Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
J Hazard Mater ; 478: 135462, 2024 Aug 09.
Article in English | MEDLINE | ID: mdl-39126854

ABSTRACT

For hazardous gas monitoring and non-invasive diagnosis of diabetes using breath analysis, porous foams assembled by Co3O4 nanoparticles were designed as sensing electrode materials to fabricate efficient yttria-stabilized zirconia (YSZ)-based acetone sensors. The sensitivity of the sensors was improved by varying the sintering temperature to regulate the morphology. Compared to other materials sintered at different temperatures, the porous Co3O4 nanofoams sintered at 800 °C exhibited the highest electrochemical catalytic activity during the electrochemical test. The response of the corresponding Co3O4-based sensor to 10 ppm acetone was -77.2 mV and it exhibited fast response and recovery times. Moreover, the fabricated sensor achieved a low detection limit of 0.05 ppm and a high sensitivity of -56 mV/decade in the acetone concentration range of 1-20 ppm. The sensor also exhibited excellent repeatability, acceptable selectivity, good O2/humidity resistance, and long-term stability during continuous measurements for over 30 days. Moreover, the fabricated sensor was used to determine the acetone concentration in the exhaled breaths of patients with diabetic ketosis. The results indicated that it could distinguish between healthy individuals and patients with diabetic ketosis, thereby proving its abilities to diagnose and monitor diabetic ketosis. Based on its excellent sensitivity and exhaled breath measurement results, the developed sensor has broad application prospects.

2.
Ultrason Sonochem ; 109: 107027, 2024 Aug 12.
Article in English | MEDLINE | ID: mdl-39146819

ABSTRACT

Nickel/iron-layered double hydroxide (NiFe-LDH) tends to undergo an electrochemically induced surface reconstruction during the water oxidation in alkaline, which will consume excess electric energy to overcome the reconstruction thermodynamic barrier. In the present work, a novel ultrasonic wave-assisted Fenton reaction strategy is employed to synthesize the surface reconstructed NiFe-LDH nanosheets cultivated directly on Ni foam (NiFe-LDH/NF-W). Morphological and structural characterizations reveal that the low-spin states of Ni2+ (t2g6eg2) and Fe2+ (t2g4eg2) on the NiFe-LDH surface partially transform into high-spin states of Ni3+ (t2g6eg1) and Fe3+ (t2g3eg2) and formation of the highly active species of NiFeOOH. A lower surface reconstruction thermodynamic barrier advantages the electrochemical process and enables the NiFe-LDH/NF-W electrode to exhibit superior electrocatalytic water oxidation activity, which delivers 10 mA cm-2 merely needing an overpotential of 235 mV. Besides, surface reconstruction endows NiFe-LDH/NF-W with outstanding electrooxidation activities for organic molecules of methanol, ethanol, glycerol, ethylene glycol, glucose, and urea. Ultrasonic-assisted Fenton reaction inducing surface reconstruction strategy will further advance the utilization of NiFe-LDH catalyst in water and organics electrooxidation.

3.
ACS Appl Mater Interfaces ; 16(11): 14152-14161, 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38469868

ABSTRACT

The incorporation of two-dimensional (2D) functional nanosheets in polymeric membranes is a promising material strategy to overcome their inherent performance trade-off behavior. Herein, we report a novel nanocomposite membrane design by incorporating MXene, a 2D sheet-like nanoarchitecture known for its advantageous lamellar morphology and surface functionalities, into a cross-linked polyether block amide (Pebax)/poly(ethylene glycol) methyl ether acrylate (PEGMEA) blend matrix, which delivered exceptional CO2/N2 and CO2/H2 separation performances that are critical to industrial CO2 capture applications. The finely dispersed Ti3C2Tx nanosheets in the blend polymer matrix led to an expansion of the free volume within the resultant mixed matrix membrane (MMM), giving rise to a substantially enhanced CO2 permeability of up to 1264.6 barrer, which is 102% higher than that of the pristine polymer. Moreover, these MXene-incorporated MMMs exhibited preferential sorption for CO2 over light gases, which contributed to an exceptional CO2/N2 and CO2/H2 selectivity (64.3 and 19.2, respectively) even at a small loading of only 1 wt %, allowing the overall performance to not only surpass the latest upper bounds but also exceed many previously reported high-performance nanosheet-based nanocomposite membranes. Long-term performance tests have also demonstrated the good stability of these membranes. This composite membrane design strategy reveals the remarkable potential of combining a blend copolymer matrix with ultrathin MXene nanosheets to achieve superior gas separation performance for environmentally important gas separations.

4.
Nanotechnology ; 35(7)2023 Nov 28.
Article in English | MEDLINE | ID: mdl-37918030

ABSTRACT

The all-trans conformation (ß-phase) possesses a significant impact on the piezoelectric polymer polyvinylidene fluoride (PVDF). Inducing more molecular chain [-CH2-CF2-]nto form all-trans conformation is one of the biggest obstacles for manufacturing high-performance piezoelectric sensing devices. Herein, the continuous vacuum technology is used to modulate the polarity of binary solvents by the proportion of the lower solvent. The regulated solvent forms a high dipole moment, an interaction between the dipole ofß-phase and the dipole moment makes the phase reversal in PVDF. Fourier transform infrared spectroscopy, piezoelectric constant test and other characterization results show that when the weakly polar acetone and the strongly polar solvent DMF reach a ratio of 4:6, the pure PVDF film possesses high piezoelectricity (d33∼ -44.8 pC N-1) and strong self-polarization. Additionally, the A4D6device exhibits high sensitivity (S1= 0.182 V/N, 0.5 N ∼ 30 N), driven capability (0.49 mW m-2), and reliability during the electrical tests as a pressure device. This work provides an effective and cost-effective route of optimizing the solvent's polarity to improve the piezoelectric characteristics of the polymer.

5.
Nanotechnology ; 34(24)2023 Mar 31.
Article in English | MEDLINE | ID: mdl-36930980

ABSTRACT

Multi-walled carbon nanotubes (MWCNTs) with one-dimensional nanostructure are an ideal support for oxygen reduction reaction (ORR) catalysts thanks to their intrinsic outstanding electrical conductivity and high specific surface area. Iron and nitrogen doping could alter the local electronic structure and therefore enhance the ORR activity of MWCNTs, but the preparation process always includes complicated growth conditions and post-treatment. Herein, an iron and nitrogen co-modified multi-walled carbon nanotubes (Fe-N-MWCNTs) with hierarchical nanostructure is engineered and synthesized via a simple two-step pyrolysis approach. Large specific surface area, low resistivity, and intensified charge density near the Fermi level synergistically endow the Fe-N-MWCNTs with outstanding ORR activity. The optimal Fe-N-MWCNTs exhibit a higher onset potential value of 0.92 V (versus RHE) and half-wave potential (E1/2) of 0.85 V (versus RHE) in 0.1 M KOH medium, which exceeds the benchmark Pt/C electrocatalyst (E1/2= 0.84 V). This strategy of modifying MWCNTs support by a simple calcination process provides a feasible method to prepare cost-efficient ORR electrocatalysts.

6.
J Colloid Interface Sci ; 626: 515-523, 2022 Nov 15.
Article in English | MEDLINE | ID: mdl-35809440

ABSTRACT

Developing oxygen evolution reaction (OER) catalysts with high activity and long-term stability is critical to achieving efficient hydrogen production from water electrolysis. Herein, a porous bimetallic cobalt-iron phosphide (CoFe-P) nanofoam is synthesized via a novel one-pot glucose-blowing followed by oxidization and then phosphidization process. The CoFe-P nanofoam presents a porous nanostructure which contributes to contact with electrolytes and release of generated gas during electrocatalytic reactions. As OER catalysts in alkaline, the bimetallic porous CoFe-P nanofoam exhibit a lower overpotential (258 mV@10 mA cm-2) as well as outstanding stability (70 h@100 mA cm-2), which surpasses the RuO2 and is comparable to many high-performance Co and Fe-based catalysts. It is demonstrated that the surface of CoFe-P undergo a reconstruction process and form new high active (CoxFe1-x)OOH. Density functional theory (DFT) calculations reveal that the elevated activity is caused by the bimetal Co and Fe optimizing the d-band center (Ed) energy levels and thus balancing the adsorption-desorption capacities for OER intermediates. This work through constructing porous bimetallic nanofoam offers a feasible strategy to facilitate the reaction activity and prolong the long-term stability of OER.

7.
J Colloid Interface Sci ; 594: 864-873, 2021 Jul 15.
Article in English | MEDLINE | ID: mdl-33794408

ABSTRACT

Hierarchical porous iron and nitrogen co-doped carbon (Fe-N/C) materials have been considered as an appealing non-noble metal-based catalyst in oxygen reduction reactions (ORR). However, the conductivity loss caused by the scattering of electrons on pores and defects markedly limits their catalytic activity, which attracted seldom attention in this area. Herein, a novel crystalline carbon modified hierarchical porous Fe-N/C electrocatalyst with enhanced electronic conductivity is designed and prepared via a two-step calcination-catalysis process. The resistivity of hierarchical porous Fe-N/C is decreased from 2.123 Ω cm to 0.479 Ω cm after crystalline carbon introduction. The electrocatalyst annealed at 800 °C (Fe-N/C-800) exhibits a superior activity with the half-wave potential (E1/2) of 0.89 V, which outperforms the commercial carbon-supported platinum (Pt/C) catalyst (0.85 V). The strategy of crystalline carbon modification provides a fresh approach to improve the electronic conductivity of porous carbon-based materials.

8.
Nanoscale ; 12(32): 16901-16909, 2020 Aug 28.
Article in English | MEDLINE | ID: mdl-32766631

ABSTRACT

Lithium-ion batteries (LIBs) are widely regarded as a promising electrochemical energy storage device, due to their high energy density and good cycling stability. To date, the development of anode materials for LIBs is still confronted with many serious problems, and much effort is required for constructing more ideal anode materials. Herein, starting with metal-organic frameworks (MOFs), an amorphous VOx coated Fe3O4/C hierarchical nanospindle has been successfully synthesized. The obtained Fe3O4/C@VOx nanospindle has a uniform particle size of ∼100 nm in diameter and ∼400 nm in length and consists of ultrafine Fe3O4 nanoparticles (∼5 nm) embedded in a porous carbon matrix as the core and an amorphous VOx layer as the shell. Notably, as the anode material for LIBs, Fe3O4/C@VOx delivers a high coulombic efficiency (74.2%) and a large capacity of 845 mA h g-1 after 500 cycles at 1000 mA g-1. A prominent discharge reversible capacity of 340 mA h g-1 is also still retained at 5000 mA g-1. More importantly, the presented facile MOF-derived route could be easily extended to other functional materials for widespread applications.

9.
Dalton Trans ; 45(32): 12702-9, 2016 Aug 09.
Article in English | MEDLINE | ID: mdl-27443233

ABSTRACT

Herein, we report the successful formation of graphitic carbon nitride coated titanium oxide nanotube array thin films (g-C3N4/TiO2) via the facile thermal treatment of anodized Ti sheets over melamine. The proportion of C3N4 and TiO2 in the composite can be adjusted by changing the initial addition mass of melamine. The as-prepared samples are characterized by several techniques in order to understand the morphological, structural, compositional and optical properties. UV-vis absorption studies exhibit a remarkable red shift for the g-C3N4/TiO2 thin films as compared to the pristine TiO2 nanotubes. Importantly, the prepared composites exhibit an enhanced photocurrent and photo-potential under both UV-vis and visible light irradiation. Moreover, the observed maximum photo-conversion efficiency of the prepared composites is 1.59 times higher than that of the pristine TiO2 nanotubes. The optical and electrochemical impedance spectra analysis reveals that the better photo-electrochemical performance of the g-C3N4/TiO2 nanotubes is mainly due to the wider light absorption and reduced impedance compared to the bare TiO2 nanotube electrode. The presented work demonstrates a facile and simple method to fabricate g-C3N4/TiO2 nanotubes and clearly revealed that the introduction of g-C3N4 is a new and innovative approach to improve the photocurrent and photo-potential efficiencies of TiO2.

SELECTION OF CITATIONS
SEARCH DETAIL