Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 42
Filter
1.
Photodiagnosis Photodyn Ther ; : 104298, 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-39089477

ABSTRACT

OBJECTIVE: To evaluate the efficacy of CO2 fractional laser and microneedling pretreatment combined with ALA-PDT for moderate-to-severe acne, aiming to optimize clinical treatment. METHODS: Patients were randomly divided into three groups: Group A (CO2 fractional laser + ALA-PDT), Group B (microneedling + ALA-PDT), and Group C (ALA-PDT). Each group underwent photodynamic therapy once a week for 3 weeks. Efficacy was assessed at the end of the 4th week, and recurrence was assessed at the end of the 12th week. RESULTS: A total of 150 patients with moderate to severe acne were included in this study, with 50 patients in each group. Four weeks after the end of treatment, the effective rates were 88% for Group A, 62% for Group B, and 36% for Group C. Statistically significant differences were found between the groups (P < 0.05), with Group A showing superior efficacy compared to Group B (P < 0.05). No serious systemic or local adverse reactions were observed in any group. No recurrence was seen in any group 12 weeks after the end of treatment, and some patients continued to show improvement in skin lesions over time. CONCLUSION: Both the CO2 fractional laser group and the microneedling group improved the efficacy of photodynamic therapy for moderate to severe acne compared to the control group, with the CO2 fractional laser group demonstrating better efficacy and fewer adverse effects.

2.
Acta Pharmacol Sin ; 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-39103531

ABSTRACT

Liver fibrosis, one of the leading causes of morbidity and mortality worldwide, lacks effective therapy. The activation of hepatic stellate cells (HSCs) is the dominant event in hepatic fibrogenesis. Luteolin-7-diglucuronide (L7DG) is the major flavonoid extracted from Perilla frutescens and Verbena officinalis. Their beneficial effects in the treatment of liver diseases were well documented. In this study we investigated the anti-fibrotic activities of L7DG and the potential mechanisms. We established TGF-ß1-activated mouse primary hepatic stellate cells (pHSCs) and human HSC line LX-2 as in vitro liver fibrosis models. Co-treatment with L7DG (5, 20, 50 µM) dose-dependently decreased TGF-ß1-induced expression of fibrotic markers collagen 1, α-SMA and fibronectin. In liver fibrosis mouse models induced by CCl4 challenge alone or in combination with HFHC diet, administration of L7DG (40, 150 mg·kg-1·d-1, i.g., for 4 or 8 weeks) dose-dependently attenuated hepatic histopathological injury and collagen accumulation, decreased expression of fibrogenic genes. By conducting target prediction, molecular docking and enzyme activity detection, we identified L7DG as a potent inhibitor of protein tyrosine phosphatase 1B (PTP1B) with an IC50 value of 2.10 µM. Further studies revealed that L7DG inhibited PTP1B activity, up-regulated AMPK phosphorylation and subsequently inhibited HSC activation. This study demonstrates that the phytochemical L7DG may be a potential therapeutic candidate for the treatment of liver fibrosis.

3.
Ying Yong Sheng Tai Xue Bao ; 35(3): 705-712, 2024 Mar 18.
Article in English | MEDLINE | ID: mdl-38646758

ABSTRACT

The composition and stability of soil aggregates are important indicators for measuring soil quality, which would be affected by land use changes. Taking wetlands with different returning years (2 and 15 years) in the Yellow River Delta as the research object, paddy fields and natural wetlands as control, we analyzed the changes in soil physicochemical properties and soil aggregate composition. The results showed that soil water content, total organic carbon, dissolved organic carbon and total phosphorus of the returning soil (0-40 cm) showed an overall increasing trend with returning period, while soil pH and bulk density was in adverse. There was no significant change in clay content, electrical conductivity, and total nitrogen content. The contents of macro-aggregates and micro-aggregates showed overall increasing and decreasing trend with returning period, respectively. The stability of aggregates in the topsoil (0-10 cm) increased with returning years. Geometric mean diameter and mean weight diameter increased by 8.9% and 40.4% in the 15th year of returning, respectively, while the mass proportion of >2.5 mm fraction decreased by 10.5%. There was no effect of returning on aggregates in subsoil (10-40 cm). Our results indicated that returning paddy field to wetland in the Yellow River Delta would play a positive role in improving soil structure and aggregate stability.


Subject(s)
Oryza , Rivers , Soil , Wetlands , Soil/chemistry , China , Rivers/chemistry , Oryza/growth & development , Oryza/chemistry , Environmental Monitoring , Agriculture/methods , Phosphorus/analysis , Phosphorus/chemistry , Carbon/analysis , Carbon/chemistry
4.
J Agric Food Chem ; 72(10): 5293-5306, 2024 Mar 13.
Article in English | MEDLINE | ID: mdl-38441033

ABSTRACT

The present study evaluated the potential of endogenous enzymes and probiotics in transforming bioactive metabolites to reduce the purgative effect and improve the functional activity of Cassiae Semen and verified and revealed the biotransformation effect of endogenous enzymes. Although probiotics, especially Lactobacillus rhamnosus, exerted the transformation effect, the endogenous enzymes proved to be more effective in transforming the components of Cassiae Semen. After biotransformation by endogenous enzymes for 12 h, the levels of six anthraquinones in Cassiae Semen increased by at least 2.98-fold, and free anthraquinones, total phenolics, and antioxidant activity also showed significant improvement, accompanied by an 82.2% reduction in combined anthraquinones responsible for the purgative effect of Cassiae Semen. Further metabolomic analysis revealed that the biotransformation effect of endogenous enzymes on the bioactive metabolites of Cassiae Semen was complex and diverse, and the biotransformation of quinones and flavonoids was particularly prominent and occurred by three primary mechanisms, hydrolyzation, methylation, and dimerization, might under the action of glycosyl hydrolases, SAM-dependent methyltransferases, and CYP450s. Accordingly, biotransformation by endogenous enzymes emerges as a mild, economical, food safety risk-free, and effective strategy to modify Cassiae Semen into an excellent functional food.


Subject(s)
Cassia , Drugs, Chinese Herbal , Probiotics , Cathartics , Anthraquinones , Probiotics/analysis , Seeds/chemistry , Biotransformation
5.
J Transl Med ; 22(1): 220, 2024 03 01.
Article in English | MEDLINE | ID: mdl-38429732

ABSTRACT

BACKGROUND: Targeting CD47/SIRPα axis has emerged as a promising strategy in cancer immunotherapy. Despite the encouraging clinical efficacy observed in hematologic malignancies through CD47-SIRPα blockade, there are safety concerns related to the binding of anti-CD47 antibodies to CD47 on the membrane of peripheral blood cells. METHODS: In order to enhance the selectivity and therapeutic efficacy of the antibody, we developed a humanized anti-CD47 monoclonal antibody called Gentulizumab (GenSci059). The binding capacity of GenSci059 to CD47 was evaluated using flow cytometry and surface plasmon resonance (SPR) methods, the inhibitory effect of GenSci059 on the CD47-SIRPα interaction was evaluated through competitive ELISA assays. The anti-tumor activity of GenSci059 was assessed using in vitro macrophage models and in vivo patient-derived xenograft (PDX) models. To evaluate the safety profile of GenSci059, binding assays were conducted using blood cells. Additionally, we investigated the underlying mechanisms contributing to the weaker binding of GenSci059 to erythrocytes. Finally, toxicity studies were performed in non-human primates to assess the potential risks associated with GenSci059. RESULTS: GenSci059 displayed strong binding to CD47 in both human and monkey, and effectively inhibited the CD47-SIRPα interaction. With doses ranging from 5 to 20 mg/kg, GenSci059 demonstrated potent inhibition of the growth of subcutaneous tumor with the inhibition rates ranged from 30.3% to complete regression. Combination of GenSci059 with 2.5 mg/kg Rituximab at a dose of 2.5 mg/kg showed enhanced tumor inhibition compared to monotherapy, exhibiting synergistic effects. GenSci059 exhibited minimal binding to hRBCs compared to Hu5F9-G4. The binding of GenSci059 to CD47 depended on the cyclization of N-terminal pyroglutamic acid and the spatial conformation of CD47, but was not affected by its glycosylation modifications. A maximum tolerated dose (MTD) of 450 mg/kg was observed for GenSci059, and no significant adverse effects were observed in repeated dosages up to 10 + 300 mg/kg, indicating a favorable safety profile. CONCLUSION: GenSci059 selectively binds to CD47, effectively blocks the CD47/SIRPα axis signaling pathway and enhances the phagocytosis effects of macrophages toward tumor cells. This monoclonal antibody demonstrates potent antitumor activity and exhibits a favorable safety profile, positioning it as a promising and effective therapeutic option for cancer.


Subject(s)
CD47 Antigen , Neoplasms , Animals , Humans , Neoplasms/pathology , Phagocytosis , Macrophages/metabolism , Antibodies, Monoclonal/pharmacology , Antibodies, Monoclonal/therapeutic use , Immunotherapy/methods , Disease Models, Animal , Antigens, Differentiation/metabolism , Antigens, Differentiation/pharmacology , Antigens, Differentiation/therapeutic use
6.
J Dent Sci ; 18(1): 310-321, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36643256

ABSTRACT

Background/purpose: Periodontitis is a prevalent infectious inflammatory disease. Growing evidence has revealed important roles for circular RNAs (circRNAs) and circRNA sponge activity in periodontitis. Here, we elucidated the precise part of circ_0097010 in periodontitis pathogenesis. Materials and methods: Human periodontal ligament cells (hPDLCs) were exposed to lipopolysaccharide (LPS). Cell viability, proliferation and apoptosis were evaluated by CCK-8 assay, EdU incorporation assay and flow cytometry, respectively. Circ_0097010, microRNA (miR)-769-5p and Krüppel like factor 6 (KLF6) were quantified by qRT-PCR and Western blot. Interleukin 6 (IL-6) level, tumor necrosis factor-α (TNF-α) secretion, superoxide dismutase (SOD) activity and malondialdehyde (MDA) level were detected by enzyme-linked immunosorbent assay (ELISA). Dual-luciferase reporter, RNA immunoprecipitation (RIP) and RNA pull-down assays were used to confirm the direct relationship between miR-769-5p and circ_0097010 or KLF6. Results: Our data showed that LPS repressed cell proliferation and induced cell apoptosis and inflammation in hPDLCs. Circ_0097010 was upregulated in periodontitis samples and LPS-exposed hPDLCs. Downregulation of circ_0097010 exerted anti-apoptosis and anti-inflammation functions in LPS-exposed hPDLCs. Mechanistically, circ_0097010 acted as a miR-769-5p sponge, and reduced abundance of miR-769-5p reversed the anti-apoptosis and anti-inflammation effects of circ_0097010 suppression. KLF6 was a direct miR-769-5p target, and miR-769-5p-mediated inhibition of KLF6 possessed anti-apoptosis and anti-inflammation functions in LPS-induced hPDLCs. Moreover, circ_0097010 controlled KLF6 expression by miR-769-5p. Conclusion: These data identify circ_0097010 as a key regulator of LPS-induced inflammation and apoptosis in hPDLCs and highlight a novel mechanism of circ_0097010 regulation through miR-769-5p/KLF6 axis.

7.
Front Neurol ; 13: 1010150, 2022.
Article in English | MEDLINE | ID: mdl-36341094

ABSTRACT

Krabbe disease (KD), also known as globoid cell leukodystrophy, is a rare autosomal recessive condition caused by mutations in the galactocerebrosidase (GALC) gene. KD is more common in infants and young children than in adults. We reported the case of an adult-onset KD presenting with progressive myoclonic epilepsy (PME) and cortical lesions mimicking mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes (MELAS) syndrome. The whole-exome sequencing (WES) identified a pathogenic homozygous missense mutation of the GALC gene. Parents of the patient were heterozygous for the mutation. The clinical, electrophysiological, and radiological data of the patient were retrospectively analyzed. The patient was a 24-year-old woman presenting with generalized seizures, progressive cognitive decline, psychiatric symptoms, gait ataxia, and action-induced myoclonus. The brain magnetic resonance imaging (MRI) revealed a right occipital cortical ribbon sign without any other damage. This single case expands the clinical phenotypes of adult-onset KD.

8.
Huan Jing Ke Xue ; 43(6): 3241-3252, 2022 Jun 08.
Article in Chinese | MEDLINE | ID: mdl-35686794

ABSTRACT

To clarify the distribution characteristics and the ecological stoichiometric characteristics of nutrient elements in soils under different vegetation types, four typical natural wetlands, i.e., Phragmites australis wetland, Tamarix chinensis wetland, Suaeda salsa wetland, and Tidal flat wetland, as well as Gossypium spp. fields that were reclaimed from natural wetlands, were selected as study sites in the Yellow River Delta, and comparisons between the agricultural reclamation land and natural wetlands were conducted. The results showed that the soil total organic carbon (TOC) and total nitrogen (TN) contents in the natural wetlands were as follows:P. australis wetland and T. chinensis wetland>S. salsa wetland>Tidal flat, and the contents of TOC and TN were significantly negatively related to electrical conductivity (EC) and pH values (P<0.05). The contents of TOC, TN, and total phosphorus (TP) in Gossypium spp. fields were significantly higher than those in natural wetlands (P<0.05), especially the contents of nitrate nitrogen (NO3--N) in Gossypium spp. fields, which were 9.4-11.4 times that of natural wetlands. However, no significant correlations between TOC, TN, and TP and EC and pH values (P>0.05) were observed in Gossypium spp. fields. The results of correlation analysis showed that the C/N of natural wetlands were mainly controlled by the contents of TN (P<0.05), and the C/N of the Gossypium spp. fields were significantly lower than those of natural wetlands (P<0.05). The soil C/P and N/P of natural wetlands and Gossypium spp. fields in the Yellow River Delta were low, and the variation trends were consistent with those of soil TOC and TN. Comparative analysis revealed, on the whole, that there were significantly different soil nutrient element contents, C/N, C/P, and N/P in Gossypium spp. fields compared to those of natural wetlands (P<0.05). The process of reclamation could significantly change the spatial distribution of nutrient elements in wetlands. Our results should be of importance in revealing the biogeochemical process of soil nutrient elements in coastal wetland and the influence of agricultural reclamation activities on the differentiation of soil nutrient elements.


Subject(s)
Soil , Wetlands , Carbon/analysis , China , Nitrogen/analysis , Nutrients/analysis , Phosphorus/analysis , Rivers/chemistry , Soil/chemistry
9.
Acta Pharmacol Sin ; 43(7): 1769-1779, 2022 Jul.
Article in English | MEDLINE | ID: mdl-34819618

ABSTRACT

Idiopathic pulmonary fibrosis (IPF) is a chronic fatal lung disease characterized by destruction of lung parenchyma and deposition of extracellular matrix in interstitial and alveolar spaces. But known drugs for IPF are far from meeting clinical demands, validation of drug targets against pulmonary fibrosis is in urgent demand. Tyrosine kinase receptor DDRs has been considered as a potential therapeutic target for pulmonary fibrosis due to its pathological collagen binding property and the roles in regulating extracellular matrix remodeling. In this study we designed and synthesized a new indazole derivative XBLJ-13, and identified XBLJ-13 as a highly specific and potent DDRs inhibitor with anti-inflammation and anti-fibrosis activities. We first demonstrated that DDR1/2 was highly expressed in the lung tissues of IPF patients. Then we showed that XBLJ-13 potently inhibited DDR1 and DDR2 kinases with IC50 values of 17.18 nM and 15.13 nM, respectively. Among a panel of 34 kinases tested, XBLJ-13 displayed relatively high selectivity for DDRs with minimal inhibitory effect on PDGFR family and FGFR1, as well as Abl kinase that had high homology with DDRs. Extensive profiling of XBLJ-13 revealed that the new inhibitor had much lower toxicity than nintedanib and better pharmacokinetic properties in mice. Furthermore, pharmacodynamic evaluation conducted in bleomycin-induced pulmonary fibrosis mice showed that administration of XBLJ-13 (30, 60, 90 mg·kg-1·d-1, i.g.) for 12 days significantly and dose-dependently ameliorated lung inflammation and fibrosis. Together, this study confirms that DDRs kinase is a potential target for PF, Particularly, compound XBLJ-13 is a highly potent and specific DDRs inhibitor, along with good pharmacokinetics profiles, and preferable in vivo efficacy, suggesting that it is a potential candidate for the treatment of PF.


Subject(s)
Idiopathic Pulmonary Fibrosis , Animals , Bleomycin/pharmacology , Fibrosis , Idiopathic Pulmonary Fibrosis/drug therapy , Lung/pathology , Mice , Protein Kinase Inhibitors/metabolism , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Receptor Protein-Tyrosine Kinases/metabolism
10.
J Clin Ultrasound ; 50(1): 28-30, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34751454

ABSTRACT

The absence of left atrial appendage (LAA) is relatively rare, especially with type A Wolff-Parkinson-White syndrome. Secondly, we diagnosed it by multimodal imaging including two-dimensional (2D) and three-dimensional (3D) transesophageal echocardiography (TEE), CT, electrophysiological examination, and 3D electro anatomical mapping system, which is more comprehensive.


Subject(s)
Atrial Appendage , Atrial Fibrillation , Echocardiography, Three-Dimensional , Wolff-Parkinson-White Syndrome , Atrial Appendage/diagnostic imaging , Echocardiography, Transesophageal , Humans , Multimodal Imaging , Wolff-Parkinson-White Syndrome/complications , Wolff-Parkinson-White Syndrome/diagnostic imaging
11.
Phys Chem Chem Phys ; 23(25): 13895-13904, 2021 Jul 07.
Article in English | MEDLINE | ID: mdl-34132280

ABSTRACT

The glass transition and dynamics of densely grafted semiflexible polymer brushes are studied by molecular dynamics simulation. The glass transition temperature (Tg) increases with the polymer rigidity. The local glass transition temperature (Tg,local) is estimated from the temperature-dependent dynamics of individual segments including the lateral position fluctuation and lateral mean square displacement. Different from the flexible polymer brush, Tg,local of semiflexible polymer brushes is roughly independent of the segment height. Our simulation reveals that the glass transition is in synchronism with an abrupt change of the chain conformation in semiflexible polymer brushes. When the temperature drops to near Tg, the semiflexible polymer chains elongate, tilt, and become more ordered. Moreover, enhanced segmental dynamics is observed at temperatures just above Tg for the semiflexible polymer brushes.

12.
J Med Chem ; 63(21): 12748-12772, 2020 11 12.
Article in English | MEDLINE | ID: mdl-32991173

ABSTRACT

Farnesoid X receptor (FXR) plays a key role in bile acid homeostasis, inflammation, fibrosis, and metabolism of lipid and glucose and becomes a promising therapeutic target for nonalcoholic steatohepatitis (NASH) or other FXR-dependent diseases. The phase III trial results of obeticholic acid demonstrate that the FXR agonists emerge as a promising intervention in patients with NASH and fibrosis, but this bile acid-derived FXR agonist brings severe pruritus and an elevated risk of cardiovascular disease for patients. Herein, we reported our efforts in the discovery of a series of non-bile acid FXR agonists, and 36 compounds were designed and synthesized based on the structure-based drug design and structural optimization strategies. Particularly, compound 42 is a highly potent and selective FXR agonist, along with good pharmacokinetic profiles, high liver distribution, and preferable in vivo efficacy, indicating that it is a potential candidate for the treatment of NASH or other FXR-dependent diseases.


Subject(s)
Chenodeoxycholic Acid/analogs & derivatives , Receptors, Cytoplasmic and Nuclear/agonists , Animals , Binding Sites , Chemical and Drug Induced Liver Injury/drug therapy , Chemical and Drug Induced Liver Injury/pathology , Chenodeoxycholic Acid/chemistry , Chenodeoxycholic Acid/metabolism , Chenodeoxycholic Acid/pharmacokinetics , Chenodeoxycholic Acid/therapeutic use , Drug Design , Drug Evaluation, Preclinical , Half-Life , Humans , Liver/drug effects , Liver/pathology , Male , Mice , Mice, Inbred C57BL , Molecular Docking Simulation , Non-alcoholic Fatty Liver Disease/drug therapy , Non-alcoholic Fatty Liver Disease/pathology , Rats , Rats, Sprague-Dawley , Receptors, Cytoplasmic and Nuclear/metabolism , Structure-Activity Relationship
13.
Phys Chem Chem Phys ; 22(38): 21919-21927, 2020 Oct 07.
Article in English | MEDLINE | ID: mdl-32970078

ABSTRACT

The dynamical and conformational properties of polymer chains are affected significantly by strongly attractive nanoparticles. The adsorption of polymer chains on nanoparticles not only reduces the dynamics but also changes the conformation of polymer chains. For orderly distributed nanoparticles of size roughly the same as the radius of gyration of polymer chains, the variation of the diffusivity is highly related to that of the statistical size and can be explained mainly from the adsorption of polymers. In particular, both the polymer's size and diffusivity reach the minimum when the number of polymer chains matches the number of nanoparticles where polymer chains are mostly adsorbed on separate nanoparticles. The behavior of diffusivity can be explained from the cooperation of polymer adsorption and nanoparticle-exchange motion. Adsorption of the polymer chain slows down the diffusion, whereas the nanoparticle-exchange motion accelerates the diffusion of polymer chains.

14.
Probiotics Antimicrob Proteins ; 12(1): 214-223, 2020 03.
Article in English | MEDLINE | ID: mdl-30656550

ABSTRACT

The present study was conducted to evaluate the effects of dietary supplementation of recombinant plectasin (Ple) on the growth performance, intestinal health, and serum immune parameters in broilers. A total of 288 1-day-old male broilers (Arbor Acres) were randomly allotted to four dietary treatments including the basal diet (NC) and basal diet supplemented with 10 mg enramycin/kg (PC), 100 mg Ple/kg (LPle), and 200 mg Ple/kg (HPle) diets. The results indicated Ple increased (P < 0.01) average daily gain and decreased (P ≤ 0.02) feed to gain ratio of broilers. In addition, the supplementation of Ple in the diets increased (P ≤ 0.01) duodenal lipase (day 21) and trypsin (day 42) activities compared with the NC group. Similar as the supplementation of enramycin, Ple also increased villus height and decreased crypt depth in jejunum (day 21), and thus the villus height to crypt depth ratio (P < 0.01) was increased compared to the NC group on day 42. The serum immunoglobulin M (days 21 and 42), immunoglobulin G (day 42), complement 3 (day 21), and complement 4 (days 21 and 42) were significantly increased (P ≤ 0.02) due to the supplementation of Ple and enramycin, while the concentration of malondialdehyde in jejunum was decreased (P < 0.01) in PC, LPle, and HPle groups on day 21 compared with those in the NC group. Furthermore, Ple reduced (P < 0.01) Escherichia coli and total aerobic bacteria population in ileum and cecum of birds on days 21 and 42. These results indicate that the recombinant plectasin has beneficial effects on growth performance, intestinal health, and innate immunity in broilers.


Subject(s)
Chickens , Dietary Supplements , Gastrointestinal Microbiome , Intestines , Peptides/administration & dosage , Animal Husbandry , Animal Nutritional Physiological Phenomena , Animals , Chickens/growth & development , Chickens/immunology , Chickens/microbiology , Intestines/anatomy & histology , Intestines/microbiology , Male , Recombinant Proteins/administration & dosage
15.
Phys Chem Chem Phys ; 21(41): 23209-23216, 2019 Oct 24.
Article in English | MEDLINE | ID: mdl-31612882

ABSTRACT

The diffusivity and glass transition of polymer chains in polymer nanocomposites are studied by using dynamic Monte Carlo simulation. Nanoparticles are modeled as immobile and distributed in a cubic lattice in the system. The diffusion coefficient D of polymer chains is reduced, while the glass transition temperature Tg is increased by nanoparticles. Our results show that the effect of nanoparticles can be summarized as D = D0[1 - exp(-α·ID/2Rg)] and Tg = Tg,0[1 - exp(-α·ID/2Rg)]-1, with D0 and Tg,0 being the diffusion coefficient and the glass transition temperature in the absence of nanoparticles, Rg the radius of gyration of polymer chains, and ID the surface spacing between nearest-neighbor nanoparticles. The parameter α that governs the dynamics of polymer chains decreases with increasing nanoparticles' size or decreasing the temperature. Our results also show that smaller nanoparticles exert a stronger influence on the polymer dynamics at the same concentration of nanoparticles, whereas larger nanoparticles show a stronger effect at the same ID.

16.
Open Med (Wars) ; 13: 475-486, 2018.
Article in English | MEDLINE | ID: mdl-30426085

ABSTRACT

Vancomycin has been the primary agent used to treat serious Methicillin-resistant Staphylococcus aureus (MRSA) infection for many years. However, the rise of MRSA infection rates and the extensive use of vancomycin have led to the emergence of reduced vancomycin susceptibility. Therefore, four typical Staphylococcus aureus (S. aureus) strains from different clinical specimens were derivated by vancomycin in vitro to better clarify their phenotypic and molecular characteristics. Some experiments, such as stepwise selection of vancomycin-resistant strains, pulsed-field gel electrophoresis (PFGE), antimicrobial susceptibility test, population analysis profile-area under the curve (PAP-AUC), molecular typing, transmission electron microscopy, δ-hemolysin expression, autolysis assay, biofilm assay and quantitative real-time polymerase chain reaction (qPCR) for gene expression were carried out to compare the derivated bacteria with their parental strains. Results showed that the observed phenotypes of vancomycin-resistant strains such as hemolysin, autolysis and biofilm significantly reduced, which were associated with vancomycin resistance capability of the selected strain. The changes of phenotype and regulatory genes expression were inversely proportional to the vancomycin minimum inhibitory concentration (MICvan). Most heterogeneous vancomycin intermediate Staphylococcus aureus (hVISA) or VISA strains belonged to spa type t570 and agr group II. In summary, the clinical isolated vancomycin susceptible Staphylococcus aureus (VSSA), hVISA and VISA could be derivated into high vancomycin-resistant VISA in vitro, but it was difficult for them to develop into vancomycin resistant Staphylococcus aureus (VRSA). VISA and hVISA could gradually adapt to the environment with the vancomycin concentration that continuously elevates.

17.
Exp Physiol ; 103(11): 1448-1455, 2018 11.
Article in English | MEDLINE | ID: mdl-30129123

ABSTRACT

NEW FINDINGS: What is the central question of this study? The venoarteriolar response (VAR) contributes substantially to the maintenance of orthostatic tolerance in humans. Despite its importance in haemodynamic homeostasis, the impact of ageing on the VAR remains understudied. What is the main finding and its importance? Older adults exhibit an augmented VAR in response to leg dependency. The age-related augmentation of the VAR might be linked with progressive increases of peripheral vascular resistance with ageing. We found a modest but significant correlation between the leg VAR and the morning blood pressure surge in older adults. Augmented leg VAR might contribute to the blood pressure elevation in the early morning. ABSTRACT: The venoarteriolar response (VAR) is a non-adrenergic, non-baroreflex-mediated mechanism of vasoconstriction, which has been proposed to contribute ∼45% of the increase in total peripheral resistance during orthostasis. Despite its importance in human cardiovascular control during orthostatic stress, there is no information available regarding the impact of age and sex on the VAR or its role in diurnal blood pressure (BP) variation. We studied 33 (15 women) young (mean ± SD; 28 ± 4 years old) and 26 (12 women) older (71 ± 3 years old) healthy individuals. Brachial and femoral blood flow were measured using Doppler ultrasound. The percentage reduction in vascular conductance (blood flow/mean BP) during 4 min of limb dependency (35-40 cm below the heart level) was used to assess the VAR. The morning surge in BP was assessed using 24 h ambulatory BP monitoring. Peak VAR in the lower limb, but not in the upper limb, was significantly higher in the older than the younger adults (33 ± 4 versus 26 ± 6%, older versus young; P < 0.05). There was no sex difference in the VAR in either the young or the older group. A greater leg VAR was related to a greater morning surge in BP in older adults (r = -0.4, P = 0.02) but not in the young adults (r = -0.26, P = 0.1). Thus, advancing age enhances the VAR in the lower limb and is associated with the morning blood pressure surge in older adults. Sex does not affect this local axonal reflex in healthy humans.


Subject(s)
Aging/physiology , Blood Pressure/physiology , Circadian Rhythm/physiology , Reflex/physiology , Vasoconstriction/physiology , Adult , Aged , Brachial Artery/diagnostic imaging , Brachial Artery/physiology , Female , Femoral Artery/diagnostic imaging , Femoral Artery/physiology , Heart Rate/physiology , Hemodynamics/physiology , Humans , Male , Regional Blood Flow/physiology , Ultrasonography, Doppler , Young Adult
18.
Am J Physiol Regul Integr Comp Physiol ; 315(4): R587-R594, 2018 10 01.
Article in English | MEDLINE | ID: mdl-29897820

ABSTRACT

Women with a history of gestational hypertensive disorders (GHD) are at increased risk for developing perinatal cardiovascular complications (e.g., gestational hypertension, preeclampsia, etc.) in subsequent pregnancies. The underlying mechanisms remain uncertain, but impaired maternal left ventricular function may be one contributing factor for these complications. We evaluated the time course of changes in left ventricular function before, during, and after pregnancy in women with prior GHD. Sixteen women with a history of GHD (the high-risk group) and 25 women without such a history (controls) were enrolled. Resting hemodynamic and echocardiographic measurements were longitudinally performed before pregnancy, during early pregnancy (4-8 wk of gestation), during late pregnancy (32-36 wk of gestation), and postpartum (6-10 wk after delivery). Pregnancy outcomes were obtained after delivery. At prepregnancy, there was no difference in blood pressure and heart rate between the groups. Corrected isovolumic relaxation time was longer, E/ e' was larger, and Tei index was greater in the high-risk group than controls. Moreover, the rate of GHD during the study was significantly greater in the high-risk group than controls [odds ratio = 8.94 (95% confidence interval: 1.55-51.5), P = 0.007]. Multiple logistic regression analysis adjusted for age demonstrated that prepregnancy E/ e' was an independent predictor for GHD ( P = 0.017). Thus, women with a history of GHD have modestly impaired cardiac function prepregnancy compared with controls, which identifies an increased susceptibility to developing cardiovascular complications during a subsequent pregnancy.


Subject(s)
Heart Ventricles/physiopathology , Hypertension, Pregnancy-Induced/physiopathology , Myocardial Contraction , Ventricular Function, Left , Adult , Case-Control Studies , Echocardiography, Doppler , Female , Heart Ventricles/diagnostic imaging , Hemodynamics , Humans , Hypertension, Pregnancy-Induced/diagnostic imaging , Hypertension, Pregnancy-Induced/epidemiology , Incidence , Parity , Pregnancy , Texas/epidemiology , Time Factors
19.
Zhongguo Zhong Yao Za Zhi ; 42(4): 739-745, 2017 Feb.
Article in Chinese | MEDLINE | ID: mdl-28959846

ABSTRACT

This study aimed to analyze the analgesic effect and related central mechanisms of CQ prescription on cancer invasion induced mirror image pain (CIIMIP)in model mice.In the study, male BALB/c mice were randomly divided into normal group, operation control group (injected with 0.2 mL inactivated S180 sarcoma cell sap), model group (injected with 0.2 mL S180 sarcoma cell sap on the right leg near the greater trochanter of femur) and CQ prescription low dose group (intraperitoneally injected with CQ prescription 100 mg•kg⁻¹ on the basis of model mice), CQ prescription middle dose group (intraperitoneally injected with CQ prescription 150 mg•kg⁻¹ on the basis of model mice), and CQ prescription high dose group (intraperitoneally injected with CQ prescription 200 mg•kg⁻¹ on the basis of model mice). Mechanical withdraw threshold (MWT) of the mirror image lateral hind paws were evaluated by Von Frey hairs before modeling and after surgery. The levels of glutamate (Glu), gamma aminobutyric acid (GABA), glycine (Gly), and taurine (Tau) in the L3-L5 spinal cord were measured by the high performance liquid chromatography-fluorescence detector (HPLC-FLD); AimPlex detection technology with multiple factors was used to detect the levels of regulated on activation in normal T-cell expressed and secreted (RANTES), monocyte chemoattractant protein (MCP-3) in the L3-L5 spinal cord. Then we observed the influence of GABAa receptor antagonist (Bicuculline) on analgesic effect of CQ prescription.The results indicated that CQ prescription could remarkably increase MWT of model mice(P<0.01, P<0.05), decrease the level of Glu(P<0.01, P<0.05), improve the levels of GABA, Gly, Tau(P<0.01, P<0.05), lower the ratio of Glu/GABA(P<0.01, P<0.05), and reduce the levels of RANTES, MCP-3(P<0.05) in the L3-L5 spinal cord, and GABAa receptor antagonist significantly blocked the analgesic effect of CQ prescription at two time points(P<0.05).This study showed that CQ prescription had significant analgesic effect on CIIMIP model mice, and its mechanism was associated with regulating the balance between excitability amino acid(EAA) and inhibitory amino acid (IAA) transmitters in central nervous system, partially activating GABAa receptor, and reducing the release of RANTES and MCP-3 in the spinal cord.


Subject(s)
Analgesics/pharmacology , Drugs, Chinese Herbal/pharmacology , Neoplasms, Experimental/complications , Pain/drug therapy , Animals , Glutamic Acid/analysis , Glycine/analysis , Male , Mice , Mice, Inbred BALB C , Neoplasm Invasiveness , Spinal Cord/chemistry , Taurine/analysis , gamma-Aminobutyric Acid/analysis
20.
Eur J Med Chem ; 134: 72-85, 2017 Jul 07.
Article in English | MEDLINE | ID: mdl-28399452

ABSTRACT

Activation of nuclear factor erythroid-2-related factor 2 (Nrf2) has been proven to be an effective means to prevent the development of cancer, and natural curcumin stands out as a potent Nrf2 activator and cancer chemopreventive agent. In this study, we synthesized a series of curcumin analogs by introducing the geminal dimethyl substituents on the active methylene group to find more potent Nrf2 activators and cytoprotectors against oxidative death. The geminally dimethylated and catechol-type curcumin analog (compound 3) was identified as a promising lead molecule in terms of its increased stability and cytoprotective activity against the tert-butyl hydroperoxide (t-BHP)-induced death of HepG2 cells. Mechanism studies indicate that its cytoprotective effects are mediated by activating the Nrf2 signaling pathway in the Michael acceptor- and catechol-dependent manners. Additionally, we verified by using copper and iron ion chelators that the two metal ion-mediated oxidations of compound 3 to its corresponding electrophilic o-quinone, contribute significantly to its Nrf2-dependent cytoprotection. This work provides an example of successfully designing natural curcumin-directed Nrf2 activators by a stability-increasing and proelectrophilic strategy.


Subject(s)
Antioxidants/chemistry , Antioxidants/pharmacology , Curcumin/analogs & derivatives , Curcumin/pharmacology , Cytoprotection/drug effects , NF-E2-Related Factor 2/agonists , Oxidative Stress/drug effects , Antioxidants/chemical synthesis , Catechols/metabolism , Cell Death/drug effects , Curcumin/chemical synthesis , Hep G2 Cells , Humans , NF-E2-Related Factor 2/metabolism , Signal Transduction/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL