaction.


Subject(s)
Cardiomyopathy, Hypertrophic/metabolism , Carrier Proteins/metabolism , Microfilament Proteins/metabolism , Myocardium/metabolism , Sarcomeres/metabolism , Animals , Cardiomyopathy, Hypertrophic/genetics , Cardiomyopathy, Hypertrophic/pathology , Carrier Proteins/genetics , Formins , Mice , Mice, Transgenic , Microfilament Proteins/genetics , Myocardium/pathology , Protein Binding , Protein Domains , Protein Transport , Sarcomeres/genetics , Sarcomeres/pathology
15.
J Biol Chem ; 293(1): 148-162, 2018 01 05.
Article in English | MEDLINE | ID: mdl-29158260

ABSTRACT

Cardiac development and function require actin-myosin interactions in the sarcomere, a highly organized contractile structure. Sarcomere assembly mediated by formin homology 2 domain-containing 3 (Fhod3), a member of formins that directs formation of straight actin filaments, is essential for embryonic cardiogenesis. However, the role of Fhod3 in the neonatal and adult stages has remained unknown. Here, we generated floxed Fhod3 mice to bypass the embryonic lethality of an Fhod3 knockout (KO). Perinatal KO of Fhod3 in the heart caused juvenile lethality at around day 10 after birth with enlarged hearts composed of severely impaired myofibrils, indicating that Fhod3 is crucial for postnatal heart development. Tamoxifen-induced conditional KO of Fhod3 in the adult heart neither led to lethal effects nor did it affect sarcomere structure and localization of sarcomere components. However, adult Fhod3-deleted mice exhibited a slight cardiomegaly and mild impairment of cardiac function, conditions that were sustained over 1 year without compensation during aging. In addition to these age-related changes, systemic stimulation with the α1-adrenergic receptor agonist phenylephrine, which induces sustained hypertension and hypertrophy development, induced expression of fetal cardiac genes that was more pronounced in adult Fhod3-deleted mice than in the control mice, suggesting that Fhod3 modulates hypertrophic changes in the adult heart. We conclude that Fhod3 plays a crucial role in both postnatal cardiac development and functional maintenance of the adult heart.


Subject(s)
Heart/physiology , Microfilament Proteins/physiology , Actin Cytoskeleton/metabolism , Actins/metabolism , Animals , Formins , Gene Knockout Techniques , Heart/growth & development , Heart Function Tests/methods , Mice , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , Microfilament Proteins/deficiency , Microfilament Proteins/genetics , Microfilament Proteins/metabolism , Muscle Proteins/metabolism , Myocytes, Cardiac/metabolism , Myofibrils/metabolism , Sarcomeres/metabolism
16.
Sci Rep ; 7(1): 17402, 2017 12 12.
Article in English | MEDLINE | ID: mdl-29234109

ABSTRACT

Interleukin (IL)-17-producing T helper (Th17) cells are crucial for host defense against extracellular microbes and pathogenesis of autoimmune diseases. Here we show that the AP-1 transcription factor JunB is required for Th17 cell development. Junb-deficient CD4+ T cells are able to develop in vitro into various helper T subsets except Th17. The RNA-seq transcriptome analysis reveals that JunB is crucial for the Th17-specific gene expression program. Junb-deficient mice are completely resistant to experimental autoimmune encephalomyelitis, a Th17-mediated inflammatory disease, and naive T helper cells from such mice fail to differentiate into Th17 cells. JunB appears to activate Th17 signature genes by forming a heterodimer with BATF, another AP-1 factor essential for Th17 differentiation. The mechanism whereby JunB controls Th17 cell development likely involves activation of the genes for the Th17 lineage-specifying orphan receptors RORγt and RORα and reduced expression of Foxp3, a transcription factor known to antagonize RORγt function.


Subject(s)
Cell Differentiation/physiology , Th17 Cells/metabolism , Transcription Factors/metabolism , 3T3 Cells , Animals , Basic-Leucine Zipper Transcription Factors/metabolism , Cell Line, Tumor , Encephalomyelitis, Autoimmune, Experimental/metabolism , Encephalomyelitis, Autoimmune, Experimental/pathology , Encephalomyelitis, Autoimmune, Experimental/prevention & control , HEK293 Cells , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism , Humans , Mice , Mice, Inbred C57BL , Mice, Transgenic , Nuclear Receptor Subfamily 1, Group F, Member 1/metabolism , Nuclear Receptor Subfamily 1, Group F, Member 3/metabolism , Proto-Oncogene Proteins c-jun/metabolism , Psoriasis/metabolism , Psoriasis/pathology , Transcription Factors/genetics
17.
JCI Insight ; 2(15)2017 Aug 03.
Article in English | MEDLINE | ID: mdl-28768915

ABSTRACT

Myocardial atrophy is a wasting of cardiac muscle due to hemodynamic unloading. Doxorubicin is a highly effective anticancer agent but also induces myocardial atrophy through a largely unknown mechanism. Here, we demonstrate that inhibiting transient receptor potential canonical 3 (TRPC3) channels abolishes doxorubicin-induced myocardial atrophy in mice. Doxorubicin increased production of ROS in rodent cardiomyocytes through hypoxic stress-mediated upregulation of NADPH oxidase 2 (Nox2), which formed a stable complex with TRPC3. Cardiomyocyte-specific expression of TRPC3 C-terminal minipeptide inhibited TRPC3-Nox2 coupling and suppressed doxorubicin-induced reduction of myocardial cell size and left ventricular (LV) dysfunction, along with its upregulation of Nox2 and oxidative stress, without reducing hypoxic stress. Voluntary exercise, an effective treatment to prevent doxorubicin-induced cardiotoxicity, also downregulated the TRPC3-Nox2 complex and promoted volume load-induced LV compliance, as demonstrated in TRPC3-deficient hearts. These results illustrate the impact of TRPC3 on LV compliance and flexibility and, focusing on the TRPC3-Nox2 complex, provide a strategy for prevention of doxorubicin-induced cardiomyopathy.

18.
Oncotarget ; 8(22): 36211-36224, 2017 May 30.
Article in English | MEDLINE | ID: mdl-28423707

ABSTRACT

This study aims to demonstrate the clinical and biological significance of Brain derived neurotrophic factor (BDNF)/Tropomyosin-related kinase B (TrkB) signaling in gallbladder cancer (GBC) through a series of in vitro and in vivo experiments. TrkB expression was detected in 63 (91.3%) out of 69 surgically resected primary GBC specimens by immunohistochemistry. TrkB expression in the invasive front correlated with T factor (p=0.0391) and clinical staging (p=0.0391). Overall survival was lower in patients with high TrkB expression in the invasive front than in those with low TrkB expression (p=0.0363). In vitro experiment, we used five TrkB-expressing GBC cell lines with or without K-ras mutation. TrkB-mediated signaling increased proliferation and the invasiveness by inducing epithelial mesenchymal transition, and activating matrix metalloproteinases-2 (MMP-2) and MMP-9. Inhibition of TrkB-mediated signaling also decreased hypoxia-inducible factor-1α, vascular endothelial growth factor A (VEGF-A), VEGF-C, and VEGF-D expression. In vivo experiment, inhibition of TrkB-mediated signaling suppressed tumorigenicity and tumor growth in GBC. These findings demonstrate that TrkB-mediated signaling contributes to the induction of malignant phenotypes (proliferation, invasiveness, angiogenesis, lymphangiogenesis, and tumorigenesis) in GBC, and could be a promising therapeutic target regardless of K-ras mutation status.


Subject(s)
Brain-Derived Neurotrophic Factor/metabolism , Gallbladder Neoplasms/genetics , Membrane Glycoproteins/genetics , Receptor, trkB/genetics , Aged , Animals , Cell Line, Tumor , Cell Movement , Cell Proliferation , Epithelial-Mesenchymal Transition , Female , Gallbladder Neoplasms/mortality , Gene Expression Regulation, Neoplastic , Humans , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Male , Matrix Metalloproteinases/metabolism , Membrane Glycoproteins/metabolism , Mice , Mice, Inbred BALB C , Mice, Nude , Neoplasm Staging , RNA, Small Interfering/genetics , Receptor, trkB/metabolism , Signal Transduction , Survival Analysis , Tumor Burden , Vascular Endothelial Growth Factor A/metabolism
19.
Genes Cells ; 22(3): 293-309, 2017 Mar.
Article in English | MEDLINE | ID: mdl-28185378

ABSTRACT

Correct cyst morphogenesis of epithelial cells requires apical-basal polarization, which is partly regulated by mitotic spindle orientation, a process dependent on the heterotrimeric G protein subunit Gαi and its binding protein LGN. Here, we show that in three-dimensional culture of mammalian epithelial Madin-Darby canine kidney (MDCK) cells, the Gαi-activating protein Ric-8A is crucial for orientation of the mitotic spindle and formation of normal cysts that comprise a single layer of polarized cells with their apical surfaces lining an inner lumen. Consistent with the involvement of LGN, cystogenesis can be well organized by ADP-ribosylated Gαi, retaining the ability to interact with LGN, but not by the interaction-defective mutant protein Gαi2 (N150I). In monolayer culture of MDCK cells, functional tight junction (TJ) assembly, a process associated with epithelial cell polarization, is significantly delayed in Ric-8A-depleted cells as well as in Gαi-depleted cells in a mitosis-independent manner. Ric-8A knockdown results in a delayed cortical delivery of Gαi and the apical membrane protein gp135, and an increased formation of intercellular lumens surrounded by membranes rich in Gαi3 and gp135. TJ development also involves LGN and its related protein AGS3. Thus, Ric-8A regulates mammalian epithelial cell polarity for TJ assembly and cystogenesis probably in concert with Gαi and LGN/AGS3.


Subject(s)
Epithelial Cells/physiology , GTP-Binding Protein alpha Subunits, Gi-Go/metabolism , Guanine Nucleotide Exchange Factors/physiology , Tight Junctions/metabolism , Animals , Cell Polarity , Dogs , Madin Darby Canine Kidney Cells , Mitosis , Organogenesis , Protein Transport , Spindle Apparatus/metabolism , Spindle Apparatus/ultrastructure
20.
Biochem Biophys Res Commun ; 483(3): 941-945, 2017 02 12.
Article in English | MEDLINE | ID: mdl-28082199

ABSTRACT

The heterotrimeric G protein subunit Gαi can be activated by G protein-coupled receptors and the cytosolic protein Ric-8A, the latter of which is also known to prevent ubiquitin-dependent degradation of Gαi. Here we show that the amounts of the three Gαi-related proteins Gαi1, Gαi2, and Gαi3, but not that of Gαq, are rapidly decreased by cell treatment with pertussis toxin (PTX). The decrease appears to be due to ADP-ribosylation of Gαi, because PTX treatment does not affect the amount of a mutant Gαi2 carrying alanine substitution for Cys352, the residue that is ADP-ribosylated by the toxin. The presence of endogenous and exogenous Ric-8A increases Gαi stability as shown in cells treated with the protein synthesis inhibitor cycloheximide; however, Ric-8A fails to efficiently stabilize ADP-ribosylated Gαi. The failure agrees with the inability of Ric-8A to bind to ADP-ribosylated Gαi both in vitro and in vivo. Thus PTX appears to exert its pathological effects at least in part by converting Gαi to an unstable ADP-ribosylated form, in addition to the well-known inability of ADP-ribosylated Gαi to transduce signals triggered by G protein-coupled receptors.


Subject(s)
Adenosine Diphosphate Ribose/metabolism , GTP-Binding Protein alpha Subunits, Gi-Go/metabolism , Guanine Nucleotide Exchange Factors/metabolism , Pertussis Toxin/toxicity , Animals , COS Cells , Chlorocebus aethiops , Dogs , GTP-Binding Protein alpha Subunits, Gi-Go/chemistry , GTP-Binding Protein alpha Subunits, Gq-G11/chemistry , GTP-Binding Protein alpha Subunits, Gq-G11/metabolism , Gene Knockdown Techniques , Guanine Nucleotide Exchange Factors/antagonists & inhibitors , Guanine Nucleotide Exchange Factors/genetics , Humans , Madin Darby Canine Kidney Cells , Mice , Protein Stability/drug effects , RAW 264.7 Cells , Recombinant Proteins/genetics , Recombinant Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL