Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 2.155
1.
Chem Res Toxicol ; 2024 Jun 05.
Article En | MEDLINE | ID: mdl-38837948

Hydroquinone(HQ) is a widely used industrial raw material and is a topical lightening product found in over-the-counter products. However, inappropriate exposure to HQ can pose certain health hazards. This study aims to explore the mechanisms of DNA damage and cell apoptosis caused by HQ, with a focus on whether HQ activates the nuclear factor-κB (NF-κB) pathway to participate in this process and to investigate the correlation between the NF-κB pathway activation and poly(ADP-ribose) polymerase 1(PARP1). Through various experimental techniques, such as DNA damage detection, cell apoptosis assessment, cell survival rate analysis, immunofluorescence, and nuclear-cytoplasmic separation, the cytotoxic effects of HQ were verified, and the activation of the NF-κB pathway was observed. Simultaneously, the relationship between the NF-κB pathway and PARP1 was verified by shRNA interference experiments. The results showed that HQ could significantly activate the NF-κB pathway, leading to a decreased cell survival rate, increased DNA damage, and cell apoptosis. Inhibiting the NF-κB pathway could significantly reduce HQ-induced DNA damage and cell apoptosis and restore cell proliferation and survival rate. shRNA interference experiments further indicated that the activation of the NF-κB pathway was regulated by PARP1. This study confirmed the important role of the NF-κB pathway in HQ-induced DNA damage and cell apoptosis and revealed that the activation of the NF-κB pathway was mediated by PARP1. This research provides important clues for a deeper understanding of the toxic mechanism of HQ.

3.
Biomed Pharmacother ; 176: 116844, 2024 May 31.
Article En | MEDLINE | ID: mdl-38823279

In contemporary times, tumors have emerged as the primary cause of mortality in the global population. Ongoing research has shed light on the significance of neurotransmitters in the regulation of tumors. It has been established that neurotransmitters play a pivotal role in tumor cell angiogenesis by triggering the transformation of stromal cells into tumor cells, modulating receptors on tumor stem cells, and even inducing immunosuppression. These actions ultimately foster the proliferation and metastasis of tumor cells. Several major neurotransmitters have been found to exert modulatory effects on tumor cells, including the ability to restrict emergency hematopoiesis and bind to receptors on the postsynaptic membrane, thereby inhibiting malignant progression. The abnormal secretion of neurotransmitters is closely associated with tumor progression, suggesting that focusing on neurotransmitters may yield unexpected breakthroughs in tumor therapy. This article presents an analysis and outlook on the potential of targeting neurotransmitters in tumor therapy.

4.
Surgery ; 2024 Jun 04.
Article En | MEDLINE | ID: mdl-38839433

We aimed to analyze the feasibility of endovascular treatment for brucellosis-related aorta-iliac artery pseudoaneurysm. We did a statistical analysis that among the 11 cases, the thoracic aorta was involved in 3 cases, the abdominal aorta was involved in 6 cases, and the iliac artery was involved in 2 cases. Five patients had a history of contact with cattle and sheep, 3 had a history of drinking raw milk, 10 patients had a fever before the operation, and 11 patients had positive serum agglutination test. Blood culture was positive in 2 patients. All patients were given anti-brucellosis treatment immediately after diagnosis. One died of aortic rupture 5 days after emergency endovascular gastrointestinal bleeding. Endovascular-covered stent implantation and active anti-brucellosis therapy were used to treat 10 patients. The follow-up period was 8 years without aortic complications or death for all patients. We think early diagnosis and a combination of anti-brucellosis drugs and endovascular therapy may be the first choice for treating the pseudoaneurysm caused by Brucella.

5.
J Bone Miner Res ; 2024 Jun 06.
Article En | MEDLINE | ID: mdl-38843381

Although the negative association of tobacco smoking with osteoporosis is well-documented, little is known regarding the shared genetic basis underlying these conditions. In this study, we aim to investigate a shared genetic architecture between smoking and heel estimated bone mineral density (eBMD), a reliable proxy for osteoporosis. We conducted a comprehensive genome-wide cross-trait analysis to identify genetic correlation, pleiotropic loci and causal relationship of smoking with eBMD, leveraging summary statistics of the hitherto largest genome-wide association studies conducted in European ancestry for smoking initiation (Nsmoker = 1 175 108, Nnonsmoker = 1 493 921), heaviness (cigarettes per day, N = 618 489), cessation (Ncurrent smoker = 304 244, Nformer smoker = 843 028), and eBMD (N = 426 824). A significant negative global genetic correlation was found for smoking cessation and eBMD (${r}_g$ = -0.051, P = 0.01), while we failed to identify a significant global genetic correlation of smoking initiation or heaviness with eBMD. Partitioning the whole genome into independent blocks, we observed six significant shared local signals for smoking and eBMD, with 22q13.1 showing the strongest regional genetic correlation. Such a genetic overlap was further supported by 71 pleiotropic loci identified in the cross-trait meta-analysis. Mendelian randomization identified no causal effect of smoking initiation (beta = -0.003 g/cm2, 95%CI = -0.033-0.027) or heaviness (beta = -0.017 g/cm2, 95%CI = -0.072-0.038) on eBMD, but a putative causal effect of genetic predisposition to being a current smoker was associated with a lower eBMD compared to former smokers (beta = -0.100 g/cm2, 95%CI = -0.181- - 0.018). Our study demonstrates a pronounced biological pleiotropy as well as a putative causal link between current smoking status and eBMD, providing novel insights into the primary prevention and modifiable intervention of osteoporosis by advocating individuals to avoid, reduce or quit smoking as early as possible.


We conducted a comprehensive genome-wide cross-trait analysis to investigate the shared genetic basis and causal relationship underlying smoking and osteoporosis. Our findings revealed that smoking and eBMD are inherently linked through biological pleiotropy. Importantly, our study discovered that quitting smoking significantly reduced the risk of lower eBMD. We recommend individuals to avoid, reduce, or quit smoking as early as possible to protect bone health.

6.
Front Pharmacol ; 15: 1378034, 2024.
Article En | MEDLINE | ID: mdl-38694922

Introduction: Streptococcus suis (S. suis) is a zoonotic pathogen threatening public health. Aditoprim (ADP), a novel veterinary medicine, exhibits an antibacterial effect against S. suis. In this study, a physiologically based pharmacokinetic/pharmacodynamic (PBPK/PD) model was used to determine the dosage regimens of ADP against S. suis and withdrawal intervals. Methods: The PBPK model of ADP injection can predict drug concentrations in plasma, liver, kidney, muscle, and fat. A semi-mechanistic pharmacodynamic (PD) model, including susceptible subpopulation and resistant subpopulation, is successfully developed by a nonlinear mixed-effect model to evaluate antibacterial effects. An integrated PBPK/PD model is conducted to predict the time-course of bacterial count change and resistance development under different ADP dosages. Results: ADP injection, administrated at 20 mg/kg with 12 intervals for 3 consecutive days, can exert an excellent antibacterial effect while avoiding resistance emergence. The withdrawal interval at the recommended dosage regimen is determined as 18 days to ensure food safety. Discussion: This study suggests that the PBPK/PD model can be applied as an effective tool for the antibacterial effect and safety evaluation of novel veterinary drugs.

7.
Chemosphere ; 359: 142287, 2024 Jul.
Article En | MEDLINE | ID: mdl-38723685

Sulfamethoxazole (SMX), a widely utilized antibiotic, was continually detected in the environment, causing serious risks to aquatic ecology and water security. In this study, carbon nanotubes (CNTs) with abundant defects were developed by argon plasma-etching technology to enhance the activation of persulfate (PS, including peroxymonosulfate (PMS) and peroxydisulfate (PDS)) for SMX degradation while reducing environmental toxicity. Obviously, the increase of ID/IG value from 0.980 to 1.333 indicated that Ar plasma-etching successfully introduced rich defects into CNTs. Of note, Ar-90-CNT, whose Ar plasma-etching time was 90 min with optimum catalytic performance, exhibited a significant discrepancy between PMS activation and PDS activation. Interestingly, though the Ar-90-CNT/PDS system (kobs = 0.0332 min-1) was more efficient in SMX elimination than the Ar-90-CNT/PMS system (kobs = 0.0190 min-1), Ar plasma-etching treatment had no discernible enhancement in the catalytic efficiency of MWCNT for PDS activation. Then the discrepancy on activation mechanism between PMS and PDS was methodically investigated through quenching experiments, electron spin resonance (ESR), chemical probes, electrochemical measurements and theoretical calculations, and the findings unraveled that the created vacancy defects were the ruling active sites for the production of dominated singlet oxygen (1O2) in the Ar-90-CNT/PMS system to degrade SMX, while the electron transfer pathway (ETP), originated from PDS activation by the inherent edge defects, was the central pathway for SMX removal in the Ar-90-CNT/PDS system. Based on the toxicity test of Microcystis aeruginosa, the Ar-90-CNT/PDS system was more effective in alleviating environmental toxicity during SMX degradation. These findings not only provide insights into the discrepancy between PMS activation and PDS activation via carbon-based materials with controlled defects regulated by the plasma-etching strategy, but also efficiently degrade sulfonamide antibiotics and reduce the toxicity of their products.


Nanotubes, Carbon , Peroxides , Sulfamethoxazole , Sulfamethoxazole/chemistry , Nanotubes, Carbon/chemistry , Peroxides/chemistry , Water Pollutants, Chemical/chemistry , Water Pollutants, Chemical/metabolism , Sulfates/chemistry , Catalysis , Anti-Bacterial Agents/chemistry
8.
Small ; : e2401566, 2024 May 16.
Article En | MEDLINE | ID: mdl-38752437

Ultrathin carbon nitride pioneered a paradigm that facilitates effective charge separation and acceleration of rapid charge migration. Nevertheless, the dissociation process confronts a disruption owing to the proclivity of carbon nitride to reaggregate, thereby impeding the optimal utilization of active sites. In response to this exigency, the adoption of a synthesis methodology featuring alkaline potassium salt-assisted molten salt synthesis is advocated in this work, aiming to craft a nitrogenated graphitic carbon nitride (g-C3N5) photocatalyst characterized by thin layer and hydrophilicity, which not only amplifies the degree of crystallization of g-C3N5 but also introduces a plethora of abundant edge active sites, engendering a quasi-homogeneous photocatalytic system. Under visible light irradiation, the ultra-high H2O2 production rate of this modified high-crystalline g-C3N5 in pure water attains 151.14 µm h-1. This groundbreaking study offers a novel perspective for the innovative design of highly efficient photocatalysts with a quasi-homogeneous photocatalytic system.

9.
J Appl Clin Med Phys ; : e14404, 2024 May 27.
Article En | MEDLINE | ID: mdl-38803034

BACKGROUND AND PURPOSE: This study aimed to compare the dosimetric attributes of two multi-leaf collimator based techniques, HyperArc and Incise CyberKnife, in the treatment of brain metastases. MATERIAL AND METHODS: 17 cases of brain metastases were selected including 6 patients of single lesion and 11 patients of multiple lesions. Treatment plans of HyperArc and CyberKnife were designed in Eclipse 15.5 and Precision 1.0, respectively, and transferred to Velocity 3.2 for comparison. RESULTS: HyperArc plans provided superior Conformity Index (0.91 ± 0.06 vs. 0.77 ± 0.07, p < 0.01) with reduced dose distribution in organs at risk (Dmax, p < 0.05) and lower normal tissue exposure (V4Gy-V20Gy, p < 0.05) in contrast to CyberKnife plans, although the Gradient Indexes were similar. CyberKnife plans showed higher Homogeneity Index (1.54 ± 0.17 vs. 1.39 ± 0.09, p < 0.05) and increased D2% and D50% in the target (p < 0.05). Additionally, HyperArc plans had significantly fewer Monitor Units (MUs) and beam-on time (p < 0.01). CONCLUSION: HyperArc plans demonstrated superior performance compared with MLC-based CyberKnife plans in terms of conformity and the sparing of critical organs and normal tissues, although no significant difference in GI outcomes was noted. Conversely, CyberKnife plans achieved a higher target dose and HI. The study suggests that HyperArc is more efficient and particularly suitable for treating larger lesions in brain metastases.

11.
Nat Commun ; 15(1): 4241, 2024 May 18.
Article En | MEDLINE | ID: mdl-38762500

Glioblastoma multiforme (GBM) is a highly aggressive brain tumor characterized by invasive behavior and a compromised immune response, presenting treatment challenges. Surgical debulking of GBM fails to address its highly infiltrative nature, leaving neoplastic satellites in an environment characterized by impaired immune surveillance, ultimately paving the way for tumor recurrence. Tracking and eradicating residual GBM cells by boosting antitumor immunity is critical for preventing postoperative relapse, but effective immunotherapeutic strategies remain elusive. Here, we report a cavity-injectable bacterium-hydrogel superstructure that targets GBM satellites around the cavity, triggers GBM pyroptosis, and initiates innate and adaptive immune responses, which prevent postoperative GBM relapse in male mice. The immunostimulatory Salmonella delivery vehicles (SDVs) engineered from attenuated Salmonella typhimurium (VNP20009) seek and attack GBM cells. Salmonella lysis-inducing nanocapsules (SLINs), designed to trigger autolysis, are tethered to the SDVs, eliciting antitumor immune response through the intracellular release of bacterial components. Furthermore, SDVs and SLINs administration via intracavitary injection of the ATP-responsive hydrogel can recruit phagocytes and promote antigen presentation, initiating an adaptive immune response. Therefore, our work offers a local bacteriotherapy for stimulating anti-GBM immunity, with potential applicability for patients facing malignancies at a high risk of recurrence.


Brain Neoplasms , Glioblastoma , Neoplasm Recurrence, Local , Salmonella typhimurium , Glioblastoma/therapy , Glioblastoma/immunology , Animals , Mice , Salmonella typhimurium/immunology , Male , Neoplasm Recurrence, Local/prevention & control , Neoplasm Recurrence, Local/immunology , Brain Neoplasms/immunology , Brain Neoplasms/therapy , Humans , Cell Line, Tumor , Mice, Inbred C57BL , Pyroptosis , Adaptive Immunity , Immunity, Innate , Hydrogels/chemistry , Immunotherapy/methods
12.
Appl Environ Microbiol ; : e0014924, 2024 May 29.
Article En | MEDLINE | ID: mdl-38808978

Glucaric acid (GA) is a value-added chemical and can be used to manufacture food additives, anticancer drugs, and polymers. The non-genetic cell-to-cell variations in GA biosynthesis are naturally inherent, indicating the presence of both high- and low-performance cells in culture. Low-performance cells can lead to nutrient waste and inefficient production. Furthermore, myo-inositol oxygenase (MIOX) is a key rate-limiting enzyme with the problem of low stability and activity in GA production. Therefore, eliminating cell-to-cell variations and increasing MIOX stability can select high-performance cells and improve GA production. In this study, an in vivo GA bioselector was constructed based on GA biosensor and tetracycline efflux pump protein TetA to continuously select GA-efficient production strains. Additionally, the upper limit of the GA biosensor was improved to 40 g/L based on ribosome-binding site optimization, achieving efficient enrichment of GA high-performance cells. A small ubiquitin-like modifier (SUMO) enhanced MIOX stability and activity. Overall, we used the GA bioselector and SUMO-MIOX fusion in fed-batch GA production and achieved a 5.52-g/L titer in Escherichia coli, which was 17-fold higher than that of the original strain.IMPORTANCEGlucaric acid is a non-toxic valuable product that was mainly synthesized by chemical methods. Due to the problems of non-selectivity, inefficiency, and environmental pollution, GA biosynthesis has attracted significant attention. The non-genetic cell-to-cell variations and MIOX stability were both critical factors for GA production. In addition, the high detection limit of the GA biosensor was a key condition for performing high-throughput screening of GA-efficient production strains. To increase GA titer, this work eliminated the cell-to-cell variations by GA bioselector constructed based on GA biosensor and TetA, and improved the stability and activity of MIOX in the GA biosynthetic pathway through fusing the SUMO to MIOX. Finally, these approaches improved the GA production by 17-fold to 5.52 g/L at 65 h. This study represents a significant step toward the industrial application of GA biosynthetic pathways in E. coli.

13.
Front Neurol ; 15: 1364270, 2024.
Article En | MEDLINE | ID: mdl-38784916

Background: This is the first study to evaluate the efficacy and safety of transcranial pulse stimulation (TPS) for the treatment of attention-deficit/hyperactivity disorder (ADHD) among young adolescents in Hong Kong. Methods: This double-blind, randomized, sham-controlled trial included a TPS group and a sham TPS group, encompassing a total of 30 subjects aged 12-17 years who were diagnosed with ADHD. Baseline measurements SNAP-IV, ADHD RS-IV, CGI and executive functions (Stroop tests, Digit Span) and post-TPS evaluation were collected. Both groups were assessed at baseline, immediately after intervention, and at 1-month and 3-month follow-ups. Repeated-measures ANOVAs were used to analyze data. Results: The TPS group exhibited a 30% reduction in the mean SNAP-IV score at postintervention that was maintained at 1- and 3-month follow-ups. Conclusion: TPS is an effective and safe adjunct treatment for the clinical management of ADHD. Clinical trial registration: ClinicalTrials.Gov, identifier NCT05422274.

14.
Foods ; 13(10)2024 May 10.
Article En | MEDLINE | ID: mdl-38790784

Tartronic acid is known for its potential to inhibit sugar-to-lipid conversion in the human body, leading to weight loss and fat reduction. This compound is predominantly found in cucumbers and other cucurbit crops. Therefore, cultivating cucumbers with high tartronic acid content holds significant health implications. In this study, we assessed the tartronic acid content in 52 cucumber germplasms with favorable overall traits and identified 8 cucumber germplasms with elevated tartronic acid levels. Our investigation into factors influencing cucumber tartronic acid revealed a decrease in content with fruit development from the day of flowering. Furthermore, tartronic acid content was higher in early-harvested fruits compared to late-harvested ones, with the rear part of the fruit exhibiting significantly higher content than other parts. Foliar spraying of microbial agents increased tartronic acid content by 84.4%. This study provides valuable resources for breeding high tartronic acid cucumbers and offers practical insights for optimizing cucumber production practices.

15.
Int Immunopharmacol ; 134: 112247, 2024 Jun 15.
Article En | MEDLINE | ID: mdl-38759374

BACKGROUND: Epilepsy is a chronic disabling disease poorly controlled by available antiseizure medications. Oridonin, a bioactive alkaloid with anti-inflammatory properties and neuroprotective effects, can inhibit the increased excitability of neurons caused by glutamate accumulation at the cellular level. However, whether oridonin affects neuronal excitability and whether it has antiepileptic potential has not been reported in animal models or clinical studies. METHOD: Pentylenetetrazol was injected into mice to create a model of chronic epilepsy. Seizure severity was assessed using the Racine scale, and the duration and latency of seizures were observed. Abnormal neuronal discharge was detected using electroencephalography, and neuronal excitability was assessed using calcium imaging. Damage to hippocampal neurons was evaluated using Hematoxylin-Eosin and Nissl staining. The expression of the NOD-like receptor thermal protein domain associated protein 3 (NLRP3) inflammasome and other pyroptosis-related proteins was determined using western blotting and immunofluorescence. A neuronal pyroptosis model was established using the supernatant of BV2 cells treated with lipopolysaccharide and adenosine triphosphate to stimulate hippocampal neurons. RESULTS: Oridonin (1 and 5 mg/kg) reduced neuronal damage, increased the latency of seizures, and shortened the duration of fully kindled seizures in chronic epilepsy model mice. Oridonin decreased abnormal discharge during epileptic episodes and suppressed increased neuronal excitability. In vitro experiments showed that oridonin alleviated pyroptosis in hippocampal HT22 neurons. CONCLUSION: Oridonin exerts neuroprotective effects by inhibiting pyroptosis through the NLRP3/caspase-1 pathway in chronic epilepsy model mice. It also reduces pyroptosis in hippocampal neurons in vitro, suggesting its potential as a therapy for epilepsy.


Anticonvulsants , Disease Models, Animal , Diterpenes, Kaurane , Epilepsy , Hippocampus , NLR Family, Pyrin Domain-Containing 3 Protein , Neurons , Neuroprotective Agents , Pyroptosis , Animals , Diterpenes, Kaurane/pharmacology , Diterpenes, Kaurane/therapeutic use , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use , Epilepsy/drug therapy , Pyroptosis/drug effects , Mice , Anticonvulsants/pharmacology , Anticonvulsants/therapeutic use , Male , Hippocampus/drug effects , Hippocampus/metabolism , Hippocampus/pathology , Neurons/drug effects , Neurons/pathology , Neurons/metabolism , Pentylenetetrazole , Mice, Inbred C57BL , Inflammasomes/metabolism , Inflammasomes/drug effects , Cell Line , Seizures/drug therapy
16.
Clin Chim Acta ; 560: 119749, 2024 May 23.
Article En | MEDLINE | ID: mdl-38796052

Thalassemia is one of the most common and damaging monogenic diseases in the world. It is caused by pathogenic variants of α- and/or ß-globin genes, which disrupt the balance of these two protein chains and leads to α-thalassemia or ß-thalassemia, respectively. Patients with α-thalassemia or ß-thalassemia could exhibit a severe phenotype, with no simple and effective treatment. A three-tiered strategy of carrier screening, prenatal diagnosis and newborn screening has been established in China for the prevention and control of thalassemia, of which the first two parts have been studied thoroughly. The implementation of neonatal thalassemia screening is lagging, and the effectiveness of various screening programs has not yet been demonstrated. In this study, hemoglobin capillary electrophoresis (CE), hotspot testing method, and third-generation sequencing (TGS) were used in the variant detection of 2000 newborn samples, to assess the efficacy of these methods in neonatal thalassemia screening. Compared with CE (249, 12.45 %) and hotspot analysis (424, 21.2 %), CATSA detected the largest number of thalassemia variants (535, 26.75 %), which included 24 hotspot variants, increased copy number of α-globin gene, rare pathogenic variants, and three unreported potentially disease-causing variants. More importantly, CATSA directly determined the cis-trans relationship of variants in three newborns, which greatly shortens the clinical diagnosis time of thalassemia. CATSA showed a great advantage over other genetic tests and could become the most powerful technical support for the three-tiered prevention and control strategy of thalassemia.

17.
Eur J Med Chem ; 273: 116493, 2024 May 17.
Article En | MEDLINE | ID: mdl-38761790

The emergence of multidrug-resistant bacteria along with a declining pipeline of clinically useful antibiotics has led to the urgent need for the development of more effective antibacterial agents to treat drug-resistant bacteria. We previously discovered compound OB-158 with potent antibacterial activity but exhibited poor oral bioavailability. Herein, a systematic structural optimization of OB-158 to improve pharmacokinetic profiles yielded 26 novel biaryloxazolidinone analogues, and their activities against Gram-positive S. aureus, multidrug resistant S. aureus and Enterococcus faecalis were evaluated. Remarkably, compound 8b was identified with potent antibacterial activity against S. aureus (MIC = 0.06 µg/mL), MSSA (MIC = 0.125 µg/mL), MRSA (MIC = 0.06 µg/mL), LRSA (MIC = 0.125 µg/mL) and LREFa (MIC = 0.5 µg/mL). Compound 8b was demonstrated as a promising candidate through druglikeness evaluation including metabolism in microsomes and plasma, Caco-2 cell permeability, plasma protein binding, cytotoxicity, and inhibition of CYP450 and human monoamine oxidase. Notably, compound 8b displayed excellent PK profile with appropriate T1/2 of 1.49 h, high peak plasma concentration (Cmax = 2320 ng/mL), high plasma exposure (AUC0-t = 8310 h ng/mL), and superior oral bioavailability (F = 68.1 %) in Sprague-Dawley rats. Ultimately, in vivo efficacy of compound 8b in a mouse model of LRSA systemic infection was also demonstrated. Taken together, compound 8b represents a promising drug candidate for the treatment of linezolid-resistant Gram-positive bacterial strains infection.

18.
Sci Total Environ ; 931: 172936, 2024 Jun 25.
Article En | MEDLINE | ID: mdl-38701923

Nitrous oxide (N2O) emission from composting is a significant contributor to greenhouse effect and ozone depletion, which poses a threat to environment. To address the challenge of mitigating N2O emission during composting, this study investigated the response of N2O emission and denitrifier communities (detected by metagenome sequencing) to aeration intensities of 6 L/min (C6), 12 L/min (C12), and 18 L/min (C18) in cattle manure composting using multi-factor interaction analysis. Results showed that N2O emission occurred mainly at mesophilic phase. Cumulative N2O emission (QN2O, 9.79 mg·kg-1 DW) and total nitrogen loss (TN loss, 16.40 %) in C12 composting treatment were significantly lower than those in the other two treatments. The lower activity of denitrifying enzymes and the more complex and balanced network of denitrifiers and environmental factors might be responsible for the lower N2O emission. Denitrification was confirmed to be the major pathway for N2O production. Moisture content (MC) and Luteimonas were the key factors affecting N2O emission, and nosZ-carrying denitrifier played a significant role in reducing N2O emission. Although relative abundance of nirS was lower than that of nirK significantly (P < 0.05), nirS was the key gene influencing N2O emission. Community composition of denitrifier varied significantly with different aeration treatments (R2 = 0.931, P = 0.001), and Achromobacter was unique to C12 at mesophilic phase. Physicochemical factors had higher effect on QN2O, whereas denitrifying genes, enzymes and NOX- had lower effect on QN2O in C12. The complex relationship between N2O emission and the related factors could be explained by multi-factor interaction analysis more comprehensively. This study provided a novel understanding of mechanism of N2O emission regulated by aeration intensity in composting.


Composting , Denitrification , Manure , Nitrous Oxide , Manure/analysis , Nitrous Oxide/analysis , Animals , Composting/methods , Cattle , Air Pollutants/analysis , Soil Microbiology
19.
Sci Rep ; 14(1): 9983, 2024 05 01.
Article En | MEDLINE | ID: mdl-38693143

The need for tumor postoperative treatments aimed at recurrence prevention and tissue regeneration have raised wide considerations in the context of the design and functionalization of implants. Herein, an injectable hydrogel system encapsulated with anti-tumor, anti-oxidant dual functional nanoparticles has been developed in order to prevent tumor relapse after surgery and promote wound repair. The utilization of biocompatible gelatin methacryloyl (GelMA) was geared towards localized therapeutic intervention. Zeolitic imidazolate framework-8@ceric oxide (ZIF-8@CeO2, ZC) nanoparticles (NPs) were purposefully devised for their proficiency as reactive oxygen species (ROS) scavengers. Furthermore, injectable GelMA hydrogels loaded with ZC NPs carrying doxorubicin (ZC-DOX@GEL) were tailored as multifunctional postoperative implants, ensuring the efficacious eradication of residual tumor cells and alleviation of oxidative stress. In vitro and in vivo experiments were conducted to substantiate the efficacy in cancer cell elimination and the prevention of tumor recurrence through the synergistic chemotherapy approach employed with ZC-DOX@GEL. The acceleration of tissue regeneration and in vitro ROS scavenging attributes of ZC@GEL were corroborated using rat models of wound healing. The results underscore the potential of the multifaceted hydrogels presented herein for their promising application in tumor postoperative treatments.


Doxorubicin , Hydrogels , Metal-Organic Frameworks , Methacrylates , Nanoparticles , Wound Healing , Animals , Doxorubicin/pharmacology , Doxorubicin/administration & dosage , Doxorubicin/chemistry , Wound Healing/drug effects , Nanoparticles/chemistry , Hydrogels/chemistry , Rats , Humans , Reactive Oxygen Species/metabolism , Gelatin/chemistry , Cerium/chemistry , Cerium/pharmacology , Zeolites/chemistry , Zeolites/pharmacology , Cell Line, Tumor , Male , Imidazoles/chemistry , Imidazoles/administration & dosage , Imidazoles/pharmacology , Rats, Sprague-Dawley
20.
Environ Sci Pollut Res Int ; 31(23): 34607-34621, 2024 May.
Article En | MEDLINE | ID: mdl-38705925

A series of ZnO decorated reduced graphene oxide (rGO) (ZnrGOx) with different doping ratios were synthesized by the alkaline hydrothermal method using graphene oxide (GO) and Zn(NO3)2·6H2O as precursors, and subsequently used for the adsorption study of Cr(VI) in water. The morphology, crystalline phase structure, and surface elemental properties of ZnrGOx composites were revealed by XRD, SEM, BET, FT-IR, and XPS characterizations. The results showed that ZnO nanoparticles can be clearly seen on the surface of layered rGO. Meanwhile, as the doping rate increased, the C = C double bonds were broken and more carboxylic acid groups formed in ZnrGOx. In addition, the ZnrGO0.1 composite had the most excellent adsorption performance and good stability, and reusability. The adsorption removal rate of Cr(VI) can reach 99%, and the maximum adsorption amount of Cr(VI) was 68.9655 mg/g in 3 h. The isothermal and kinetic model simulations showed that Cr(VI) adsorption on ZnrGO0.1 composite is a chemical adsorption process, spontaneous and endothermic. Based on the concentrations of different valence states of Cr in the solid and liquid phases, 40% of Cr(VI) was reduced to Cr(III) on the surface of ZnrGO0.1 composite. Moreover, the adsorption-reduction mechanisms of Cr(VI) on ZnrGO0.1 composite were further elucidated. The ZnrGO0.1 composite manifested great potential as an efficient adsorbent for Cr(VI) removal.


Chromium , Graphite , Water Pollutants, Chemical , Zinc Oxide , Zinc Oxide/chemistry , Adsorption , Graphite/chemistry , Chromium/chemistry , Water Pollutants, Chemical/chemistry , Kinetics , Water Purification/methods
...