Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 185
Filter
1.
J Radiat Res ; 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39007844

ABSTRACT

The Planning and Acting Network for Low Dose Radiation Research in Japan (PLANET) was established in 2017 in response to the need for an all-Japan network of experts. It serves as an academic platform to propose strategies and facilitate collaboration to improve quantitative estimation of health risks from ionizing radiation at low-doses and low-dose-rates. PLANET established Working Group 1 (Dose-Rate Effects in Animal Experiments) to consolidate findings from animal experiments on dose-rate effects in carcinogenesis. Considering international trends in this field as well as the situation in Japan, PLANET updated its priority research areas for Japanese low-dose radiation research in 2023 to include (i) characterization of low-dose and low-dose-rate radiation risk, (ii) factors to be considered for individualization of radiation risk, (iii) biological mechanisms of low-dose and low-dose-rate radiation effects and (iv) integration of epidemiology and biology. In this context, PLANET established Working Group 2 (Dose and Dose-Rate Mapping for Radiation Risk Studies) to identify the range of doses and dose rates at which observable effects on different endpoints have been reported; Working Group 3 (Species- and Organ-Specific Dose-Rate Effects) to consider the relevance of stem cell dynamics in radiation carcinogenesis of different species and organs; and Working Group 4 (Research Mapping for Radiation-Related Carcinogenesis) to sort out relevant studies, including those on non-mutagenic effects, and to identify priority research areas. These PLANET activities will be used to improve the risk assessment and to contribute to the revision of the next main recommendations of the International Commission on Radiological Protection.

2.
Int J Cancer ; 155(6): 1101-1111, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-38688826

ABSTRACT

Mouse models are vital for assessing risk from environmental carcinogens, including ionizing radiation, yet the interspecies difference in the dose response precludes direct application of experimental evidence to humans. Herein, we take a mathematical approach to delineate the mechanism underlying the human-mouse difference in radiation-related cancer risk. We used a multistage carcinogenesis model assuming a mutational action of radiation to analyze previous data on cancer mortality in the Japanese atomic bomb survivors and in lifespan mouse experiments. Theoretically, the model predicted that exposure will chronologically shift the age-related increase in cancer risk forward by a period corresponding to the time in which the spontaneous mutational process generates the same mutational burden as that the exposure generates. This model appropriately fitted both human and mouse data and suggested a linear dose response for the time shift. The effect per dose decreased with increasing age at exposure similarly between humans and mice on a per-lifespan basis (0.72- and 0.71-fold, respectively, for every tenth lifetime). The time shift per dose was larger by two orders of magnitude in humans (7.8 and 0.046 years per Gy for humans and mice, respectively, when exposed at ~35% of their lifetime). The difference was mostly explained by the two orders of magnitude difference in spontaneous somatic mutation rates between the species plus the species-independent radiation-induced mutation rate. Thus, the findings delineate the mechanism underlying the interspecies difference in radiation-associated cancer mortality and may lead to the use of experimental evidence for risk prediction in humans.


Subject(s)
Carcinogenesis , Neoplasms, Radiation-Induced , Animals , Mice , Neoplasms, Radiation-Induced/mortality , Neoplasms, Radiation-Induced/genetics , Neoplasms, Radiation-Induced/etiology , Humans , Carcinogenesis/radiation effects , Mutation , Dose-Response Relationship, Radiation , Models, Theoretical , Atomic Bomb Survivors , Species Specificity , Radiation, Ionizing , Female , Male
3.
Article in English | MEDLINE | ID: mdl-38576411

ABSTRACT

CONTEXT: Telomerase reverse transcriptase promoter (TERT-p) mutations, which upregulate TERT expression, are strongly associated with tumor aggressiveness and worse prognosis in papillary thyroid carcinomas (PTCs). TERT expression is also observed in a proportion of PTCs without TERT-p mutations, but such tumors show less aggressiveness and better prognosis compared with TERT-p mutation-positive tumors. OBJECTIVE: TERT has multiple splicing variants whose relationships with the TERT-p status and clinicopathological characteristics remain poorly understood. We examined the relationship between the TERT-p mutational status, the TERT splicing pattern, and clinicopathological features. METHODS: We investigated the expression of two major variants, α deletion (dA) and ß deletion (dB), in a series of 207 PTCs operated between November 2001 and March 2020 in Nagasaki University Hospital and Kuma Hospital. RESULTS: The TERT-p mutations were found in 33 cases, and among 174 mutation-negative cases, 24 showed TERT expression. All cases were classified into three groups: the TERT-p mutation-negative/expression-negative group (mut-/exp-), the TERT-p mutation-negative/expression-positive group (mut-/exp+), and the TERT-p mutation-positive group (mut+/exp+). The +A + B/dB ratio in mut+/exp + was significantly higher than that in mut-/exp + PTCs. Analysis with clinicopathological data revealed that +A + B expression was associated with higher PTC aggressiveness, whereas dB expression counteracted this effect. Functional in vitro study demonstrated that dB strongly inhibited cell growth, migration, and clonogenicity, suggesting its tumor suppressive role. CONCLUSION: These results provide evidence that the TERT-p mutations alter the expression of different TERT splice variants, which, in turn, associates with different tumor aggressiveness.

4.
Neonatology ; 121(3): 298-304, 2024.
Article in English | MEDLINE | ID: mdl-38211569

ABSTRACT

INTRODUCTION: There is uncertainty and lack of consensus regarding optimal management of patent ductus arteriosus (PDA). We aimed to determine current clinical practice in PDA management across a range of different regions internationally. MATERIALS AND METHODS: We surveyed PDA management practices in neonatal intensive care units using a pre-piloted web-based survey, which was distributed to perinatal societies in 31 countries. The survey was available online from March 2018 to March 2019. RESULTS: There were 812 responses. The majority of clinicians (54%) did not have institutional protocols for PDA treatment, and 42% reported variable management within their own unit. Among infants <28 weeks (or <1,000 g), most clinicians (60%) treat symptomatically. Respondents in Australasia were more likely to treat PDA pre-symptomatically (44% vs. 18% all countries [OR 4.1; 95% CI 2.6-6.5; p < 0.001]), and respondents from North America were more likely to treat symptomatic PDA (67% vs. 60% all countries [OR 2.0; 95% CI 1.5-2.6; p < 0.001]). In infants ≥28 weeks (or ≥1,000 g), most clinicians (54%) treat symptomatically. Respondents in North America were more likely to treat PDAs in this group of infants conservatively (47% vs. 38% all countries [OR 2.3; 95% CI 1.7-3.2; p < 0.001]), and respondents from Asia were more likely to treat the PDA pre-symptomatically (21% vs. 7% all countries [OR 5.5; 95% CI 3.2-9.8; p < 0.001]). DISCUSSION/CONCLUSION: There were marked international differences in clinical practice, highlighting ongoing uncertainty and a lack of consensus regarding PDA management. An international conglomeration to coordinate research that prioritises and addresses these areas of contention is indicated.


Subject(s)
Ductus Arteriosus, Patent , Intensive Care Units, Neonatal , Practice Patterns, Physicians' , Ductus Arteriosus, Patent/therapy , Humans , Infant, Newborn , Practice Patterns, Physicians'/statistics & numerical data , Surveys and Questionnaires , Intensive Care Units, Neonatal/statistics & numerical data , Infant, Premature , North America , Health Care Surveys , Female , Australasia , Internet
5.
NPJ Aging ; 9(1): 26, 2023 Nov 07.
Article in English | MEDLINE | ID: mdl-37935713

ABSTRACT

Understanding the biological effects of low-dose (<100 mGy) ionizing radiation (LDR) is technically challenging. We investigated age-dependent LDR effects using adaptive response experiments in young (7-to 12-week-old) and middle-aged (40-to 62-week-old) C57BL/6 mice. Compared with 3 Gy irradiation, 0.02 Gy preirradiation followed by 3 Gy irradiation prolonged life in young mice but not middle-aged mice. Preirradiation also suppressed irradiation-induced 53BP1 repair foci in the small intestines, splenic apoptosis, and p53 activity in young mice but not middle-aged mice. Young p53+/- C57BL/6 mice did not show these adaptive responses, indicating that insufficient p53 function in young mice mitigated the adaptive responses. Interestingly, p53 activation in middle-aged mice spontaneously became approximately 4.5-fold greater than that in young mice, possibly masking LDR stresses. Furthermore, adaptive responses in young mice, but not in middle-aged mice, suppressed some senescence-associated secretory phenotype (SASP) factors (IL-6, CCL2, CCL5, CXCL1). Thus, LDR-induced adaptive responses associated with specific SASP factors may be attenuated by a combination of reduced DNA damage sensor/transducer function and chronic p53 activation in middle-aged mice.

6.
Radiat Res ; 200(6): 538-547, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-37902247

ABSTRACT

Autophagy and senescence are closely related cellular responses to genotoxic stress, and play significant roles in the execution of cellular responses to radiation exposure. However, little is known about their interplay in the fate-decision of cells receiving lethal doses of radiation. Here, we report that autophagy precedes the establishment of premature senescence in normal human fibroblasts exposed to lethal doses of radiation. Activation of the p53-dependent DNA damage response caused sustained dephosphorylation of RB proteins and consequent cell cycle arrest, concurrently with Ulk1 dephosphorylation at Ser638 by PPM1D, which promoted autophagy induction 1-2 days after irradiation. In addition, mitochondrial fragmentation became obvious 1-2 days after irradiation, and autophagy was further enhanced. However, Ulk1 levels decreased significantly after 2 days, resulting in lower LC3-II levels. An autophagic flux assay using chloroquine (CQ) also revealed that the flux in irradiated cells gradually decreased over 30 days. In contrast, lysosomal augmentation started at 1 day, became significantly upregulated after 5 days, and continued for over 30 days. After a rapid decrease in autophagy, p16 expression increased and senescence was established, but autophagic activity remained reduced. These results demonstrated that X-ray irradiation triggered two processes, autophagy and senescence, with the former being temporary and regulated by DNA damage response and mitophagy, and the latter being sustained and regulated by persistent cell cycle arrest. The interplay between autophagy and senescence seems to be essential for the proper implementation of the cellular response to radiation exposure.


Subject(s)
Autophagy , Radiation Exposure , Humans , Cell Cycle Checkpoints , DNA Damage , Cellular Senescence/genetics
7.
Cancers (Basel) ; 15(4)2023 Feb 09.
Article in English | MEDLINE | ID: mdl-36831453

ABSTRACT

Tumor budding (TB), a microscopic finding in the stroma ahead of the invasive fronts of tumors, has been well investigated and reported as a prognostic marker in head and neck squamous cell carcinoma (HNSCC). Epithelial-mesenchymal transition (EMT) is a crucial step in tumor progression and metastasis, and its status cannot be distinguished from TB. The current understanding of partial EMT (p-EMT), the so-called halfway step of EMT, focuses on the tumor microenvironment (TME). Although this evidence has been investigated, the clinicopathological and biological relationship between TB and p-EMT remains debatable. At the invasion front, previous research suggested that cancer-associated fibroblasts (CAFs) are important for tumor progression, metastasis, p-EMT, and TB formation in the TME. Although there is biological evidence of TB drivers, no report has focused on their organized functional relationships. Understanding the mechanism of TB onset and the relationship between p-EMTs may facilitate the development of novel diagnostic and prognostic methods, and targeted therapies for the prevention of metastasis in epithelial cancer. Thus far, major pieces of evidence have been established from colorectal cancer (CRC), due to a large number of patients with the disease. Herein, we review the current understanding of p-EMT and TME dynamics and discuss the relationship between TB development and p-EMT, focusing on CAFs, hypoxia, tumor-associated macrophages, laminin-integrin crosstalk, membrane stiffness, enzymes, and viral infections in cancers, and clarify the gap of evidence between HNSCC and CRC.

8.
J Radiat Res ; 64(2): 210-227, 2023 Mar 23.
Article in English | MEDLINE | ID: mdl-36773323

ABSTRACT

While epidemiological data are available for the dose and dose-rate effectiveness factor (DDREF) for human populations, animal models have contributed significantly to providing quantitative data with mechanistic insights. The aim of the current review is to compile both the in vitro experiments with reference to the dose-rate effects of DNA damage and repair, and the animal studies, specific to rodents, with reference to the dose-rate effects of cancer development. In particular, the review focuses especially on the results pertaining to underlying biological mechanisms and discusses their possible involvement in the process of radiation-induced carcinogenesis. Because the concept of adverse outcome pathway (AOP) together with the key events has been considered as a clue to estimate radiation risks at low doses and low dose-rates, the review scrutinized the dose-rate dependency of the key events related to carcinogenesis, which enables us to unify the underlying critical mechanisms to establish a connection between animal experimental studies with human epidemiological studies.


Subject(s)
Mammary Glands, Human , Neoplasms, Radiation-Induced , Radiation Exposure , Animals , Humans , Dose-Response Relationship, Radiation , Neoplasms, Radiation-Induced/etiology , Risk Assessment/methods , Radiation Exposure/adverse effects , Carcinogenesis , Models, Animal , Gastrointestinal Tract
9.
J Radiat Res ; 64(2): 228-249, 2023 Mar 23.
Article in English | MEDLINE | ID: mdl-36773331

ABSTRACT

While epidemiological data have greatly contributed to the estimation of the dose and dose-rate effectiveness factor (DDREF) for human populations, studies using animal models have made significant contributions to provide quantitative data with mechanistic insights. The current article aims at compiling the animal studies, specific to rodents, with reference to the dose-rate effects of cancer development. This review focuses specifically on the results that explain the biological mechanisms underlying dose-rate effects and their potential involvement in radiation-induced carcinogenic processes. Since the adverse outcome pathway (AOP) concept together with the key events holds promise for improving the estimation of radiation risk at low doses and low dose-rates, the review intends to scrutinize dose-rate dependency of the key events in animal models and to consider novel key events involved in the dose-rate effects, which enables identification of important underlying mechanisms for linking animal experimental and human epidemiological studies in a unified manner.


Subject(s)
Hematopoietic System , Neoplasms, Radiation-Induced , Radiation Exposure , Animals , Humans , Radiation Dosage , Risk Assessment/methods , Radiation Exposure/adverse effects , Models, Animal , Liver , Lung , Dose-Response Relationship, Radiation
10.
Adv Radiat Oncol ; 8(3): 101159, 2023.
Article in English | MEDLINE | ID: mdl-36793509

ABSTRACT

Purpose: Understanding the immune response during radiation therapy (RT) in a clinical setting is imperative for maximizing the efficacy of combined RT and immunotherapy. Calreticulin, a major damage-associated molecular pattern that is exposed on the cell surface after RT, is presumed to be associated with the tumor-specific immune response. Here, we examined changes in calreticulin expression in clinical specimens obtained before and during RT and analyzed its relationship with the density of CD8+ T cells in the same patient set. Methods and Materials: This retrospective analysis evaluated 67 patients with cervical squamous cell carcinoma who were treated with definitive RT. Tumor biopsy specimens were collected before RT and after 10 Gy irradiation. Calreticulin expression in tumor cells was evaluated via immunohistochemical staining. Subsequently, the patients were divided into 2 groups according to the level of calreticulin expression, and the clinical outcomes were compared. Finally, the correlation between calreticulin levels and density of stromal CD8+ T cells was evaluated. Results: The calreticulin expression significantly increased after 10 Gy (82% of patients showed an increase; P < .01). Patients with increased calreticulin levels tended to show better progression-free survival, but this was not statistically significant (P = .09). In patients with high expression of calreticulin, a positive trend was observed between calreticulin and CD8+ T cell density, but the association was not statistically significant (P = .06). Conclusions: Calreticulin expression increased after 10 Gy irradiation in tissue biopsies of patients with cervical cancer. Higher calreticulin expression levels are potentially associated with better progression-free survival and greater T cell positivity, but there was no statistically significant relationship between calreticulin upregulation and clinical outcomes or CD8+ T cell density. Further analysis will be required to clarify mechanisms underlying the immune response to RT and to optimize the RT and immunotherapy combination approach.

11.
J Radiat Res ; 64(2): 300-303, 2023 Mar 23.
Article in English | MEDLINE | ID: mdl-36617210

ABSTRACT

We examined here normal human cells with large deletions encompassing the hypoxanthine-phosphoribosyltransferase 1 (HPRT1) gene on X chromosome. Expression levels of genes on X chromosome were analyzed by microarray and RT-qPCR method, and differentially expressed genes (DEGs) were extracted. We found that DEGs were not limited to the genes flanking deleted regions but spread over the entire X chromosome. Interestingly, the gene regulation patterns were similar to a large extent among independent clones that have similar-sized large deletions involving the HPRT1 gene. Thus, it is indicated that an impact of large deletion on possible epigenetic transcriptional regulation is not limited to the regions proximal to the deletion region.


Subject(s)
Chromosomes, Human, X , Hypoxanthine Phosphoribosyltransferase , Humans , X-Rays , Chromosomes, Human, X/genetics , Hypoxanthine Phosphoribosyltransferase/genetics , Clone Cells
12.
Radiat Res ; 199(1): 83-88, 2023 01 01.
Article in English | MEDLINE | ID: mdl-34143221

ABSTRACT

The hypoxanthine-phosphoribosyltransferase (HPRT) mutation assay has been widely used to investigate gene mutations induced by radiation. Here, we developed a novel method detecting deletions of multiple exons of the HPRT gene based on real-time quantitative PCR (qPCR). Immortalized normal human fibroblasts (BJ1-hTERT) were irradiated at various doses with γ rays, subjected to the 6-thioguanine (6-TG) selection, and more than one hundred 6-TG-resistant (6-TGR) clones were isolated. High-molecular-weight genomic DNA was extracted, and real-time qPCR was performed with the nine exon-specific primers. Optimization of the primer concentration, appropriate selection of PCR enzyme and refinement of the reaction profiles enabled simultaneous quantitative amplification of each exon. We were able to identify 6-TGR clones with total deletions, which did not show any amplification of the nine exons, and partial deletion mutants, in which one or some of the nine exons were missing, within a few days. This novel technique allows systematic determination of multiple deletions of the HPRT exons induced by ionizing radiation, enabling high-throughput and robust analysis of multiple HPRT mutants.


Subject(s)
DNA , Hypoxanthine Phosphoribosyltransferase , Humans , Hypoxanthine Phosphoribosyltransferase/genetics , Exons/genetics , Mutation , DNA/genetics , Real-Time Polymerase Chain Reaction
13.
Radiat Res ; 199(1): 74-82, 2023 01 01.
Article in English | MEDLINE | ID: mdl-36442049

ABSTRACT

Dicentric chromosome assay (DCA) is the most accepted cytological technique for the purpose of biological dosimetry in radiological and nuclear accidents, however, it is not always easy to evaluate dicentric chromosomes because of the technical difficulty in identifying dicentric chromosomes on Giemsa-stained metaphase chromosome samples. Here, we applied an antibody recognizing centromere protein (CENP) C, CENP-C, whose antigenicity is resistant to the fixation with Carnoy's solution. Normal human diploid cells were irradiated with various doses of 137Cs γ rays at 1 Gy/ min, treated with hypotonic solution, fixed with Carnoy's fixative, and metaphase chromosome spreads were stained with anti-CENP-C antibody. Dose-dependent induction of dicentric chromosomes was confirmed between 1 and 10 Gy of γ rays, and the results were compatible with those obtained by the conventional Giemsa-stained chromosome samples. The CENP-C assay also uncovered the difference in the fluorescence from the sister centromeres on the same chromosome, which was more pronounced after radiation exposure. Although the underlying mechanism is still to be determined, the result suggests a novel effect of radiation on centromeres. The innovative protocol for CENP-C-based DCA, which enables ideal visualization of centromeres, is simple, effective and reliable. It does not require skilled examiners, so that it may be an alternative method, avoiding uneasiness of the current DCA using Giemsa-stained metaphase chromosome samples.


Subject(s)
Cesium Radioisotopes , Protein C , Humans , Protein C/genetics , Centromere , Fluorescent Antibody Technique , Radiation Dosage , Chromosome Aberrations
14.
Sci Rep ; 12(1): 14764, 2022 08 30.
Article in English | MEDLINE | ID: mdl-36042341

ABSTRACT

Chromosome translocation (TL) is an important mode of genomic changes underlying human tumorigenesis, the detailed mechanisms of which are, however, still not well understood. The two major modalities of DNA double strand break repair, i.e. homologous recombination (HR) and non-homologous end-joining (NHEJ), have been hypothesized. In a typical TL+ human neoplasm, Ewing sarcoma, which is frequently associated with t(11;22) TL encoding the EWS-FLI1 fusion gene, NHEJ has been regarded as a model to explain the disease-specific TL. Using comprehensive microarray approaches, we observed that expression of the HR genes, particularly of RAD51, is upregulated in TL+ Ewing sarcoma cell lines, WE-68 and SK-N-MC, as in the other TL+ tumor cell lines and one defective in DNA mismatch repair (MMR). The upregulated RAD51 expression indeed lead to frequent focus formation, which may suggest an activation of the HR pathway in these cells. Furthermore, sister chromatid exchange was frequently observed in the TL+ and MMR-defective cells. Intriguingly, ionizing irradiation revealed that the decrease of 53BP1 foci was significantly retarded in the Ewing sarcoma cell lines, suggesting that the NHEJ pathway may be less active in the cells. These observations may support an HR involvement, at least in part, to explain TL in Ewing sarcoma.


Subject(s)
Neuroectodermal Tumors, Primitive, Peripheral , Sarcoma, Ewing , Cell Line, Tumor , Gene Expression Regulation, Neoplastic , Humans , Oncogene Proteins, Fusion/genetics , Oncogene Proteins, Fusion/metabolism , Proto-Oncogene Protein c-fli-1/genetics , Proto-Oncogene Protein c-fli-1/metabolism , RNA-Binding Protein EWS/genetics , RNA-Binding Protein EWS/metabolism , Sarcoma, Ewing/pathology , Translocation, Genetic
15.
J Wound Care ; 31(Sup8): S29-S35, 2022 08 01.
Article in English | MEDLINE | ID: mdl-36004943

ABSTRACT

OBJECTIVE: Diabetic foot ulcer (DFU) is recognised as a severe complication in patients with type 2 diabetes. With the increasing incidence of diabetes, it represents a major medical challenge. Several models have been proposed to explain its aetiology; however, they have never been assessed by longitudinal histopathological examination, which this study aims to address. METHOD: Multiplex-immunofluorescence analysis was carried out with lengthwise serial skin specimens obtained from the medial thigh, lower leg, ankle, dorsum of foot and acrotarsium close to the DFU region of a patient with type 2 diabetes receiving above the knee amputation. RESULTS: Proximal-to-distal gradual loss of peripheral nerve was demonstrated, accompanied by compromised capillaries in the superficial papillary plexus and distended CD31-positive capillaries in the dorsum of foot. Neural fibres and capillaries were also significantly compromised in the sweat gland acinus in the ankle and dorsum of foot. Injuries in the superficial papillary plexus, sweat gland acinus, and sweat gland-associated adipose tissues were accompanied by significant infiltration of macrophages. These results indicated that longitudinal impairment of local blood circulation could be the cause of peripheral neuropathy, which initiated ulcer formation. Resultant chronic inflammation, involving sweat gland-associated adipose tissue, gave rise to impairment of wound healing, and thus DFU formation. CONCLUSION: Longitudinal histopathological examination demonstrated that impairment of local microvascular circulation (rather than the systemic complication caused by type 2 diabetes) was considered the primary cause of peripheral neuropathy, which initiated ulceration. Together with chronic inflammation in the superficial papillary plexus and sweat gland-associated adipose tissue, it resulted in the development of a DFU. Although this is a study of just one individual's limb, our study provided a unique observation, contributing mechanistic insights into developing novel intervening strategies to prevent and treat DFUs.


Subject(s)
Diabetes Mellitus, Type 2 , Diabetic Foot , Foot Ulcer , Amputation, Surgical/adverse effects , Diabetes Mellitus, Type 2/complications , Diabetic Foot/diagnosis , Humans , Inflammation , Lower Extremity
16.
Neuropathology ; 42(6): 483-487, 2022 Dec.
Article in English | MEDLINE | ID: mdl-35747901

ABSTRACT

We semiquantitatively compared the frequency and severity of cerebral amyloid angiopathy (CAA) in the cerebellum and CAA-positive occipital lobe of 60 subjects from routine autopsies. In the 60 subjects with a CAA-positive occipital lobe, cerebellar CAA was observed in 29 subjects (48.3%), and the severity of cerebellar CAA was relatively mild compared with occipital lobe CAA. Capillary CAA was observed in the occipital lobe of 12 subjects and the cerebellum of three subjects. CAA-related vasculopathies were observed in the occipital lobe of 15 subjects and the cerebellum of two subjects. The severity of CAA-related vasculopathy was mild in both of these subjects. Amyloid-ß plaques were observed in the occipital lobe of 54 subjects (90%) and the cerebellum of 16 subjects (26.7%). The severity of amyloid-ß plaques in the cerebellum was mild compared with the occipital lobe. In summary, we confirmed that cerebellar CAA is frequently observed in the cerebellum but with a lower severity than CAA in the occipital lobe.


Subject(s)
Alzheimer Disease , Cerebral Amyloid Angiopathy , Humans , Alzheimer Disease/pathology , Cerebral Amyloid Angiopathy/pathology , Amyloid beta-Peptides/metabolism , Plaque, Amyloid/pathology , Brain/pathology , Occipital Lobe/pathology
17.
Bioorg Med Chem ; 67: 116764, 2022 08 01.
Article in English | MEDLINE | ID: mdl-35635928

ABSTRACT

It is known that p53 is an important transcription factor and plays a central role in ionizing radiation (IR)-induced DNA damage responses such as cell cycle arrest, DNA repair and apoptosis. We previously reported that regulating p53 protein is an effective strategy for modulating cell fate by reducing the acute side effects of radiation therapy. Herein, we report on the discovery of STK160830 as a new radioprotector from a chemical library at The University of Tokyo and the design, synthesis and biological evaluation of its derivatives. The radioprotective activity of STK160830 itself and its derivatives that were synthesized in this work was evaluated using a leukemia cell line, MOLT-4 cells as a model of normal cells that express the p53 protein in a structure-activity relationships (SAR) study. The experimental results suggest that a direct relationship exists between the inhibitory effect of these STK160830 derivatives on the expression level of p53 and their radioprotective activity and that the suppression of p53 by STK160830 derivatives contribute to protecting MOLT-4 cells from apoptosis that is induced by exposure to radiation.


Subject(s)
Apoptosis , Tumor Suppressor Protein p53 , DNA Damage , DNA Repair , Tumor Suppressor Protein p53/metabolism
18.
Article in English | MEDLINE | ID: mdl-35483779

ABSTRACT

Radiotherapy is well-recognized as an efficient non-invasive remedy for cancer treatment. Since 10 Gy, a weekly total dose for conventional radiotherapy, was proven to create unreparable and residual DNA double-strand breaks (DSBs), they were found to give rise to mitotic failure, such as mitotic catastrophe, which resulted in multiple micronuclei associated with premature senescence. We demonstrated that pulverization of micronuclear DNA was caspase-dependent and triggered not ATM-dependent but DNA-PK-dependent DNA damage response, including phosphorylation of histone H2AX. Pulverization of micronuclear DNA and senescence-associated secretory phenotype (SASP) worsen tumor microenvironment after radiotherapy, so that senolytic drug was applied to eliminate senescent cancer cells. Prematurely senescent cancer cells with micronuclei caused by 10 Gy of γ-irradiation were subjected to 5 µM of ABT-263, a Bcl-2 family inhibitor, and selective cancer cell death by apoptosis was observed, while ABT-263 had little effect on growing cancer cells. Western blot analysis showed augmented expression of both apoptotic and anti-apoptotic proteins in senescent cells, indicating that increased apoptotic factors are essential for selective apoptotic cell death in combination with ABT-263. Our results suggested that selective elimination of senescent cells alleviates SASP and micronuclei-mediated the cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) activation, both of which lead to unfavorable adverse effects caused by radiotherapy.


Subject(s)
Aniline Compounds , Senotherapeutics , Aniline Compounds/pharmacology , DNA , Sulfonamides/pharmacology
19.
Neuropathology ; 42(1): 40-44, 2022 Feb.
Article in English | MEDLINE | ID: mdl-35001426

ABSTRACT

An 80-year-old man with dementia demonstrated cerebellar hemorrhage. Autopsy revealed pathology compatible with Alzheimer's disease and cerebral amyloid angiopathy (CAA). CAA was more prevalent in the occipital lobe than in the frontal, parietal, and temporal lobes; however, amyloid-ß (Aß)-containing senile plaques were less abundant in the occipital cortex than in the other cortices. In the cerebellum, abundant CAA-involved vessels were observed in the subarachnoid space and molecular layer and to a lesser extent in the Purkinje and granule layers. On consecutive sections, Aß1-42 immunohistochemistry revealed senile plaques and CAA-involved vessels with strong immunoreactivity whereas Aß1-40 immunohistochemistry identfied CAA-involved vessels with strong immunoreactivity and senile plaques with weak immunoreactivity in the cerebellar cortices.


Subject(s)
Alzheimer Disease , Cerebral Amyloid Angiopathy , Aged, 80 and over , Amyloid beta-Peptides , Autopsy , Cerebral Amyloid Angiopathy/complications , Cerebral Hemorrhage/complications , Humans , Male , Plaque, Amyloid
20.
Oncol Lett ; 23(1): 29, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34868366

ABSTRACT

The growing importance of antitumour immunity by cancer immunotherapy has prompted studies on radiotherapy-induced immune response. Previous studies have indicated that programmed cell death-1 ligand (PD-L1) expression is regulated by DNA damage signalling. However, PD-L1 up-regulation after radiotherapy has not been fully investigated at the clinical level, particularly in the context of expression of DNA repair factors. The present study examined the correlation of mRNA expression between PD-L1 and non-homologous end joining (NHEJ) factors using The Cancer Genome Atlas database analysis. Among NHEJ factors, Ku80 mRNA expression was negatively correlated with PD-L1 mRNA expression levels in several types of cancer (colon adenocarcinoma, breast invasive carcinoma, skin cutaneous melanoma, lung adenocarcinoma, head and neck squamous cell carcinoma, uterine corpus endometrial carcinoma, cervical squamous cell carcinoma and endocervical adenocarcinoma). To verify the negative correlation in clinical samples, the present study analysed whether Ku80 expression levels affected PD-L1 up-regulation after radiotherapy using cervical squamous cell carcinoma samples. Quantitative evaluation using software analysis of immunohistochemically stained slides revealed that patients with low Ku80 positivity in biopsy specimens demonstrated increased PD-L1 expression levels after 10 Gy irradiation (Spearman's rank correlation coefficient=-0.274; P=0.017). Furthermore, PD-L1 induction levels in tumour cells after 10 Gy of irradiation were significantly inversely correlated with Ku80 expression levels (Spearman's rank correlation coefficient=-0.379; P<0.001). The present study also confirmed that short interfering RNA-mediated Ku80 depletion was associated with greater X-ray-induced PD-L1 up-regulation in HeLa cells. These results indicated that radiotherapy could enhance PD-L1 induction in tumour cells with low Ku80 expression in a clinical setting. Furthermore, these data highlighted Ku80 as a potential predictive biomarker for immune checkpoint therapy combined with radiotherapy.

SELECTION OF CITATIONS
SEARCH DETAIL
...