Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 16(7): e0254963, 2021.
Article in English | MEDLINE | ID: mdl-34293026

ABSTRACT

Insect metamorphosis into an adult occurs after the juvenile hormone (JH) titer decreases at the end of the juvenile stage. This generally coincides with decreased transcript levels of JH-response transcription factors Krüppel homolog 1 (Kr-h1) and broad (br), and increased transcript levels of the adult specifier E93. Thrips (Thysanoptera) develop through inactive and non-feeding stages referred to as "propupa" and "pupa", and this type of distinctive metamorphosis is called neometaboly. To understand the mechanisms of hormonal regulation in thrips metamorphosis, we previously analyzed the transcript levels of Kr-h1 and br in two thrips species, Frankliniella occidentalis (Thripidae) and Haplothrips brevitubus (Phlaeothripidae). In both species, the transcript levels of Kr-h1 and br decreased in the "propupal" and "pupal" stages, and their transcription was upregulated by exogenous JH mimic treatment. Here we analyzed the developmental profiles of E93 in these two thrips species. Quantitative RT-PCR revealed that E93 expression started to increase at the end of the larval stage in F. occidentalis and in the "propupal" stage of H. brevitubus, as Kr-h1 and br mRNA levels decreased. Treatment with an exogenous JH mimic at the onset of metamorphosis prevented pupal-adult transition and caused repression of E93. These results indicated that E93 is involved in adult differentiation after JH titer decreases at the end of the larval stage of thrips. By comparing the expression profiles of Kr-h1, br, and E93 among insect species, we propose that the "propupal" and "pupal" stages of thrips have some similarities with the holometabolous prepupal and pupal stages, respectively.


Subject(s)
Gene Expression Regulation, Developmental , Insect Proteins/biosynthesis , Kruppel-Like Transcription Factors/biosynthesis , Thysanoptera/embryology , Animals , Insect Proteins/genetics , Kruppel-Like Transcription Factors/genetics , Pupa/genetics , Pupa/growth & development , Thysanoptera/genetics
2.
J Pestic Sci ; 42(3): 93-96, 2017 Aug 20.
Article in English | MEDLINE | ID: mdl-30364015

ABSTRACT

We examined the susceptibility of field strains (BO-1, BO-2, TO-1, and YH-1) and one laboratory strain (H-1) of the western flower thrip, Frankliniella occidentalis, to benzoylureas. LC50 values of novaluron were determined as 0.64 ppm against laboratory strain and 2.1-130 ppm against field strains. In the presence of piperonyl butoxide, a cytochrome P450 inhibitor, the insecticidal activity of novaluron tended to be enhanced. To examine whether point mutations in chitin synthase 1 (CHS1) discovered in an etoxazole-resistant strain of Tetranychus urticae and a benzoylurea-resistant strain of Plutella xylostella exist in F. occidentalis, the nucleotide sequence of CHS1 was analyzed. We found a nonsynonymous substitution that corresponded to the location of the mutations found in T. urticae and P. xylostella in the field strains of F. occidentalis but not in the laboratory strain, indicating that this point mutation might be associated with the benzoylurea resistance exhibited by the field strains.

SELECTION OF CITATIONS
SEARCH DETAIL