Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.443
Filter
1.
J Mol Model ; 30(8): 252, 2024 Jul 06.
Article in English | MEDLINE | ID: mdl-38969920

ABSTRACT

CONTEXT: Traditional conductive adhesives based on epoxy resin system often encounter problems such as high brittleness and low heat resistance. Therefore, it is particularly important to improve the thermal and mechanical properties of the conductive adhesive. In this study, the effects of SWCNT-Ag and SWCNT fillers on the thermal properties of DGEBA/DETA/Ag conductive adhesive system were studied by using molecular dynamics to construct different cross-linking models. The final results show that the addition of SWCNT and SWCNT-Ag can significantly improve the thermal properties of the conductive adhesive. However, the nanosilver particles on the surface of SWCNT-Ag act as a bridge for the connection between SWCNT and Ag in the conductive adhesive. Therefore, SWCNT-Ag has a more positive impact on the thermal properties of DGEBA/DETA/Ag conductive adhesive system. METHODS: In this paper, the influence of SWCNT-Ag on the thermal properties of traditional DGEBA/DETA/Ag conductive adhesive system was studied by using Materials Studio software. The volume shrinkage, glass transition temperature, thermal expansion coefficient, and thermal conductivity of the material were calculated based on COMPASS force field. The thermal conductivity is calculated by using reverse non-equilibrium molecular dynamics method. Finally, it is found that SWCNT-Ag has a positive effect on the thermal properties of the conductive adhesive system by comparing several groups of calculation data.

2.
Int J Antimicrob Agents ; : 107262, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38945178

ABSTRACT

PURPOSE: Polymyxin B, with its unique structure and mechanism of action, has emerged as a key therapeutic agent against Gram-negative bacteria. The study aims to explore potential factors to influence its effectiveness and safety. METHODS: A Model-Based Meta-Analysis (MBMA) of 96 articles was conducted, focusing on factors like dosage, bacterial species, and combined antibiotic therapy. The analysis evaluated mortality rates and incidence rate of renal dysfunction, also employing parametric survival models to assess 30-day survival rates. RESULTS: In the study involving 96 articles and 9,716 patients, polymyxin B's daily dose showed minimal effect on overall mortality, with high-dose group mortality at 33.57% (95% CI: 29.15-38.00) compared to the low-dose group at 35.44% (95% CI: 28.99-41.88), p=0.64. Mortality significantly varied by bacterial species, with Pseudomonas aeruginosa infections at 58.50% (95% CI: 55.42-63.58). Monotherapy exhibited the highest mortality at 40.25% (95% CI: 34.75-45.76), p<0.01. Renal dysfunction was more common in high-dose patients at 29.75% (95% CI: 28.52-30.98), with no significant difference across antibiotic regimens, p=0.54. The 30-day Overall Survival rate for monotherapy therapy was 63.6% (95% CI: 59.3-67.5) and 70.2% (95% CI: 64.4-76.2) for association therapy with ß-lactam drugs. CONCLUSIONS: The dosage of Polymyxin B doesn't significantly change death rates, but its effectiveness varies based on the bacterial infection. Certain bacteria like Pseudomonas aeruginosa are associated with higher mortality. Combining Polymyxin B with other antibiotics, especially ß-lactam drugs, improves survival rates. Side effects depend on the dose, with lower doses being safer. These findings emphasize the importance of customizing treatment to balance effectiveness and safety.

3.
Front Nutr ; 11: 1356207, 2024.
Article in English | MEDLINE | ID: mdl-38863588

ABSTRACT

Background: Currently, the association between the consumption of polyunsaturated fatty acids (PUFAs) and the susceptibility to autoimmune rheumatic diseases (ARDs) remains conflict and lacks substantial evidence in various clinical studies. To address this issue, we employed Mendelian randomization (MR) to establish causal links between six types of PUFAs and their connection to the risk of ARDs. Methods: We retrieved summary-level data on six types of PUFAs, and five different types of ARDs from publicly accessible GWAS statistics. Causal relationships were determined using a two-sample MR analysis, with the IVW approach serving as the primary analysis method. To ensure the reliability of our research findings, we used four complementary approaches and conducted multivariable MR analysis (MVMR). Additionally, we investigated reverse causality through a reverse MR analysis. Results: Our results indicate that a heightened genetic predisposition for elevated levels of EPA (ORIVW: 0.924, 95% CI: 0.666-1.283, P IVW = 0.025) was linked to a decreased susceptibility to psoriatic arthritis (PsA). Importantly, the genetically predicted higher levels of EPA remain significantly associated with an reduced risk of PsA, even after adjusting for multiple testing using the FDR method (P IVW-FDR-corrected = 0.033) and multivariable MR analysis (P MV-IVW < 0.05), indicating that EPA may be considered as the risk-protecting PUFAs for PsA. Additionally, high levels of LA showed a positive causal relationship with a higher risk of PsA (ORIVW: 1.248, 95% CI: 1.013-1.538, P IVW = 0.037). It is interesting to note, however, that the effects of these associations were weakened in our MVMR analyses, which incorporated adjustment for lipid profiles (P MV-IVW > 0.05) and multiple testing using the FDR method (P IVW-FDR-corrected = 0.062). Moreover, effects of total omega-3 PUFAs, DHA, EPA, and LA on PsA, were massively driven by SNP effects in the FADS gene region. Furthermore, no causal association was identified between the concentrations of other circulating PUFAs and the risk of other ARDs. Further analysis revealed no significant horizontal pleiotropy and heterogeneity or reverse causality. Conclusion: Our comprehensive MR analysis indicated that EPA is a key omega-3 PUFA that may protect against PsA but not other ARDs. The FADS2 gene appears to play a central role in mediating the effects of omega-3 PUFAs on PsA risk. These findings suggest that EPA supplementation may be a promising strategy for preventing PsA onset. Further well-powered epidemiological studies and clinical trials are warranted to explore the potential mechanisms underlying the protective effects of EPA in PsA.

4.
Acta Biomater ; 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38849022

ABSTRACT

Bone, an actively metabolic organ, undergoes constant remodeling throughout life. Disturbances in the bone microenvironment can be responsible for pathologically bone diseases such as periodontitis, osteoarthritis, rheumatoid arthritis and osteoporosis. Conventional bone tissue biomaterials are not adequately adapted to complex bone microenvironment. Therefore, there is an urgent clinical need to find an effective strategy to improve the status quo. In recent years, nanotechnology has caused a revolution in biomedicine. Cerium(III, IV) oxide, as an important member of metal oxide nanomaterials, has dual redox properties through reversible binding with oxygen atoms, which continuously cycle between Ce(III) and Ce(IV). Due to its special physicochemical properties, cerium(III, IV) oxide has received widespread attention as a versatile nanomaterial, especially in bone diseases. This review describes the characteristics of bone microenvironment. The enzyme-like properties and biosafety of cerium(III, IV) oxide are also emphasized. Meanwhile, we summarizes controllable synthesis of cerium(III, IV) oxide with different nanostructural morphologies. Following resolution of synthetic principles of cerium(III, IV) oxide, a variety of tailored cerium-based biomaterials have been widely developed, including bioactive glasses, scaffolds, nanomembranes, coatings, and nanocomposites. Furthermore, we highlight the latest advances in cerium-based biomaterials for inflammatory and metabolic bone diseases and bone-related tumors. Tailored cerium-based biomaterials have already demonstrated their value in disease prevention, diagnosis (imaging and biosensors) and treatment. Therefore, it is important to assist in bone disease management by clarifying tailored properties of cerium(III, IV) oxide in order to promote the use of cerium-based biomaterials in the future clinical setting. STATEMENT OF SIGNIFICANCE: In this review, we focused on the promising of cerium-based biomaterials for bone diseases. We reviewed the key role of bone microenvironment in bone diseases and the main biological activities of cerium(III, IV) oxide. By setting different synthesis conditions, cerium(III, IV) oxide nanostructures with different morphologies can be controlled. Meanwhile, tailored cerium-based biomaterials can serve as a versatile toolbox (e.g., bioactive glasses, scaffolds, nanofibrous membranes, coatings, and nanocomposites). Then, the latest research advances based on cerium-based biomaterials for the treatment of bone diseases were also highlighted. Most importantly, we analyzed the perspectives and challenges of cerium-based biomaterials. In future perspectives, this insight has given rise to a cascade of cerium-based biomaterial strategies, including disease prevention, diagnosis (imaging and biosensors) and treatment.

5.
Connect Tissue Res ; : 1-9, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38922815

ABSTRACT

AIM: In this study, we aimed to establish a rat tooth movement model to assess miR-20's ability in enhancing the BMP2 signaling pathway and facilitate alveolar bone remodeling. METHOD: 60 male SD rats had nickel titanium spring devices placed between their left upper first molars and incisors, with the right side serving as the control. Forces were applied at varying durations (18h, 24h, 30h, 36h, 42h, 1d, 3d, 5d, 7d, 14d), and their bilateral maxillary molars and surrounding alveolar bones were retrieved for analysis. Fluorescent quantitative PCR was conducted to assess miR-20a, BMP2, Runx2, Bambi and Smad6 gene expression in alveolar bone, and western blot was performed to determine the protein levels of BMP2, Runx2, Bambi, and Smad6 after mechanical loading. RESULT: We successfully established an orthodontic tooth movement model in SD rats and revealed upregulated miR-20a expression and significantly increased BMP2 and Runx2 gene expression and protein synthesis in alveolar bone during molar tooth movement. Although Bambi and Smad6 gene expression did not significantly increase, their protein synthesis was found to decrease significantly. CONCLUSION: MiR-20a was found to be involved in rat tooth movement model alveolar bone remodeling, wherein it promoted remodeling by reducing Bambi and Smad6 protein synthesis through the BMP2 signaling pathway.

6.
J Proteome Res ; 23(7): 2518-2531, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38810119

ABSTRACT

Phosphorylation is the most studied post-translational modification, and has multiple biological functions. In this study, we have reanalyzed publicly available mass spectrometry proteomics data sets enriched for phosphopeptides from Asian rice (Oryza sativa). In total we identified 15,565 phosphosites on serine, threonine, and tyrosine residues on rice proteins. We identified sequence motifs for phosphosites, and link motifs to enrichment of different biological processes, indicating different downstream regulation likely caused by different kinase groups. We cross-referenced phosphosites against the rice 3,000 genomes, to identify single amino acid variations (SAAVs) within or proximal to phosphosites that could cause loss of a site in a given rice variety and clustered the data to identify groups of sites with similar patterns across rice family groups. The data has been loaded into UniProt Knowledge-Base─enabling researchers to visualize sites alongside other data on rice proteins, e.g., structural models from AlphaFold2, PeptideAtlas, and the PRIDE database─enabling visualization of source evidence, including scores and supporting mass spectra.


Subject(s)
Genome, Plant , Oryza , Phosphoproteins , Plant Proteins , Proteomics , Signal Transduction , Oryza/genetics , Oryza/metabolism , Oryza/chemistry , Proteomics/methods , Phosphoproteins/metabolism , Phosphoproteins/genetics , Phosphoproteins/chemistry , Phosphoproteins/analysis , Plant Proteins/genetics , Plant Proteins/metabolism , Phosphorylation , Protein Processing, Post-Translational , Phosphopeptides/metabolism , Phosphopeptides/analysis , Databases, Protein , Amino Acid Motifs , Mass Spectrometry
7.
BMC Geriatr ; 24(1): 470, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38811919

ABSTRACT

BACKGROUND: As the global aging process continues to accelerate, heart failure (HF) has become an important cause of increased morbidity and mortality in elderly patients. Chronic atrial fibrillation (AF) is a major risk factor for HF. Patients with HF combined with AF are more difficult to treat and have a worse prognosis. The aim of this study was to explore the risk factors for 1-year mortality in patients with HF combined with AF and to develop a risk prediction assessment model. METHODS: We recruited hospitalized patients with HF and AF who received standardized care in the Department of Cardiology at Shengjing Hospital of China Medical University from January 2013 to December 2018. The patients were randomly divided into modeling and internal validation groups using a random number generator at a 1:1 ratio. Multivariate Cox regression analysis was used to identify risk factors for all-cause mortality during a one-year follow-up period. Then, a nomogram was constructed based on the weights of each index and validated. Receiver operating characteristic curve, the area under the curve (AUC), decision curve, and calibration curve analyses for survival were used to evaluate the model's predictive and clinical validities and calibration. RESULTS: We included 3,406 patients who met the eligibility criteria; 1,703 cases each were included in the modeling and internal validation groups. Eight statistically significant predictors were identified: age, sex, New York Heart Association cardiac function class III or IV, a history of myocardial infarction, and the albumin, triglycerides, N-terminal pro-b-type natriuretic peptide, and blood urea nitrogen levels. The AUCs were 0.793 (95% confidence interval: 0.763-0.823) and 0.794 (95% confidence interval: 0.763-0.823) in the modeling and validation cohorts, respectively. CONCLUSIONS: We present a predictive model for all-cause mortality in patients with coexisting HF and AF comprising eight key factors. This model gives clinicians a simple assessment tool that may improve the clinical management of these patients.


Subject(s)
Atrial Fibrillation , Heart Failure , Nomograms , Humans , Atrial Fibrillation/mortality , Atrial Fibrillation/complications , Atrial Fibrillation/diagnosis , Male , Female , Heart Failure/mortality , Aged , Risk Assessment/methods , Middle Aged , Risk Factors , Chronic Disease , China/epidemiology , Aged, 80 and over , Cause of Death/trends
8.
EBioMedicine ; 104: 105154, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38749300

ABSTRACT

Immune therapies represented by immune checkpoint blockade (ICB) have significantly transformed cancer treatment. However, the effectiveness of these treatments depends on the status of T cells. T cell exhaustion, characterized by diminished effector function, increased expression of co-inhibitory receptors, and clonal deletion, emerges as a hypofunctional state resulting from chronic exposure to antigens, posing an obstacle to ICB therapy. Several studies have deeply explored T cell exhaustion, providing innovative insights and correlating T cell exhaustion with tertiary lymphoid structures (TLS) formation. TLS, lymphocyte aggregates formed in non-lymphoid tissues amid chronic inflammation, serve as pivotal reservoirs for anti-tumour immunity. Here, we underscore the pivotal role of T cell exhaustion as a signalling mechanism in reinvigorating anti-tumour immunity by turbocharging cancer-immunity (CI) cycle, particularly when tumour becomes unmanageable. Building upon this concept, we summarize emerging immunotherapeutic strategies aimed at enhancing the response rate to ICB therapy and improving patient prognosis.


Subject(s)
Neoplasms , T-Lymphocytes , Tertiary Lymphoid Structures , Humans , Tertiary Lymphoid Structures/immunology , Tertiary Lymphoid Structures/pathology , Neoplasms/immunology , Neoplasms/pathology , Neoplasms/therapy , Neoplasms/metabolism , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Animals , Tumor Microenvironment/immunology , Immunotherapy/methods , Immune Checkpoint Inhibitors/therapeutic use , Immune Checkpoint Inhibitors/pharmacology , Signal Transduction , Disease Susceptibility , T-Cell Exhaustion
9.
Front Cardiovasc Med ; 11: 1267076, 2024.
Article in English | MEDLINE | ID: mdl-38725829

ABSTRACT

Background: The electromechanical dyssynchrony associated with right ventricular pacing (RVP) has been found to have adverse impact on clinical outcomes. Several studies have shown that left bundle branch area pacing (LBBAP) has superior pacing parameters compared with RVP. We aimed to assess the difference in ventricular electromechanical synchrony and investigate the risk of atrial high-rate episodes (AHREs) in patients with LBBAP and RVP. Methods: We consecutively identified 40 patients with atrioventricular block and no prior atrial fibrillation. They were divided according to the ventricular pacing sites: the LBBAP group and the RVP group (including the right ventricular apical pacing (RVA) group and the right side ventricular septal pacing (RVS) group). Evaluation of ventricular electromechanical synchrony was implemented using electrocardiogram and two-dimensional speckle tracking echocardiography (2D-STE). AHRE was defined as event with an atrial frequency of ≥176 bpm lasting for ≥6 min recorded by pacemakers during follow-up. Results: The paced QRS duration of the LBBAP group was significantly shorter than that of the other two groups: LBBAP 113.56 ± 9.66 ms vs. RVA 164.73 ± 14.49 ms, p < 0.001; LBBAP 113.56 ± 9.66 ms vs. RVS 148.23 ± 17.3 ms, p < 0.001. The LBBAP group showed shorter maximum difference (TDmax), and standard deviation (SD) of the time to peak systolic strain among the 18 left ventricular segments, and time of septal-to-posterior wall motion delay (SPWMD) compared with the RVA group (TDmax, 87.56 ± 56.01 ms vs. 189.85 ± 91.88 ms, p = 0.001; SD, 25.40 ± 14.61 ms vs. 67.13 ± 27.40 ms, p < 0.001; SPWMD, 28.75 ± 21.89 ms vs. 99.09 ± 46.56 ms, p < 0.001) and the RVS group (TDmax, 87.56 ± 56.01 ms vs. 156.46 ± 55.54 ms, p = 0.003; SD, 25.40 ± 14.61 ms vs. 49.02 ± 17.85 ms, p = 0.001; SPWMD, 28.75 ± 21.89 ms vs. 91.54 ± 26.67 ms, p < 0.001). The interventricular mechanical delay (IVMD) was shorter in the LBBAP group compared with the RVA group (-5.38 ± 9.31 ms vs. 44.82 ± 16.42 ms, p < 0.001) and the RVS group (-5.38 ± 9.31 ms vs. 25.31 ± 21.36 ms, p < 0.001). Comparing the RVA group and the RVS group, the paced QRS duration and IVMD were significantly shorter in the RVS group (QRS duration, 164.73 ± 14.49 ms vs. 148.23 ± 17.3 ms, p = 0.02; IVMD, 44.82 ± 16.42 ms vs. 25.31 ± 21.36 ms, p = 0.022). During follow-up, 2/16 (12.5%) LBBAP patients, 4/11 (36.4%) RVA patients, and 8/13 (61.5%) RVS patients had recorded novel AHREs. LBBAP was proven to be independently associated with decreased risk of AHREs than RVP (log-rank p = 0.043). Conclusion: LBBAP generates narrower paced QRS and better intro-left ventricular and biventricular contraction synchronization compared with traditional RVP. LBBAP was associated with a decreased risk of AHREs compared with RVP.

10.
iScience ; 27(4): 109297, 2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38715943

ABSTRACT

The One Health (OH) approach is used to control/prevent zoonotic events. However, there is a lack of tools for systematically assessing OH practices. Here, we applied the Global OH Index (GOHI) to evaluate the global OH performance for zoonoses (GOHI-Zoonoses). The fuzzy analytic hierarchy process algorithm and fuzzy comparison matrix were used to calculate the weights and scores of five key indicators, 16 subindicators, and 31 datasets for 160 countries and territories worldwide. The distribution of GOHI-Zoonoses scores varies significantly across countries and regions, reflecting the strengths and weaknesses in controlling or responding to zoonotic threats. Correlation analyses revealed that the GOHI-Zoonoses score was associated with economic, sociodemographic, environmental, climatic, and zoological factors. Additionally, the Human Development Index had a positive effect on the score. This study provides an evidence-based reference and guidance for global, regional, and country-level efforts to optimize the health of people, animals, and the environment.

11.
Nat Commun ; 15(1): 3669, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38693119

ABSTRACT

Oncolytic viruses (OVs) show promise as a cancer treatment by selectively replicating in tumor cells and promoting antitumor immunity. However, the current immunogenicity induced by OVs for tumor treatment is relatively weak, necessitating a thorough investigation of the mechanisms underlying its induction of antitumor immunity. Here, we show that HSV-1-based OVs (oHSVs) trigger ZBP1-mediated PANoptosis (a unique innate immune inflammatory cell death modality), resulting in augmented antitumor immune effects. Mechanistically, oHSV enhances the expression of interferon-stimulated genes, leading to the accumulation of endogenous Z-RNA and subsequent activation of ZBP1. To further enhance the antitumor potential of oHSV, we conduct a screening and identify Fusobacterium nucleatum outer membrane vesicle (Fn-OMV) that can increase the expression of PANoptosis execution proteins. The combination of Fn-OMV and oHSV demonstrates potent antitumor immunogenicity. Taken together, our study provides a deeper understanding of oHSV-induced antitumor immunity, and demonstrates a promising strategy that combines oHSV with Fn-OMV.


Subject(s)
Fusobacterium nucleatum , Herpesvirus 1, Human , Oncolytic Virotherapy , Oncolytic Viruses , RNA-Binding Proteins , Herpesvirus 1, Human/immunology , Herpesvirus 1, Human/genetics , Oncolytic Viruses/genetics , Oncolytic Viruses/immunology , Animals , Humans , Oncolytic Virotherapy/methods , Mice , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , RNA-Binding Proteins/immunology , Cell Line, Tumor , Fusobacterium nucleatum/immunology , Neoplasms/therapy , Neoplasms/immunology , Female , Immunity, Innate , Mice, Inbred BALB C
12.
Oral Dis ; 2024 May 30.
Article in English | MEDLINE | ID: mdl-38813877

ABSTRACT

OBJECTIVE: In this study, our aim was to develop and validate the effectiveness of diverse radiomic models for distinguishing between gnathic fibrous dysplasia (FD) and ossifying fibroma (OF) before surgery. MATERIALS AND METHODS: We enrolled 220 patients with confirmed FD or OF. We extracted radiomic features from nonenhanced CT images. Following dimensionality reduction and feature selection, we constructed radiomic models using logistic regression, support vector machine, random forest, light gradient boosting machine, and eXtreme gradient boosting. We then identified the best radiomic model using receiver operating characteristic (ROC) curve analysis. After combining radiomics features with clinical features, we developed a comprehensive model. ROC curve and decision curve analysis (DCA) demonstrated the models' robustness and clinical value. RESULTS: We extracted 1834 radiomic features from CT images, reduced them to eight valuable features, and achieved high predictive efficiency, with area under curves (AUC) exceeding 0.95 for all the models. Ultimately, our combined model, which integrates radiomic and clinical data, displayed superior discriminatory ability (AUC: training cohort 0.970; test cohort 0.967). DCA highlighted its optimal clinical efficacy. CONCLUSION: Our combined model effectively differentiates between FD and OF, offering a noninvasive and efficient approach to clinical decision-making.

13.
Cancer Lett ; 592: 216924, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38718886

ABSTRACT

Oncolytic viruses (OVs) represent an emerging immunotherapeutic strategy owing to their capacity for direct tumor lysis and induction of antitumor immunity. However, hurdles like transient persistence and moderate efficacy necessitate innovative approaches. Metabolic remodeling has recently gained prominence as a strategic intervention, wherein OVs or combination regimens could reprogram tumor and immune cell metabolism to enhance viral replication and oncolysis. In this review, we summarize recent advances in strategic reprogramming of tumor and immune cell metabolism to enhance OV-based immunotherapies. Specific tactics include engineering viruses to target glycolytic, glutaminolytic, and nucleotide synthesis pathways in cancer cells, boosting viral replication and tumor cell death. Additionally, rewiring T cell and NK cell metabolism of lipids, amino acids, and carbohydrates shows promise to enhance antitumor effects. Further insights are discussed to pave the way for the clinical implementation of metabolically enhanced oncolytic platforms, including balancing metabolic modulation to limit antiviral responses while promoting viral persistence and tumor clearance.


Subject(s)
Neoplasms , Oncolytic Virotherapy , Oncolytic Viruses , Humans , Oncolytic Virotherapy/methods , Neoplasms/therapy , Neoplasms/immunology , Neoplasms/metabolism , Oncolytic Viruses/metabolism , Animals , Virus Replication , Immunotherapy/methods , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Killer Cells, Natural/immunology , Killer Cells, Natural/metabolism
14.
Int Immunopharmacol ; 134: 112253, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38735257

ABSTRACT

Tumor microenvironment (TME), is characterized by a complex and heterogenous composition involving a substantial population of immune cells. Myeloid cells comprising over half of the solid tumor mass, are undoubtedly one of the most prominent cell populations associated with tumors. Studies have unambiguously established that myeloid cells play a key role in tumor development, including immune suppression, pro-inflammation, promote tumor metastasis and angiogenesis, for example, tumor-associated macrophages promote tumor progression in a variety of common tumors, including lung cancer, through direct or indirect interactions with the TME. However, due to previous technological constraints, research on myeloid cells often tended to be conducted as studies with low throughput and limited resolution. For example, the conventional categorization of macrophages into M1-like and M2-like subsets based solely on their anti-tumor and pro-tumor roles has disregarded their continuum of states, resulting in an inadequate analysis of the high heterogeneity characterizing myeloid cells. The widespread adoption of single-cell RNA sequencing (scRNA-seq) in tumor immunology has propelled researchers into a new realm of understanding, leading to the establishment of novel subsets and targets. In this review, the origin of myeloid cells in high-incidence cancers, the functions of myeloid cell subsets examined through traditional and single-cell perspectives, as well as specific targeting strategies, are comprehensively outlined. As a result of this endeavor, we will gain a better understanding of myeloid cell heterogeneity, as well as contribute to the development of new therapeutic approaches.


Subject(s)
Myeloid Cells , Neoplasms , Single-Cell Analysis , Tumor Microenvironment , Humans , Tumor Microenvironment/immunology , Neoplasms/immunology , Neoplasms/pathology , Myeloid Cells/immunology , Animals
15.
Front Plant Sci ; 15: 1377626, 2024.
Article in English | MEDLINE | ID: mdl-38799103

ABSTRACT

Introduction: Phosphorus (P) fertilizer is critical to maintain a high yield and quality of alfalfa (Medicago sativa L.). There are several fertilizer types and soil types in China, and the application of a single type of P fertilizer may not be suitable for present-day alfalfa production. Methods: In order to select the optimal combination of alfalfa and soil type and fertilizer type for improving P utilization efficiency. We conducted a greenhouse pot experiment, calcium superphosphate (SSP), diammonium phosphate (DAP), ammonium polyphosphate (APP), potassium dihydrogen phosphate (KP), and no-fertilizer control treatments were applied to alfalfa in sandy and saline-alkali soils. The response of alfalfa root morphology and rhizosphere processes to different P fertilizers was investigated. Results and discussion: The results showed that shoot biomass of alfalfa was slightly higher in sandy soil than in saline-alkali soil. Shoot biomass of alfalfa increased by 223%-354% in sandy soil under P treatments compared with the control, and total root length increased significantly by 74% and 53% in DAP and SSP treatments, respectively. In saline-alkali soil, alfalfa shoot biomass was significantly increased by 229% and 275% in KP and DAP treatments, and total root length was increased by 109% only in DAP treatment. Net P uptake of alfalfa in DAP treatment was the highest in both soils, which were 0.73 and 0.54 mg plant-1, respectively. Alfalfa shoot P concentration was significantly positively correlated with shoot and root biomass (P < 0.05, 0.01 or 0.001) whereas negatively correlated with acid phosphatase concentration (P < 0.05). Improvement of plant growth and P uptake induced by P fertilizer application was greater in sandy soil than in saline-alkali soil. DAP and KP was the most efficient P fertilizers in both sandy soil and saline-alkali soil.

16.
Mol Carcinog ; 63(7): 1392-1405, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38651944

ABSTRACT

Na, K-ATPase interaction (NKAIN) is a transmembrane protein family, which can interact with Na, K-ATPase ß1 subunit. NKAIN1 plays an important role in alcohol-dependent diseases such as endometrial and prostate cancers. However, the relationship between NKAIN1 and human breast cancer has not been studied. Hence, this study aimed to explore the relationship between NKAIN1 expression and breast cancer. Data used in this study were mainly from the Cancer Genome Atlas, including differential expression analysis, Kaplan-Meier survival analysis, receiver operating characteristic curve analysis, multiple Cox regression analysis, co-expression gene analysis, and gene set enrichment analysis. Analyses were performed using reverse transcription-quantitative polymerase chain reaction, western blot analysis, and immunohistochemistry on 46 collected samples. The knockdown or overexpression of NKAIN1 in vitro in MCF-7 and MDA-MB-231 cell lines altered the proliferation and migration abilities of tumor cells. In vivo experiments further confirmed that NKAIN1 knockdown effectively inhibited the proliferation and migration of cancer cells. Therefore, our study identified NKAIN1 as an oncogene that is highly expressed in breast cancer tissues. The findings highlight the potential of NKAIN1 as a molecular biomarker of breast cancer.


Subject(s)
Biomarkers, Tumor , Breast Neoplasms , Cell Movement , Cell Proliferation , Gene Expression Regulation, Neoplastic , Humans , Breast Neoplasms/pathology , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Female , Prognosis , Animals , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Mice , Cell Line, Tumor , Oncogenes , Mice, Nude , MCF-7 Cells , Membrane Proteins/genetics , Membrane Proteins/metabolism , Mice, Inbred BALB C , Neoplasm Metastasis , Middle Aged
17.
Eur J Pharmacol ; 974: 176604, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38649090

ABSTRACT

Osteoporosis (OP) is a metabolic bone disease with a high incidence rate worldwide. Its main features are decreased bone mass, increased bone fragility and deterioration of bone microstructure. It is caused by an imbalance between bone formation and bone resorption. Ginsenoside is a safe and effective traditional Chinese medicine (TCM) usually extracted from ginseng plants, having various therapeutic effects, of which the effect against osteoporosis has been extensively studied. We searched a total of 44 relevant articles with using keywords including osteoporosis, ginsenosides, bone mesenchymal cells, osteoblasts, osteoclasts and bone remodeling, all of which investigated the cellular mechanisms of different types of ginsenosides affecting the activity of bone remodeling by mesenchymal stem cells, osteoblasts and osteoclasts to counteract osteoporosis. This review describes the different types of ginsenosides used to treat osteoporosis from different perspectives, providing a solid theoretical basis for future clinical applications.


Subject(s)
Ginsenosides , Osteoporosis , Ginsenosides/pharmacology , Ginsenosides/therapeutic use , Osteoporosis/drug therapy , Humans , Animals , Bone Remodeling/drug effects , Osteoblasts/drug effects , Osteoclasts/drug effects
18.
Biochem Pharmacol ; 224: 116205, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38615918

ABSTRACT

Nitazoxanide is an FDA-approved antiprotozoal drug. Our previous studies find that nitazoxanide and its metabolite tizoxanide affect AMPK, STAT3, and Smad2/3 signals which are involved in the pathogenesis of liver fibrosis, therefore, in the present study, we examined the effect of nitazoxanide on experimental liver fibrosis and elucidated the potential mechanisms. The in vivo experiment results showed that oral nitazoxanide (75, 100 mg·kg-1) significantly improved CCl4- and bile duct ligation-induced liver fibrosis in mice. Oral nitazoxanide activated the inhibited AMPK and inhibited the activated STAT3 in liver tissues from liver fibrosis mice. The in vitro experiment results showed that nitazoxanide and its metabolite tizoxanide activated AMPK and inhibited STAT3 signals in LX-2 cells (human hepatic stellate cells). Nitazoxanide and tizoxanide inhibited cell proliferation and collagen I expression and secretion of LX-2 cells. Nitazoxanide and tizoxanide inhibited transforming growth factor-ß1 (TGF-ß1)- and IL-6-induced increases of cell proliferation, collagen I expression and secretion, inhibited TGF-ß1- and IL-6-induced STAT3 and Smad2/3 activation in LX-2 cells. In mouse primary hepatic stellate cells, nitazoxanide and tizoxanide also activated AMPK, inhibited STAT3 and Smad2/3 activation, inhibited cell proliferation, collagen I expression and secretion. In conclusion, nitazoxanide inhibits liver fibrosis and the underlying mechanisms involve AMPK activation, and STAT3 and Smad2/3 inhibition.


Subject(s)
Antiprotozoal Agents , Nitro Compounds , Thiazoles , Animals , Mice , Thiazoles/pharmacology , Thiazoles/therapeutic use , Male , Humans , Antiprotozoal Agents/pharmacology , Antiprotozoal Agents/therapeutic use , Cell Line , Hepatic Stellate Cells/drug effects , Hepatic Stellate Cells/metabolism , Liver Cirrhosis/drug therapy , Liver Cirrhosis/metabolism , Liver Cirrhosis/pathology , Liver Cirrhosis/chemically induced , STAT3 Transcription Factor/metabolism , STAT3 Transcription Factor/antagonists & inhibitors , Smad3 Protein/metabolism , Liver Cirrhosis, Experimental/chemically induced , Liver Cirrhosis, Experimental/pathology , Liver Cirrhosis, Experimental/drug therapy , Liver Cirrhosis, Experimental/metabolism , Liver Cirrhosis, Experimental/prevention & control , Mice, Inbred C57BL , Smad2 Protein/metabolism
19.
Chem Biol Interact ; 395: 111013, 2024 May 25.
Article in English | MEDLINE | ID: mdl-38663798

ABSTRACT

Ulcerative colitis is a chronic disease with colonic mucosa injury. Nitazoxanide is an antiprotozoal drug in clinic. Nitazoxanide and its metabolite tizoxanide have been demonstrated to activate AMPK and inhibit inflammation, therefore, the aim of the present study is to investigate the effect of nitazoxanide on dextran sulfate sodium (DSS)-induced colitis and the underlying mechanism. Oral administration of nitazoxanide ameliorated the symptoms of mice with DSS-induced colitis, as evidenced by improving the increased disease activity index (DAI), the decreased body weight, and the shortened colon length. Oral administration of nitazoxanide ameliorated DSS-induced intestinal barrier dysfunction and reduced IL-6 and IL-17 expression in colon tissues. Mechanistically, nitazoxanide and its metabolite tizoxanide treatment activated AMPK and inhibited JAK2/STAT3 signals. Nitazoxanide and tizoxanide treatment increased caudal type homeobox 2 (CDX2) expression, increased alkaline phosphatase (ALP) activity and promoted tight junctions in Caco-2 cells. Nitazoxanide and tizoxanide treatment restored the decreased zonula occludens-1(ZO-1) and occludin protein levels induced by LPS or IL-6 in Caco-2 cells. On the other hand, nitazoxanide and tizoxanide regulated macrophage bias toward M2 polarization, as evidenced by the increased arginase-1expression in bone marrow-derived macrophages (BMDM). Nitazoxanide and tizoxanide reduced the increased IL-6, iNOS and CCL2 pro-inflammatory gene expressions and inhibited JAK2/STAT3 activation in BMDM induced by LPS. In conclusion, nitazoxanide protects against DSS-induced ulcerative colitis in mice through improving intestinal barrier and inhibiting inflammation and the underlying mechanism involves AMPK activation and JAK2/STAT3 inhibition.


Subject(s)
Colitis, Ulcerative , Dextran Sulfate , Intestinal Mucosa , Nitro Compounds , STAT3 Transcription Factor , Thiazoles , Animals , Thiazoles/pharmacology , Thiazoles/therapeutic use , Colitis, Ulcerative/chemically induced , Colitis, Ulcerative/drug therapy , Colitis, Ulcerative/pathology , Colitis, Ulcerative/metabolism , Nitro Compounds/pharmacology , Mice , Humans , Caco-2 Cells , Intestinal Mucosa/drug effects , Intestinal Mucosa/metabolism , Intestinal Mucosa/pathology , Dextran Sulfate/toxicity , STAT3 Transcription Factor/metabolism , Male , Janus Kinase 2/metabolism , AMP-Activated Protein Kinases/metabolism , Inflammation/drug therapy , Colon/drug effects , Colon/pathology , Colon/metabolism , Mice, Inbred C57BL , Signal Transduction/drug effects , Nitric Oxide Synthase Type II/metabolism , Interleukin-6/metabolism , Disease Models, Animal
20.
Front Bioeng Biotechnol ; 12: 1337808, 2024.
Article in English | MEDLINE | ID: mdl-38681963

ABSTRACT

Introduction: Magnetic Resonance Imaging (MRI) is essential in diagnosing cervical spondylosis, providing detailed visualization of osseous and soft tissue structures in the cervical spine. However, manual measurements hinder the assessment of cervical spine sagittal balance, leading to time-consuming and error-prone processes. This study presents the Pyramid DBSCAN Simple Linear Iterative Cluster (PDB-SLIC), an automated segmentation algorithm for vertebral bodies in T2-weighted MR images, aiming to streamline sagittal balance assessment for spinal surgeons. Method: PDB-SLIC combines the SLIC superpixel segmentation algorithm with DBSCAN clustering and underwent rigorous testing using an extensive dataset of T2-weighted mid-sagittal MR images from 4,258 patients across ten hospitals in China. The efficacy of PDB-SLIC was compared against other algorithms and networks in terms of superpixel segmentation quality and vertebral body segmentation accuracy. Validation included a comparative analysis of manual and automated measurements of cervical sagittal parameters and scrutiny of PDB-SLIC's measurement stability across diverse hospital settings and MR scanning machines. Result: PDB-SLIC outperforms other algorithms in vertebral body segmentation quality, with high accuracy, recall, and Jaccard index. Minimal error deviation was observed compared to manual measurements, with correlation coefficients exceeding 95%. PDB-SLIC demonstrated commendable performance in processing cervical spine T2-weighted MR images from various hospital settings, MRI machines, and patient demographics. Discussion: The PDB-SLIC algorithm emerges as an accurate, objective, and efficient tool for evaluating cervical spine sagittal balance, providing valuable assistance to spinal surgeons in preoperative assessment, surgical strategy formulation, and prognostic inference. Additionally, it facilitates comprehensive measurement of sagittal balance parameters across diverse patient cohorts, contributing to the establishment of normative standards for cervical spine MR imaging.

SELECTION OF CITATIONS
SEARCH DETAIL
...