Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 43
1.
Front Microbiol ; 14: 1218654, 2023.
Article En | MEDLINE | ID: mdl-37908540

Viral hepatitis is a major public health concern globally. World health organization aims at eliminating viral hepatitis as a public health threat by 2030. Among the hepatitis causing viruses, hepatitis B and C are primarily transmitted via contaminated blood. Hepatitis A and E, which gets transmitted primarily via the feco-oral route, are the leading cause of acute viral hepatitis. Although vaccines are available against some of these viruses, new cases continue to be reported. There is an urgent need to devise a potent yet economical antiviral strategy against the hepatitis-causing viruses (denoted as hepatitis viruses) for achieving global elimination of viral hepatitis. Although zinc was known to mankind for a long time (since before Christ era), it was identified as an element in 1746 and its importance for human health was discovered in 1963 by the pioneering work of Dr. Ananda S. Prasad. A series of follow up studies involving zinc supplementation as a therapy demonstrated zinc as an essential element for humans, leading to establishment of a recommended dietary allowance (RDA) of 15 milligram zinc [United States RDA for zinc]. Being an essential component of many cellular enzymes and transcription factors, zinc is vital for growth and homeostasis of most living organisms, including human. Importantly, several studies indicate potent antiviral activity of zinc. Multiple studies have demonstrated antiviral activity of zinc against viruses that cause hepatitis. This article provides a comprehensive overview of the findings on antiviral activity of zinc against hepatitis viruses, discusses the mechanisms underlying the antiviral properties of zinc and summarizes the prospects of harnessing the therapeutic benefit of zinc supplementation therapy in reducing the disease burden due to viral hepatitis.

2.
Microbiol Spectr ; 11(4): e0282722, 2023 08 17.
Article En | MEDLINE | ID: mdl-37382527

Multiple processes exist in a cell to ensure continuous production of essential proteins either through cap-dependent or cap-independent translation processes. Viruses depend on the host translation machinery for viral protein synthesis. Therefore, viruses have evolved clever strategies to use the host translation machinery. Earlier studies have shown that genotype 1 hepatitis E virus (g1-HEV) uses both cap-dependent and cap-independent translation machineries for its translation and proliferation. Cap-independent translation in g1-HEV is driven by an 87-nucleotide-long RNA element that acts as a noncanonical, internal ribosome entry site-like (IRESl) element. Here, we have identified the RNA-protein interactome of the HEV IRESl element and characterized the functional significance of some of its components. Our study identifies the association of HEV IRESl with several host ribosomal proteins, demonstrates indispensable roles of ribosomal protein RPL5 and DHX9 (RNA helicase A) in mediating HEV IRESl activity, and establishes the latter as a bona fide internal translation initiation site. IMPORTANCE Protein synthesis is a fundamental process for survival and proliferation of all living organisms. The majority of cellular proteins are produced through cap-dependent translation. Cells also use a variety of cap-independent translation processes to synthesize essential proteins during stress. Viruses depend on the host cell translation machinery to synthesize their own proteins. Hepatitis E virus (HEV) is a major cause of hepatitis worldwide and has a capped positive-strand RNA genome. Viral nonstructural and structural proteins are synthesized through a cap-dependent translation process. An earlier study from our laboratory reported the presence of a fourth open reading frame (ORF) in genotype 1 HEV, which produces the ORF4 protein using a cap-independent internal ribosome entry site-like (IRESl) element. In the current study, we identified the host proteins that associate with the HEV-IRESl RNA and generated the RNA-protein interactome. Through a variety of experimental approaches, our data prove that HEV-IRESl is a bona fide internal translation initiation site.


Hepatitis E virus , Hepatitis E virus/genetics , Internal Ribosome Entry Sites , Ribosomal Proteins/genetics , RNA, Viral/genetics , RNA, Viral/metabolism
3.
J Virol ; 97(6): e0034723, 2023 06 29.
Article En | MEDLINE | ID: mdl-37199644

Multiple mechanisms exist in a cell to cope with stress. Four independent stress-sensing kinases constitute the integrated stress response machinery of the mammalian cell, and they sense the stress signals and act by phosphorylating the eukaryotic initiation factor 2α (eIF2α) to arrest cellular translation. Eukaryotic initiation factor 2 alpha kinase 4 (eIF2AK4) is one of the four kinases and is activated under conditions of amino acid starvation, UV radiation, or RNA virus infection, resulting in shutdown of global translation. An earlier study in our laboratory constructed the protein interaction network of the hepatitis E virus (HEV) and identified eIF2AK4 as a host interaction partner of the genotype 1 (g1) HEV protease (PCP). Here, we report that PCP's association with the eIF2AK4 results in inhibition of self-association and concomitant loss of kinase activity of eIF2AK4. Site-directed mutagenesis of the 53rd phenylalanine residue of PCP abolishes its interaction with the eIF2AK4. Further, a genetically engineered HEV-expressing F53A mutant PCP shows poor replication efficiency. Collectively, these data identify an additional property of the g1-HEV PCP protein, through which it helps the virus in antagonizing eIF2AK4-mediated phosphorylation of the eIF2α, thus contributing to uninterrupted synthesis of viral proteins in the infected cells. IMPORTANCE Hepatitis E virus (HEV) is a major cause of acute viral hepatitis in humans. It causes chronic infection in organ transplant patients. Although the disease is self-limiting in normal individuals, it is associated with high mortality (~30%) in pregnant women. In an earlier study, we identified the interaction between the genotype 1 HEV protease (PCP) and cellular eukaryotic initiation factor 2 alpha kinase 4 (eIF2AK4). Since eIF2AK4 is a sensor of the cellular integrated stress response machinery, we evaluated the significance of the interaction between PCP and eIF2AK4. Here, we show that PCP competitively associates with and interferes with self-association of the eIF2AK4, thereby inhibiting its kinase activity. Lack of eIF2AK4 activity prevents phosphorylation-mediated inactivation of the cellular eIF2α, which is essential for initiation of cap-dependent translation. Thus, PCP behaves as a proviral factor, promoting uninterrupted synthesis of viral proteins in infected cells, which is crucial for survival and proliferation of the virus.


Endopeptidases , Hepatitis E virus , Protein Serine-Threonine Kinases , Viral Proteins , Female , Humans , Pregnancy , Endopeptidases/genetics , Endopeptidases/metabolism , Eukaryotic Initiation Factor-2/metabolism , Hepatitis E/virology , Hepatitis E virus/enzymology , Phosphorylation , Viral Proteins/genetics , Viral Proteins/metabolism , Virus Replication/genetics , Protein Serine-Threonine Kinases/metabolism , Mutation , Amino Acids/genetics , Amino Acids/metabolism
5.
Front Microbiol ; 13: 881595, 2022.
Article En | MEDLINE | ID: mdl-35814711

Hepatitis E virus (HEV) causes an acute, self-limiting hepatitis. The disease takes a severe form in pregnant women, leading to around 30% mortality. Zinc is an essential micronutrient that plays a crucial role in multiple cellular processes. Our earlier findings demonstrated the antiviral activity of zinc salts against HEV infection. Zinc oxide (ZnO) and its nanostructures have attracted marked interest due to their unique characteristics. Here we synthesized ZnO nanoparticles [ZnO(NP)] and tetrapod-shaped ZnO nanoparticles [ZnO(TP)] and evaluated their antiviral activity. Both ZnO(NP) and ZnO(TP) displayed potent antiviral activity against hepatitis E and hepatitis C viruses, with the latter being more effective. Measurement of cell viability and intracellular reactive oxygen species levels revealed that both ZnO(NP) and ZnO(TP) are noncytotoxic to the cells even at significantly higher doses, compared to a conventional zinc salt (ZnSO4). Our study paves the way for evaluation of the potential therapeutic benefit of ZnO(TP) against HEV and HCV.

6.
Cell Death Dis ; 13(6): 563, 2022 06 22.
Article En | MEDLINE | ID: mdl-35732625

Nutrient surplus and consequent free fatty acid accumulation in the liver cause hepatosteatosis. The exposure of free fatty acids to cultured hepatocyte and hepatocellular carcinoma cell lines induces cellular stress, organelle adaptation, and subsequent cell death. Despite many studies, the mechanism associated with lipotoxicity and subsequent cell death still remains poorly understood. Here, we have used the proteomics approach to circumvent the mechanism for lipotoxicity using hepatocellular carcinoma cells as a model. Our quantitative proteomics data revealed that ectopic lipids accumulation in cells severely affects the ubiquitin-proteasomal system. The palmitic acid (PA) partially lowered the expression of deubiquitinating enzyme USP7 which subsequently destabilizes p53 and promotes mitotic entry of cells. Our global phosphoproteomics analysis also provides strong evidence of an altered cell cycle checkpoint proteins' expression that abrogates early G2/M checkpoints recovery with damaged DNA and induced mitotic catastrophe leading to hepatocyte death. We observe that palmitic acid prefers apoptosis-inducing factor (AIF) mediated cell death by depolarizing mitochondria and translocating AIF to the nucleus. In summary, the present study provides evidence of PA-induced hepatocellular death mediated by deubiquitinase USP7 downregulation and subsequent mitotic catastrophe.


Carcinoma, Hepatocellular , Liver Neoplasms , Ubiquitin-Specific Peptidase 7 , Apoptosis , Carcinoma, Hepatocellular/genetics , Cell Death , Cell Line , Humans , Liver Neoplasms/genetics , Palmitic Acid/pharmacology , Proteomics , Ubiquitin-Specific Peptidase 7/genetics
7.
Methods Mol Biol ; 2412: 117-141, 2022.
Article En | MEDLINE | ID: mdl-34918244

Hepatitis E virus (HEV) is associated with acute hepatitis disease, which may lead to chronic disease in immunocompromised individuals. The disease is particularly severe among pregnant women (20-30% mortality). No vaccine is available to combat the HEV except Hecolin, which is available only in China. Virus-like particle (VLP) generated from the capsid protein (ORF2) of HEV is known to be a potent vaccine antigen against HEV. Hecolin consists of 368-606 amino acid (aa) region of the capsid protein of HEV, which forms a VLP. It is expressed and purified from the inclusion bodies of E. coli. Here, we describe a method to express the 112-608aa region of the capsid protein (ORF2) of genotype-1 HEV in Pichia pastoris (P. pastoris) and purify VLPs from the culture medium. 112-608aa ORF2 VLPs are secreted into the culture medium in a methanol inducible manner. The purified VLPs are glycosylated and induce robust immune response in Balb/c mice. Further, 112-608aa ORF2 VLPs are bigger than the 368-606 VLP present in Hecolin, which may help them in inducing a superior immune response. P. pastoris offers a robust and economical heterologous expression system to produce large quantities of glycosylated 112-608aa ORF2 VLP, which appears to be a promising vaccine candidate against the HEV.


Hepatitis E virus , Hepatitis E , Animals , Capsid Proteins/genetics , Escherichia coli , Female , Hepatitis E/prevention & control , Hepatitis E virus/genetics , Humans , Mice , Pichia/genetics , Pregnancy , Saccharomycetales
8.
Front Pharmacol ; 12: 746729, 2021.
Article En | MEDLINE | ID: mdl-34721035

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV2) infection initiates with viral entry in the upper respiratory tract, leading to coronavirus disease 2019 (COVID-19). Severe COVID-19 is characterized by pulmonary pathologies associated with respiratory failure. Thus, therapeutics aimed at inhibiting the entry of the virus or its internalization in the upper respiratory tract are of interest. Herein, we report the prophylactic application of two intranasal formulations provided by the National Medicinal Plant Board (NMPB), Anu oil and til tailya, in the hamster model of SARS-CoV-2 infection. Prophylactic intra-nasal instillation of these oil formulations exhibited reduced viral load in lungs and resulted in reduced body weight loss and lung-pneumonitis. In line with reduced viral load, histopathological analysis revealed a reduction in lung pathology in the Anu oil group as compared to the control infected group. However, the til tailya group did not show a significant reduction in lung pathology. Furthermore, molecular analysis using mRNA expression profiling indicated reduced expression of pro-inflammatory cytokine genes, including Th1 and Th17 cytokines for both the intranasal formulations as a result of decreased viral load. Together, the prophylactic intranasal application of Anu oil seems to be useful in limiting both viral load and severity in SARS-CoV2 infection in the hamster model.

10.
J Virol ; 95(21): e0040621, 2021 10 13.
Article En | MEDLINE | ID: mdl-34379515

Interferon regulatory factor 8 (IRF8), a myeloid lineage transcription factor, emerges as an essential regulator for microglial activation. However, the precise role of IRF8 during Japanese encephalitis virus (JEV) infection in the brain remains elusive. Here, we report that JEV infection enhances IRF8 expression in the infected mouse brain. Comparative transcriptional profiling of whole-brain RNA analysis and validation by quantitative reverse transcription-PCR (qRT-PCR) reveals an impaired interferon gamma (IFN-γ) and related gene expression in Irf8 knockout (Irf8-/-)-infected mice. Further, Ifnγ knockout (Ifnγ-/-) mice exhibit a reduced level of Irf8. Both Ifnγ-/- and Irf8-/- mice exhibit significantly reduced levels of activated (CD11b+ CD45hi, CD11b+ CD45lo, Cd68, and CD86) and infiltrating immune cells (Ly6C+, CD4, and CD8) in the infected brain compared to those of wild-type (WT) mice. However, a higher level of granulocyte cell (Ly6G+) infiltration is evident in Irf8-/- mice as well as the increased concentration of tumor necrosis factor alpha (TNF-α), interleukin-6 (IL-6), monocyte chemoattractant protein 1 (MCP1) levels in the brain. Interestingly, neither the Irf8-/- nor the Ifnγ-/- conferred protection against lethal JEV challenge to mice and exhibit augmentation in JEV replication in the brain. The gain of function of Irf8 by overexpressing functional IRF8 in an IRF8-deficient cell line attenuates viral replication and enhances IFN-γ production. Overall, we summarize that in the murine model of JEV encephalitis, IRF8 modulation affects JEV replication. We also show that lack of Irf8 affects immune cell abundance in circulation and the infected brain, leading to a reduction in IFN-γ level and increased viral load in the brain. IMPORTANCE Microglial cells, the resident macrophages in the brain, play a vital role in Japanese encephalitis virus (JEV) pathogenesis. The deregulated activity of microglia can be lethal for the brain. Therefore, it is crucial to understand the regulators that drive microglia phenotype changes and induce inflammation in the brain. Interferon regulatory factor 8 (IRF8) is a myeloid lineage transcription factor involved in microglial activation. However, the impact of IRF8 modulation on JEV replication remains elusive. Moreover, the pathways regulated by IRF8 to initiate and amplify pathological neuroinflammation are not well understood. Here, we demonstrated the effect of IRF8 modulation on JEV replication, microglial activation, and immune cells infiltration in the brain.


Brain/virology , Encephalitis Virus, Japanese/immunology , Encephalitis, Japanese/immunology , Interferon Regulatory Factors/genetics , Interferon-gamma/immunology , Virus Replication/immunology , Animals , Brain/immunology , Encephalitis Virus, Japanese/physiology , Female , Gene Expression Regulation/immunology , Interferon Regulatory Factors/immunology , Interferon-gamma/genetics , Male , Mice , Mice, Knockout , Microglia/immunology , Microglia/physiology , Microglia/virology , Signal Transduction
11.
mSystems ; 6(4): e0064321, 2021 Aug 31.
Article En | MEDLINE | ID: mdl-34254825

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a positive-strand RNA virus. The viral genome is capped at the 5' end, followed by an untranslated region (UTR). There is a poly(A) tail at the 3' end, preceded by a UTR. The self-interaction between the RNA regulatory elements present within the 5' and 3' UTRs and their interaction with host/virus-encoded proteins mediate the function of the 5' and 3' UTRs. Using an RNA-protein interaction detection (RaPID) assay coupled to liquid chromatography with tandem mass spectrometry, we identified host interaction partners of SARS-CoV-2 5' and 3' UTRs and generated an RNA-protein interaction network. By combining these data with the previously known protein-protein interaction data proposed to be involved in virus replication, we generated the RNA-protein-protein interaction (RPPI) network, likely to be essential for controlling SARS-CoV-2 replication. Notably, bioinformatics analysis of the RPPI network revealed the enrichment of factors involved in translation initiation and RNA metabolism. Lysosome-associated membrane protein-2a (Lamp2a), the receptor for chaperone-mediated autophagy, is one of the host proteins that interact with the 5' UTR. Further studies showed that the Lamp2 level is upregulated in SARS-CoV-2-infected cells and that the absence of the Lamp2a isoform enhanced the viral RNA level whereas its overexpression significantly reduced the viral RNA level. Lamp2a and viral RNA colocalize in the infected cells, and there is an increased autophagic flux in infected cells, although there is no change in the formation of autophagolysosomes. In summary, our study provides a useful resource of SARS-CoV-2 5' and 3' UTR binding proteins and reveals the role of Lamp2a protein during SARS-CoV-2 infection. IMPORTANCE Replication of a positive-strand RNA virus involves an RNA-protein complex consisting of viral genomic RNA, host RNA(s), virus-encoded proteins, and host proteins. Dissecting out individual components of the replication complex will help decode the mechanism of viral replication. 5' and 3' UTRs in positive-strand RNA viruses play essential regulatory roles in virus replication. Here, we identified the host proteins that associate with the UTRs of SARS-CoV-2, combined those data with the previously known protein-protein interaction data (expected to be involved in virus replication), and generated the RNA-protein-protein interaction (RPPI) network. Analysis of the RPPI network revealed the enrichment of factors involved in translation initiation and RNA metabolism, which are important for virus replication. Analysis of one of the interaction partners of the 5'-UTR (Lamp2a) demonstrated its role in reducing the viral RNA level in SARS-CoV-2-infected cells. Collectively, our study provides a resource of SARS-CoV-2 UTR-binding proteins and identifies an important role for host Lamp2a protein during viral infection.

12.
Front Immunol ; 12: 641447, 2021.
Article En | MEDLINE | ID: mdl-34108961

The newly emerged novel coronavirus, SARS-CoV-2, the causative agent of COVID-19 has proven to be a threat to the human race globally, thus, vaccine development against SARS-CoV-2 is an unmet need driving mass vaccination efforts. The receptor binding domain of the spike protein of this coronavirus has multiple neutralizing epitopes and is associated with viral entry. Here we have designed and characterized the SARS-CoV-2 spike protein fragment 330-526 as receptor binding domain 330-526 (RBD330-526) with two native glycosylation sites (N331 and N343); as a potential subunit vaccine candidate. We initially characterized RBD330-526 biochemically and investigated its thermal stability, humoral and T cell immune response of various RBD protein formulations (with or without adjuvant) to evaluate the inherent immunogenicity and immunomodulatory effect. Our result showed that the purified RBD immunogen is stable up to 72 h, without any apparent loss in affinity or specificity of interaction with the ACE2 receptor. Upon immunization in mice, RBD generates a high titer humoral response, elevated IFN-γ producing CD4+ cells, cytotoxic T cells, and robust neutralizing antibodies against live SARS-CoV-2 virus. Our results collectively support the potential of RBD330-526 as a promising vaccine candidate against SARS-CoV-2.


Antibodies, Viral/blood , COVID-19 Vaccines/administration & dosage , Immunity, Humoral/drug effects , Immunogenicity, Vaccine , Peptide Fragments/administration & dosage , Spike Glycoprotein, Coronavirus/administration & dosage , Th1 Cells/drug effects , Adjuvants, Immunologic/administration & dosage , Animals , Biomarkers/blood , COVID-19 Vaccines/immunology , Chlorocebus aethiops , Drug Stability , Glycosylation , HEK293 Cells , Humans , Immunization , Interferon-gamma/blood , Male , Mice, Inbred C57BL , Peptide Fragments/immunology , Protein Interaction Domains and Motifs , Protein Stability , Spike Glycoprotein, Coronavirus/immunology , Th1 Cells/immunology , Th1 Cells/metabolism , Vaccines, Subunit/administration & dosage , Vaccines, Subunit/immunology , Vero Cells
13.
Front Genet ; 12: 637362, 2021.
Article En | MEDLINE | ID: mdl-33664772

Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), the causative agent of coronavirus induced disease-2019 (COVID-19), is a type of common cold virus responsible for a global pandemic which requires immediate measures for its containment. India has the world's largest population aged between 10 and 40 years. At the same time, India has a large number of individuals with diabetes, hypertension and kidney diseases, who are at a high risk of developing COVID-19. A vaccine against the SARS-CoV-2, may offer immediate protection from the causative agent of COVID-19, however, the protective memory may be short-lived. Even if vaccination is broadly successful in the world, India has a large and diverse population with over one-third being below the poverty line. Therefore, the success of a vaccine, even when one becomes available, is uncertain, making it necessary to focus on alternate approaches of tackling the disease. In this review, we discuss the differences in COVID-19 death/infection ratio between urban and rural India; and the probable role of the immune system, co-morbidities and associated nutritional status in dictating the death rate of COVID-19 patients in rural and urban India. Also, we focus on strategies for developing masks, vaccines, diagnostics and the role of drugs targeting host-virus protein-protein interactions in enhancing host immunity. We also discuss India's strengths including the resources of medicinal plants, good food habits and the role of information technology in combating COVID-19. We focus on the Government of India's measures and strategies for creating awareness in the containment of COVID-19 infection across the country.

14.
J Virol ; 95(11)2021 05 10.
Article En | MEDLINE | ID: mdl-33731458

Host factors provide critical support for every aspect of the virus life cycle. We recently identified the valosin-containing protein (VCP)/p97, an abundant cellular ATPase with diverse cellular functions, as a host factor important for Japanese encephalitis virus (JEV) replication. In cultured cells, using siRNA-mediated protein depletion and pharmacological inhibitors, we show that VCP is crucial for replication of three flaviviruses: JEV, Dengue, and West Nile viruses. An FDA-approved VCP inhibitor, CB-5083, extended survival of mice in the animal model of JEV infection. While VCP depletion did not inhibit JEV attachment on cells, it delayed capsid degradation, potentially through the entrapment of the endocytosed virus in clathrin-coated vesicles (CCVs). Early during infection, VCP-depleted cells showed an increased colocalization of JEV capsid with clathrin, and also higher viral RNA levels in purified CCVs. We show that VCP interacts with the JEV nonstructural protein NS5 and is an essential component of the virus replication complex. The depletion of the major VCP cofactor UFD-1 also significantly inhibited JEV replication. Mechanistically, thus, VCP affected two crucial steps of the JEV life cycle - nucleocapsid release and RNA replication. Our study establishes VCP as a common host factor with a broad antiviral potential against flaviviruses.ImportanceJEV is the leading cause of viral encephalitis epidemics in South-east Asia, affecting majorly children with high morbidity and mortality. Identification of host factors is thus essential for the rational design of anti-virals that are urgently need as therapeutics. Here we have identified the VCP protein as one such host-factor. This protein is highly abundant in cells and engages in diverse functions and cellular pathways by its ability to interact with different co-factors. Using siRNA mediated protein knockdown, we show that this protein is essential for release of the viral RNA into the cell so that it can initiate replication. The protein plays a second crucial role for the formation of the JEV replication complex. FDA-approved drugs targeting VCP show enhanced mouse survival in JE model of disease, suggesting that this could be a druggable target for flavivirus infections.

15.
Indian J Med Res ; 152(1 & 2): 77-81, 2020.
Article En | MEDLINE | ID: mdl-32820725

BACKGROUND & OBJECTIVES: Nasopharyngeal and oropharyngeal swab (NPS and OPS) collection is widely accepted as the preferred method for obtaining respiratory samples. However, it has certain disadvantages which may be overcome by gargling. The primary objective of this study was to assess agreement between gargle lavage and swab as an appropriate respiratory sample for the detection of SARS-CoV-2. The secondary objective was to assess the patient acceptability of the two sampling methods. METHODS: It was a cross-sectional study done at a tertiary care hospital in New Delhi, India, on 50 confirmed COVID-19 patients. Paired swab (NPS and OPS) and gargle samples were taken within 72 h of their diagnosis. Samples were processed by reverse transcription-polymerase chain reaction (RT-PCR) for detection of SARS-CoV-2. Post-sample collection, a 10-point scale was administered to assess the level of discomfort with either of the collection methods. RESULTS: All gargle samples were positive and comparable to their corresponding swab samples irrespective of the symptoms and duration of illness. The cycle threshold (Ct) values for gargle samples were slightly higher but comparable to those of swabs. Bland-Altman plot showed good agreement between the two methods. Majority (72%) of the patients reported moderate-to-severe discomfort with swab collection in comparison to 24 per cent reporting only mild discomfort with gargle collection. INTERPRETATION & CONCLUSIONS: Our preliminary results show that the gargle lavage may be a viable alternative to swabs for sample collection for the detection of SARS-CoV-2. Adoption of gargle lavage for sample collection will have a significant impact as it will enable easy self-collection, relieve healthcare workers and also lead to substantial cost savings by reducing the need for swabs and personal protective equipment.


Betacoronavirus/isolation & purification , Coronavirus Infections/diagnosis , Pneumonia, Viral/diagnosis , Therapeutic Irrigation , Betacoronavirus/pathogenicity , COVID-19 , Coronavirus Infections/epidemiology , Coronavirus Infections/genetics , Coronavirus Infections/virology , Female , Humans , India/epidemiology , Male , Middle Aged , Nasopharynx/virology , Oropharynx/virology , Pandemics , Pneumonia, Viral/epidemiology , Pneumonia, Viral/genetics , Pneumonia, Viral/virology , SARS-CoV-2 , Specimen Handling
16.
Front Microbiol ; 11: 656, 2020.
Article En | MEDLINE | ID: mdl-32351484

Understanding the dynamics of host innate immune responses against a pathogen marks the first step toward developing intervention strategies against the pathogen. The cytosolic pattern recognition receptor retinoic acid-inducible gene I (RIG-I) has been shown to be the major innate immune sensor for hepatitis E virus (HEV). Here, we show that HEV capsid protein (ORF2), a 660 amino acid long protein, interferes with the RIG-I signaling. Interestingly, only the full length ORF2 protein but not the 112-608 ORF2 protein inhibited RIG-I dependent interferon response. Both synthetic agonist and virus induced RIG-I activation was modulated by ORF2. Interference of interferon response was confirmed by reporter assays involving different interferon inducible promoters, qRT PCR, ELISA, and immunofluorescence microscopy. Neither glycosylation nor dimerization of the ORF2 protein had any effect on the observed inhibition. Further analyses revealed that the ORF2 protein antagonized Toll-like receptor (TLR) pathways as well. ORF2 inhibited signaling by RIG-I and TLR adapters, IPS-1, MyD88, and TRIF but was unable to inhibit activation by ectopically expressed IRF3 suggesting that it may be acting at a site upstream of IRF3 and downstream of adapter proteins. Our data uncover a new mechanism by which HEV may interfere with the host antiviral signaling.

17.
Front Microbiol ; 11: 141, 2020.
Article En | MEDLINE | ID: mdl-32117160

Hepatitis E virus (HEV) is associated with acute hepatitis disease, which may lead to chronic disease in immunocompromised individuals. The disease is particularly severe among pregnant women (20-30% mortality). The only licensed vaccine against HEV, which is available in China, is the Escherichia coli purified recombinant virus-like particles (VLPs) encompassing the 368-660 amino acids (aa) of the viral ORF2 protein. The viral capsid is formed by the ORF2 protein, which harbors three glycosylation sites. Baculo virus expression system has been employed to generate a glycosylated VLP, which encompasses 112-608aa of the ORF2 protein. Here, we sought to produce a recombinant VLP containing 112-608aa of the ORF2 protein in Pichia pastoris (P. pastoris) expression system. The cDNA sequence encoding 112-608aa of the ORF2 protein was fused with the α-mating factor secretion signal coding sequence (for release of the fusion protein to the culture medium) and cloned into the yeast vector pPICZα. Optimum expression of recombinant protein was obtained at 72 h induction in 1.5% methanol using inoculum density (A600) of 80 and at pH-3.0 of the culture medium. Identity of the purified protein was confirmed by mass spectrometry analysis. Further studies revealed the glycosylation pattern and VLP nature of the purified protein. Immunization of BALB/c mice with these VLPs induced potent immune response as evidenced by the high ORF2 specific IgG titer and augmented splenocyte proliferation in a dose dependent manner. 112-608aa ORF2 VLPs produced in P. pastoris appears to be a suitable candidate for development of diagnostic and prophylactic reagents against the hepatitis E.

18.
J Clin Transl Hepatol ; 6(3): 310-316, 2018 Sep 28.
Article En | MEDLINE | ID: mdl-30271744

Hepatitis E virus (HEV) is one of the leading causes of acute viral hepatitis. It also causes acute liver failure and acute-on-chronic liver failure in many patients, such as those suffering from other infections/liver injuries or organ transplant/chemotherapy recipients. Despite widespread sporadic and epidemic incidents, there is no specific treatment against HEV, justifying an urgent need for developing a potent antiviral against it. This review summarizes the known antiviral candidates and provides an overview of the potential targets for the development of specific antivirals against HEV.

19.
J Virol ; 92(20)2018 10 15.
Article En | MEDLINE | ID: mdl-30068652

Hepatitis E virus (HEV) generally causes self-limiting acute viral hepatitis in normal individuals. It causes a more severe disease in immunocompromised persons and pregnant women. Due to the lack of an efficient cell culture system or animal model, the life cycle of the virus is understudied, few antiviral targets are known, and very few antiviral candidates against HEV infection have been identified. Inhibition of virus release is one possible antiviral development strategy, which limits the spread of the virus. Previous studies have demonstrated the essential role of the interaction between the PSAP motif of the viral open reading frame 3 protein (ORF3-PSAP) and the UEV domain of the host tumor susceptibility gene 101 (TSG101) protein (UEV-TSG101) in mediating the release of genotype 3 HEV. Cyclic peptide (CP) inhibitors of the interaction between the human immunodeficiency virus (HIV) gag-PTAP motif and UEV-TSG101 are known to block the release of HIV. Using a molecular dynamic simulation, we observed that both gag-PTAP and ORF3-PSAP motifs bind to the same site in UEV-TSG101 by hydrogen bonding. HIV-released inhibitory CPs also displayed binding to the same site in UEV-TSG101, indicating that they may compete with ORF3-PSAP or gag-PTAP for binding to UEV-TSG101. Two independent assays confirmed the ability of a cyclic peptide (CP11) to inhibit the ORF3-TSG101 interaction. CP11 treatment also reduced the release of both genotype 1 and genotype 3 HEV by approximately 90%, with a 50% inhibitory concentration (IC50) of 2 µM. Thus, CP11 appears to be an attractive candidate for further validation of its anti-HEV properties.IMPORTANCE There is no specific therapy against hepatitis E virus (HEV)-induced hepatic and nonhepatic health problems. Prevention of the release of the progeny viruses from infected cells is an attractive strategy to limit the spread of the virus. Interactions between the viral open reading frame 3 and the host tumor susceptibility gene 101 proteins have been shown to be essential for the release of genotype 3 HEV from infected cells. In this study, we have identified a cyclic peptide inhibitor of the above-mentioned interaction and demonstrate the efficiency of the inhibitor in preventing virus release from infected cells. Thus, our findings uncover the possibility of developing a specific antiviral agent against HEV by blocking its release from infected cells.


Antiviral Agents/metabolism , DNA-Binding Proteins/metabolism , Endosomal Sorting Complexes Required for Transport/metabolism , Hepatitis E virus/drug effects , Hepatitis E virus/physiology , Peptides, Cyclic/metabolism , Transcription Factors/metabolism , Viral Proteins/metabolism , Virus Release/drug effects , Cell Line , DNA-Binding Proteins/antagonists & inhibitors , Endosomal Sorting Complexes Required for Transport/antagonists & inhibitors , Hepatocytes/virology , Humans , Inhibitory Concentration 50 , Protein Binding/drug effects , Transcription Factors/antagonists & inhibitors , Viral Proteins/antagonists & inhibitors
20.
DNA Cell Biol ; 37(7): 593-599, 2018 Jul.
Article En | MEDLINE | ID: mdl-29897788

Hepatitis E virus (HEV) is a major cause of viral hepatitis worldwide. Owing to its feco oral transmission route, sporadic as well as epidemic outbreaks recurrently occur. No specific antiviral therapy is available against the disease caused by HEV. Broad spectrum antivirals such as ribavirin and interferon alfa are prescribed in severe and chronic HEV cases. However, the side effects, cost, and limitations of usage render the available treatment unsuitable for several categories of patients. We recently reported the ability of zinc to inhibit viral replication in mammalian cell culture models of HEV infection. Zinc will be a safe and economical antiviral therapy option if it inhibits HEV replication during the natural course of infection. This essay discusses the putative mechanism(s) by which zinc inhibits HEV replication and provides an overview of the possible therapeutic potential of zinc in HEV patients.


Antiviral Agents/pharmacology , Hepatitis E virus/drug effects , Hepatitis E/drug therapy , Virus Replication/drug effects , Zinc Compounds/pharmacology , Animals , Gene Expression Regulation , Hepatitis E/genetics , Hepatitis E/virology , Hepatitis E virus/genetics , Hepatitis E virus/growth & development , Hepatitis E virus/metabolism , Host-Pathogen Interactions/drug effects , Humans , Immunity, Innate/drug effects , Interferon-alpha/genetics , Interferon-alpha/immunology , Interferon-gamma/genetics , Interferon-gamma/immunology , Interferons , Interleukins/genetics , Interleukins/immunology , RNA-Dependent RNA Polymerase/antagonists & inhibitors , RNA-Dependent RNA Polymerase/genetics , RNA-Dependent RNA Polymerase/metabolism , Signal Transduction , Viral Proteins/antagonists & inhibitors , Viral Proteins/genetics , Viral Proteins/metabolism , Virus Replication/genetics
...