Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters











Database
Language
Publication year range
1.
Psychopharmacology (Berl) ; 204(1): 37-48, 2009 May.
Article in English | MEDLINE | ID: mdl-19107466

ABSTRACT

INTRODUCTION: 5-HT(2C) agonists, by decreasing mesolimbic dopamine without affecting nigrostriatal dopamine, are predicted to have antipsychotic efficacy with low extrapyramidal side effects (EPS). Combining 5-HT(2C) agonists with low doses of existing antipsychotics could increase treatment efficacy while reducing treatment liabilities such as EPS (typical antipsychotics), and the propensity for weight gain (atypical antipsychotics). OBJECTIVES: The objectives of these studies were to combine WAY-163909, a selective 5-HT(2C) agonist, with either the typical antipsychotic haloperidol, or the atypical antipsychotic clozapine, at doses that were ineffective on their own, with the expectation that a shift in potency in several rodent behavior models predictive of antipsychotic activity would occur. RESULTS AND DISCUSSION: In mice, co-administration of either haloperidol, or clozapine, produced a significant leftward shift in the ability of WAY-163909 to block apomorphine-induced climbing behavior, without any affect on apomorphine-induced stereotypy or an increased propensity for catalepsy. In the rat-conditioned avoidance model, WAY-163909 was combined with either haloperidol or clozapine at doses that individually produced reductions in avoidance response on the order of 10%, while the combination of WAY-163909 and either of the antipsychotics resulted in a greater than 70% reduction in avoidance, with no evidence of response failures, or pharmacokinetic interaction. CONCLUSION: Doses of either haloperidol or clozapine, that failed to antagonize an MK-801 induced deficit in prepulse inhibition, significantly attenuated the sensory gating deficit when combined with WAY-163909. Data support the notion that 5-HT(2C) receptor agonists, co-administered with other marketed antipsychotics, allow for dose sparing with a more favorable side-effect profile.


Subject(s)
Antipsychotic Agents/pharmacology , Avoidance Learning/drug effects , Azepines/pharmacology , Indoles/pharmacology , Serotonin 5-HT2 Receptor Agonists , Animals , Antipsychotic Agents/adverse effects , Antipsychotic Agents/therapeutic use , Apomorphine/antagonists & inhibitors , Azepines/adverse effects , Azepines/therapeutic use , Catalepsy/chemically induced , Catalepsy/drug therapy , Clozapine/adverse effects , Clozapine/pharmacology , Clozapine/therapeutic use , Dizocilpine Maleate/pharmacology , Drug Synergism , Drug Therapy, Combination , Haloperidol/adverse effects , Haloperidol/pharmacology , Haloperidol/therapeutic use , Indoles/adverse effects , Indoles/therapeutic use , Male , Mice , Rats , Rats, Sprague-Dawley , Reflex, Startle/drug effects , Stereotyped Behavior/drug effects
2.
Nat Neurosci ; 11(3): 334-43, 2008 Mar.
Article in English | MEDLINE | ID: mdl-18297067

ABSTRACT

Estrogens have long been implicated in influencing cognitive processes, yet the molecular mechanisms underlying these effects and the roles of the estrogen receptors alpha (ERalpha) and beta (ERbeta) remain unclear. Using pharmacological, biochemical and behavioral techniques, we demonstrate that the effects of estrogen on hippocampal synaptic plasticity and memory are mediated through ERbeta. Selective ERbeta agonists increased key synaptic proteins in vivo, including PSD-95, synaptophysin and the AMPA-receptor subunit GluR1. These effects were absent in ERbeta knockout mice. In hippocampal slices, ERbeta activation enhanced long-term potentiation, an effect that was absent in slices from ERbeta knockout mice. ERbeta activation induced morphological changes in hippocampal neurons in vivo, including increased dendritic branching and increased density of mushroom-type spines. An ERbeta agonist, but not an ERalpha agonist, also improved performance in hippocampus-dependent memory tasks. Our data suggest that activation of ERbeta can regulate hippocampal synaptic plasticity and improve hippocampus-dependent cognition.


Subject(s)
Estrogen Receptor beta/metabolism , Estrogens/metabolism , Hippocampus/metabolism , Memory/physiology , Neuronal Plasticity/physiology , Neurons/metabolism , Animals , Cyclic AMP Response Element-Binding Protein/drug effects , Cyclic AMP Response Element-Binding Protein/metabolism , Dendritic Spines/drug effects , Dendritic Spines/metabolism , Estradiol/metabolism , Estradiol/pharmacology , Estrogen Receptor beta/agonists , Estrogen Receptor beta/genetics , Estrogens/agonists , Estrogens/pharmacology , Female , Hippocampus/cytology , Hippocampus/drug effects , Long-Term Potentiation/drug effects , Long-Term Potentiation/physiology , Male , Maze Learning/drug effects , Maze Learning/physiology , Memory/drug effects , Mice , Mice, Inbred C57BL , Mice, Knockout , Neuronal Plasticity/drug effects , Neurons/cytology , Neurons/drug effects , Organ Culture Techniques , Ovariectomy , Phosphorylation/drug effects , Rats , Synaptic Transmission/drug effects , Synaptic Transmission/physiology
3.
Behav Brain Res ; 164(1): 128-31, 2005 Oct 14.
Article in English | MEDLINE | ID: mdl-16054246

ABSTRACT

Estrogen has marked effects on hippocampal synaptic plasticity. We demonstrate that male and female 3-month-old beta estrogen receptor knockout (BERKO) mice show profound memory impairment in a hippocampus-mediated fear-conditioning paradigm. Subsequently, hippocampal slices prepared from behaviorally naive female BERKO mice were examined electrophysiologically. These were found to have robust synaptic deficits, compared to slices from age-matched wild type controls, both in terms of their input-output curves and their expression of long-term-potentiation in area CA1. This report provides the first concrete evidence of significant hippocampal synaptic plasticity and memory deficits in the BERKO mouse.


Subject(s)
Association Learning/physiology , Conditioning, Classical/physiology , Estrogen Receptor beta/physiology , Hippocampus/physiology , Long-Term Potentiation/physiology , Neuronal Plasticity/physiology , Animals , Electric Stimulation , Environment , Estrogen Receptor beta/genetics , Fear/physiology , Female , Hippocampus/cytology , Male , Mice , Mice, Knockout , Neurons/physiology , Sex Factors , Synapses/physiology
4.
J Med Chem ; 47(25): 6255-69, 2004 Dec 02.
Article in English | MEDLINE | ID: mdl-15566296

ABSTRACT

A series of 4-alkynyloxy phenyl sulfanyl, sulfinyl and sulfony alkyl and piperidine-4-carboxylic acid hydroxamides were synthesized. Their structure-activity relationships, against tumor necrosis factor-alpha (TACE) and matrix metalloproteinase (MMP) inhibitor activities, are presented by investigating the oxidation state on sulfur and altering the P1' substituent. The sulfonyl derivatives 20-24 carrying a 4-butynyloxy moiety were selective TACE inhibitors over the MMPs tested. The sulfinyl derivatives showed a preference for a specific oxidation on sulfur as in compounds 25-28. The selectivity over MMPs was also demonstrated in the sulfonyl series. The enhanced cellular activity was achieved upon incorporating a butynyloxy substituent in the piperidene series. Compounds 64 and 65 were potent inhibitors of TNF-alpha release in the mouse at 100 mg/kg po.


Subject(s)
Hydroxamic Acids/chemical synthesis , Matrix Metalloproteinase Inhibitors , Metalloendopeptidases/antagonists & inhibitors , Sulfides/chemical synthesis , Sulfones/chemical synthesis , Sulfoxides/chemical synthesis , ADAM Proteins , ADAM17 Protein , Animals , Crystallography, X-Ray , Humans , Hydroxamic Acids/chemistry , Hydroxamic Acids/pharmacology , In Vitro Techniques , Mice , Models, Molecular , Molecular Structure , Monocytes/drug effects , Monocytes/metabolism , Oxidation-Reduction , Piperidines/chemical synthesis , Piperidines/chemistry , Piperidines/pharmacology , Structure-Activity Relationship , Sulfides/chemistry , Sulfides/pharmacology , Sulfones/chemistry , Sulfones/pharmacology , Sulfoxides/chemistry , Sulfoxides/pharmacology , Tumor Necrosis Factor-alpha/metabolism
5.
Brain Res ; 1022(1-2): 214-20, 2004 Oct 01.
Article in English | MEDLINE | ID: mdl-15353231

ABSTRACT

Regulators of G-protein signaling (RGS) play a key role in the signal transduction of G-protein-coupled receptors (GPCRs). Specifically, RGS proteins function as GTPase accelerating proteins (GAPs) to dampen or "negatively regulate" GPCR-mediated signaling. Our group recently showed that RGS4 effectively GAPs Galpha(i)-mediated signaling in CHO cells expressing the serotonin-1A (5-HT(1A)) receptor. However, whether a similar relationship exists in vivo has yet to be identified. In present studies, a replication-deficient herpes simplex virus (HSV) was used to elevate RGS4 mRNA in the rat dorsal raphe nuclei (DRN) while extracellular levels of 5-HT in the striatum were monitored by in vivo microdialysis. Initial experiments conducted with noninfected rats showed that acute administration of 8-OH-DPAT (0.01-0.3 mg/kg, subcutaneous [s.c.]) dose dependently decreased striatal levels of 5-HT, an effect postulated to result from activation of somatodendritic 5-HT(1A) autoreceptors in the DRN. In control rats receiving a single intra-DRN infusion of HSV-LacZ, 8-OH-DPAT (0.03 mg/kg, s.c.) decreased 5-HT levels to an extent similar to that observed in noninfected animals. Conversely, rats infected with HSV-RGS4 in the DRN showed a blunted neurochemical response to 8-OH-DPAT (0.03 mg/kg, s.c.); however, increasing the dose to 0.3 mg/kg reversed this effect. Together, these findings represent the first in vivo evidence demonstrating that RGS4 functions to GAP Galpha(i)-coupled receptors and suggest that drug discovery efforts targeting RGS proteins may represent a novel mechanism to manipulate 5-HT(1A)-mediated neurotransmitter release.


Subject(s)
Gene Expression Regulation/physiology , Neurotransmitter Agents/metabolism , RGS Proteins/metabolism , Raphe Nuclei/metabolism , Receptor, Serotonin, 5-HT1A/physiology , Signal Transduction/physiology , 8-Hydroxy-2-(di-n-propylamino)tetralin/administration & dosage , Animals , Corpus Striatum/metabolism , Dose-Response Relationship, Drug , Drug Interactions , In Situ Hybridization/methods , Male , Microdialysis/methods , Neurotransmitter Agents/classification , Piperazines/pharmacology , Pyridines/pharmacology , RGS Proteins/genetics , Raphe Nuclei/virology , Rats , Rats, Sprague-Dawley , Serotonin/metabolism , Serotonin Antagonists/pharmacology , Serotonin Receptor Agonists/administration & dosage , Simplexvirus/physiology , Time Factors
6.
J Med Chem ; 46(12): 2361-75, 2003 Jun 05.
Article in English | MEDLINE | ID: mdl-12773041

ABSTRACT

The matrix metalloproteinases (MMPs) are a family of zinc-containing endopeptidases that play a key role in both physiological and pathological tissue degradation. These enzymes are strictly regulated by endogenous inhibitors such as tissue inhibitors of MMPs and alpha(2)-macroglobulins. Overexpression of these enzymes has been implicated in various pathological disorders such as arthritis, tumor metastasis, cardiovascular diseases, and multiple sclerosis. Developing effective small-molecule inhibitors to modulate MMP activity is one approach to treat these degenerative diseases. The present work focuses on the discovery and SAR of novel N-hydroxy-alpha-phenylsulfonylacetamide derivatives, which are potent, selective, and orally active MMP inhibitors.


Subject(s)
Hydroxamic Acids/chemical synthesis , Matrix Metalloproteinase Inhibitors , Protease Inhibitors/chemical synthesis , Sulfones/chemical synthesis , ADAM Proteins , ADAM17 Protein , Administration, Oral , Animals , Biological Assay , Cartilage/drug effects , Cartilage/enzymology , Cattle , Dialysis , Hydroxamic Acids/chemistry , Hydroxamic Acids/pharmacology , Matrix Metalloproteinase 13 , Metalloendopeptidases/antagonists & inhibitors , Mice , Osteoarthritis/drug therapy , Protease Inhibitors/chemistry , Protease Inhibitors/pharmacology , Rats , Structure-Activity Relationship , Sulfones/chemistry , Sulfones/pharmacology
7.
J Med Chem ; 46(12): 2376-96, 2003 Jun 05.
Article in English | MEDLINE | ID: mdl-12773042

ABSTRACT

The matrix metalloproteinases (MMPs) are a family of zinc-containing endopeptidases that play a key role in both physiological and pathological tissue degradation. In our preceding paper, we have reported on a series of novel and orally active N-hydroxy-alpha-phenylsulfonylacetamide derivatives. However, these compounds had two drawbacks (moderate selectivity and chirality issues). To circumvent these two problems, a series of novel and orally active N-substituted 4-benzenesulfonylpiperidine-4-carboxylic acid hydroxyamide derivatives have been synthesized. The present paper deals with the synthesis and SAR of these compounds. Among the several compounds synthesized, derivative 55 turned out to be a potent, selective, and an orally active MMP inhibitor in the clinically relevant advanced rabbit osteoarthritis model. Detailed pharmacokinetics and metabolism data are described.


Subject(s)
Hydroxamic Acids/chemical synthesis , Matrix Metalloproteinase Inhibitors , Osteoarthritis/drug therapy , Piperidines/chemical synthesis , Protease Inhibitors/chemical synthesis , Sulfones/chemical synthesis , ADAM Proteins , ADAM17 Protein , Administration, Oral , Animals , Binding Sites , Biological Assay , Cartilage/drug effects , Cartilage/enzymology , Cattle , Crystallography, X-Ray , Dialysis , Dogs , Haplorhini , Humans , Hydroxamic Acids/pharmacokinetics , Hydroxamic Acids/pharmacology , Male , Matrix Metalloproteinase 13 , Matrix Metalloproteinases/chemistry , Metalloendopeptidases/antagonists & inhibitors , Mice , Models, Molecular , Piperidines/pharmacokinetics , Piperidines/pharmacology , Protease Inhibitors/pharmacokinetics , Protease Inhibitors/pharmacology , Rabbits , Rats , Structure-Activity Relationship , Sulfones/pharmacokinetics , Sulfones/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL