Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 37
Filter
Add more filters











Publication year range
1.
Mol Ther ; 31(10): 2962-2974, 2023 10 04.
Article in English | MEDLINE | ID: mdl-37644722

ABSTRACT

A deficiency of human arylsulfatase A (hASA) causes metachromatic leukodystrophy (MLD), a lysosomal storage disease characterized by sulfatide accumulation and central nervous system (CNS) demyelination. Efficacy of enzyme replacement therapy (ERT) is increased by genetic engineering of hASA to elevate its activity and transfer across the blood-brain barrier (BBB), respectively. To further improve the enzyme's bioavailability in the CNS, we mutated a cathepsin cleavage hot spot and obtained hASAs with substantially increased half-lives. We then combined the superstabilizing exchange E424A with the activity-promoting triple substitution M202V/T286L/R291N and the ApoEII-tag for BBB transfer in a trimodal modified neoenzyme called SuPerTurbo-ASA. Compared with wild-type hASA, half-life, activity, and M6P-independent uptake were increased more than 7-fold, about 3-fold, and more than 100-fold, respectively. ERT of an MLD-mouse model with immune tolerance to wild-type hASA did not induce antibody formation, indicating absence of novel epitopes. Compared with wild-type hASA, SuPerTurbo-ASA was 8- and 12-fold more efficient in diminishing sulfatide storage of brain and spinal cord. In both tissues, storage was reduced by ∼60%, roughly doubling clearance achieved with a 65-fold higher cumulative dose of wild-type hASA previously. Due to its enhanced therapeutic potential, SuPerTurbo-ASA might be a decisive advancement for ERT and gene therapy of MLD.


Subject(s)
Leukodystrophy, Metachromatic , Lysosomal Storage Diseases , Mice , Animals , Humans , Leukodystrophy, Metachromatic/therapy , Leukodystrophy, Metachromatic/drug therapy , Cerebroside-Sulfatase/genetics , Cerebroside-Sulfatase/metabolism , Sulfoglycosphingolipids/therapeutic use , Brain/metabolism , Lysosomal Storage Diseases/genetics , Lysosomal Storage Diseases/therapy
2.
J Biol Chem ; 298(10): 102494, 2022 10.
Article in English | MEDLINE | ID: mdl-36115461

ABSTRACT

Chaperones of the Hsp100/Clp family represent major components of protein homeostasis, conferring maintenance of protein activity under stress. The ClpB-type members of the family, present in bacteria, fungi, and plants, are able to resolubilize aggregated proteins. The mitochondrial member of the ClpB family in Saccharomyces cerevisiae is Hsp78. Although Hsp78 has been shown to contribute to proteostasis in elevated temperatures, the biochemical mechanisms underlying this mitochondria-specific thermotolerance are still largely unclear. To identify endogenous chaperone substrate proteins, here, we generated an Hsp78-ATPase mutant with stabilized substrate-binding behavior. We used two stable isotope labeling-based quantitative mass spectrometry approaches to analyze the role of Hsp78 during heat stress-induced mitochondrial protein aggregation and disaggregation on a proteomic level. We first identified the endogenous substrate spectrum of the Hsp78 chaperone, comprising a wide variety of proteins related to metabolic functions including energy production and protein synthesis, as well as other chaperones, indicating its crucial functions in mitochondrial stress resistance. We then compared these interaction data with aggregation and disaggregation processes in mitochondria under heat stress, which revealed specific aggregation-prone protein populations and demonstrated the direct quantitative impact of Hsp78 on stress-dependent protein solubility under different conditions. We conclude that Hsp78, together with its cofactors, represents a recovery system that protects major mitochondrial metabolic functions during heat stress as well as restores protein biogenesis capacity after the return to normal conditions.


Subject(s)
Saccharomyces cerevisiae Proteins , Saccharomyces cerevisiae Proteins/chemistry , Protein Aggregates , Proteome/metabolism , Proteomics , Saccharomyces cerevisiae/metabolism , Molecular Chaperones/metabolism , Mitochondria/metabolism , Heat-Shock Response , HSP70 Heat-Shock Proteins/metabolism
3.
Development ; 149(16)2022 08 15.
Article in English | MEDLINE | ID: mdl-35950913

ABSTRACT

Profilin 4 (Pfn4) is expressed during spermiogenesis and localizes to the acrosome-acroplaxome-manchette complex. Here, we generated PFN4-deficient mice, with sperm displaying severe impairment in manchette formation. Interestingly, HOOK1 staining suggests that the perinuclear ring is established; however, ARL3 staining is disrupted, suggesting that lack of PFN4 does not interfere with the formation of the perinuclear ring and initial localization of HOOK1, but impedes microtubular organization of the manchette. Furthermore, amorphous head shape and flagellar defects were detected, resulting in reduced sperm motility. Disrupted cis- and trans-Golgi networks and aberrant production of proacrosomal vesicles caused impaired acrosome biogenesis. Proteomic analysis showed that the proteins ARF3, SPECC1L and FKBP1, which are involved in Golgi membrane trafficking and PI3K/AKT pathway, are more abundant in Pfn4-/- testes. Levels of PI3K, AKT and mTOR were elevated, whereas AMPK level was reduced, consistent with inhibition of autophagy. This seems to result in blockage of autophagic flux, which could explain the failure in acrosome formation. In vitro fertilization demonstrated that PFN4-deficient sperm is capable of fertilizing zona-free oocytes, suggesting a potential treatment for PFN4-related human infertility.


Subject(s)
Acrosome , Profilins , Spermatids , Spermatogenesis , Acrosome/metabolism , Animals , Male , Mice , Phosphatidylinositol 3-Kinases/metabolism , Profilins/genetics , Profilins/metabolism , Proteomics , Proto-Oncogene Proteins c-akt/metabolism , Semen , Sperm Motility , Spermatids/metabolism , Spermatogenesis/genetics , Spermatozoa
4.
J Proteomics ; 264: 104632, 2022 07 30.
Article in English | MEDLINE | ID: mdl-35644350

ABSTRACT

Milk is a nutrient-rich biofluid that contains several biocomponents with distinctive functions, including extracellular vesicles (EV). Milk EV have been associated with the regulation of the newborn's immune system and to influence essential cellular development. The EV proteome comprises the protein constituents and cargo; changes in these compartments could impact their role mediating communication. The ratio of dietary ω-6 to ω-3 polyunsaturated fatty acids (PUFA) is known to affect health and inflammation, and to induce changes in milk fatty acid composition, but no reports have included the milk EV fraction so far. We isolated EV from milk samples obtained on days 0, 7, and 14 after parturition from sows receiving either a standard diet or a test diet enriched in ω-3 (ω6:ω3 = 4:1). Small milk-derived EV were isolated using ultracentrifugation coupled with size exclusion chromatography, and characterized by nanoparticle tracking analysis, transmission electron microscopy, and Western blotting. Using a TMT-based high-resolution quantitative approach, the proteomics analysis revealed variations in the milk EV proteome within the diet groups with differences in the abundance of spondin-2 and 78 kDa glucose-regulated protein. Future studies are encouraged to explore further dietary effects on milk EV composition and their relation to the offspring's development. SIGNIFICANCE: Milk EV are known as key players mediating the regulation of the infant's immune system and growth. The EV proteome comprises the protein constituents and protein cargo, and any changes in this system could impact their role in intercellular communication. This study aimed at evaluating how different ω-6:ω-3 ratios in the maternal diet could translate to the milk EV proteome. This is relevant for basic research, but also has applied aspects in animal nutrition and health and may provide new perspectives for feeding additives.


Subject(s)
Extracellular Vesicles , Fatty Acids, Omega-3 , Animals , Diet , Extracellular Vesicles/metabolism , Fatty Acids/metabolism , Fatty Acids, Omega-3/analysis , Fatty Acids, Omega-3/metabolism , Fatty Acids, Omega-6/analysis , Fatty Acids, Omega-6/metabolism , Female , Humans , Milk/chemistry , Proteome/analysis , Swine
5.
Int J Mol Sci ; 23(10)2022 May 11.
Article in English | MEDLINE | ID: mdl-35628173

ABSTRACT

The three isoenzymes of iodothyronine deiodinases (DIO1-3) are membrane-anchored homo-dimeric selenoproteins which share the thioredoxin-fold structure. Several questions regarding their catalytic mechanisms still remain open. Here, we addressed the roles of several cysteines which are conserved among deiodinase isoenzymes and asked whether they may contribute to dimerization and reduction of the oxidized enzyme with physiological reductants. We also asked whether amino acids previously identified in DIO3 play the same role in DIO1. Human DIO1 and 2 were recombinantly expressed in insect cells with selenocysteine replaced with cysteine (DIO1U126C) or in COS7 cells as selenoprotein. Enzyme activities were studied by radioactive deiodination assays with physiological reducing agents and recombinant proteins were characterized by mass spectrometry. Mutation of Cys124 in DIO1 prevented reduction by glutathione, while 20 mM dithiothreitol still regenerated the enzyme. Protein thiol reductants, thioredoxin and glutaredoxin, did not reduce DIO1U126C. Mass spectrometry demonstrated the formation of an intracellular disulfide between the side-chains of Cys124 and Cys(Sec)126. We conclude that the proximal Cys124 forms a selenenyl-sulfide with the catalytic Sec126 during catalysis, which is the substrate of the physiological reductant glutathione. Mutagenesis studies support the idea of a proton-relay pathway from solvent to substrate that is shared between DIO1 and DIO3.


Subject(s)
Iodide Peroxidase , Animals , COS Cells , Chlorocebus aethiops , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Humans , Iodide Peroxidase/genetics , Iodide Peroxidase/metabolism , Isoenzymes , Recombinant Proteins/biosynthesis , Recombinant Proteins/genetics , Iodothyronine Deiodinase Type II
6.
Biochem J ; 479(9): 953-972, 2022 05 13.
Article in English | MEDLINE | ID: mdl-35419597

ABSTRACT

Chromatin remodelling in spermatids is an essential step in spermiogenesis and involves the exchange of most histones by protamines, which drives chromatin condensation in late spermatids. The gene Rimklb encodes a citrylglutamate synthase highly expressed in testes of vertebrates and the increase of its reaction product, ß-citrylglutamate, correlates in time with the appearance of spermatids. Here we show that deficiency in a functional Rimklb gene leads to male subfertility, which could be partially rescued by in vitro fertilization. Rimklb-deficient mice are impaired in a late step of spermiogenesis and produce spermatozoa with abnormally shaped heads and nuclei. Sperm chromatin in Rimklb-deficient mice was less condensed and showed impaired histone to protamine exchange and retained transition protein 2. These observations suggest that citrylglutamate synthase, probably via its reaction product ß-citrylglutamate, is essential for efficient chromatin remodelling during spermiogenesis and may be a possible candidate gene for male subfertility or infertility in humans.


Subject(s)
Infertility, Male , Spermatids , Animals , Chromatin/genetics , Chromatin/metabolism , Chromosomal Proteins, Non-Histone , Histones/genetics , Histones/metabolism , Humans , Infertility, Male/genetics , Infertility, Male/metabolism , Male , Mice , Protamines/genetics , Protamines/metabolism , Spermatids/metabolism , Spermatogenesis/genetics , Spermatozoa/metabolism
7.
Transl Psychiatry ; 12(1): 91, 2022 03 04.
Article in English | MEDLINE | ID: mdl-35246507

ABSTRACT

Chronic stress is a major cause of neuropsychiatric conditions such as depression. Stress vulnerability varies individually in mice and humans, measured by behavioral changes. In contrast to affective symptoms, motor retardation as a consequence of stress is not well understood. We repeatedly imaged dendritic spines of the motor cortex in Thy1-GFP M mice before and after chronic social defeat stress. Susceptible and resilient phenotypes were discriminated by symptom load and their motor learning abilities were assessed by a gross and fine motor task. Stress phenotypes presented individual short- and long-term changes in the hypothalamic-pituitary-adrenal axis as well as distinct patterns of altered motor learning. Importantly, stress was generally accompanied by a marked reduction of spine density in the motor cortex and spine dynamics depended on the stress phenotype. We found astrogliosis and altered microglia morphology along with increased microglia-neuron interaction in the motor cortex of susceptible mice. In cerebrospinal fluid, proteomic fingerprints link the behavioral changes and structural alterations in the brain to neurodegenerative disorders and dysregulated synaptic homeostasis. Our work emphasizes the importance of synaptic integrity and the risk of neurodegeneration within depression as a threat to brain health.


Subject(s)
Motor Cortex , Animals , Dendritic Spines/physiology , Hypothalamo-Hypophyseal System , Mice , Mice, Inbred C57BL , Neuronal Plasticity/physiology , Pituitary-Adrenal System , Proteomics , Stress, Psychological
8.
Acta Neuropathol ; 143(4): 453-469, 2022 04.
Article in English | MEDLINE | ID: mdl-35141810

ABSTRACT

The protein α-synuclein, a key player in Parkinson's disease (PD) and other synucleinopathies, exists in different physiological conformations: cytosolic unfolded aggregation-prone monomers and helical aggregation-resistant multimers. It has been shown that familial PD-associated missense mutations within the α-synuclein gene destabilize the conformer equilibrium of physiologic α-synuclein in favor of unfolded monomers. Here, we characterized the relative levels of unfolded and helical forms of cytosolic α-synuclein in post-mortem human brain tissue and showed that the equilibrium of α-synuclein conformations is destabilized in sporadic PD and DLB patients. This disturbed equilibrium is decreased in a brain region-specific manner in patient samples pointing toward a possible "prion-like" propagation of the underlying pathology and forms distinct disease-specific patterns in the two different synucleinopathies. We are also able to show that a destabilization of multimers mechanistically leads to increased levels of insoluble, pathological α-synuclein, while pharmacological stabilization of multimers leads to a "prion-like" aggregation resistance. Together, our findings suggest that these disease-specific patterns of α-synuclein multimer destabilization in sporadic PD and DLB are caused by both regional neuronal vulnerability and "prion-like" aggregation transmission enabled by the destabilization of local endogenous α-synuclein protein.


Subject(s)
Lewy Body Disease , Parkinson Disease , Prions , Synucleinopathies , Brain/pathology , Humans , Lewy Bodies/pathology , Lewy Body Disease/pathology , Parkinson Disease/pathology , Prions/metabolism , alpha-Synuclein/metabolism
9.
Proteomics ; 21(19): e2100043, 2021 10.
Article in English | MEDLINE | ID: mdl-34432360

ABSTRACT

Neuronal ceroid lipofuscinoses (NCLs) collectively account for the highest prevalence of inherited neurodegenerative diseases in childhood. This disease group is classified by the deposition of similar autofluorescence storage material in lysosomes that is accompanied by seizures, blindness and premature mortality in later disease stages. Defects in several genes affecting various proteins lead to NCL, one of them being CLN6, a transmembrane protein resident in the endoplasmic reticulum. Dysfunctionality of CLN6 causes variant late infantile NCL (vLINCL). The function of CLN6 and how its deficiency affects lysosomal integrity remains unknown. In this work, we performed a comparative proteomic analysis of isolated lysosomal fractions from liver tissue of nclf mice, a natural mouse model displaying a similar disease course than its human counterpart. We could identify a drastic reduction in the protein amounts of selected lysosomal proteins, amongst them several members of the NCL protein family. Most of these proteins were N-glycosylated, soluble hydrolases and their reduction in protein levels was verified by western blotting and enzymatic assays. Hereby we could directly link Cln6 dysfunction to changes in the lysosomal compartment and to other NCL forms.


Subject(s)
Neuronal Ceroid-Lipofuscinoses , Animals , Lysosomes , Membrane Proteins/genetics , Mice , Mutation , Neuronal Ceroid-Lipofuscinoses/genetics , Proteins , Proteomics
10.
J Proteomics ; 249: 104338, 2021 10 30.
Article in English | MEDLINE | ID: mdl-34343709

ABSTRACT

Exosomes are membranous vesicles of endocytic origin, recently been considered as major players in cell-cell communication. Milk is highly complex, and diverse biocomponents provide adequate nutrition, transfer immunity, and promote adequate neonate development. Milk exosomes are suggested to have a key role in these processes, yet to be further explored, and the alteration of the exosomes' cargo in different stages of lactation stages is important for understanding the factors relevant in nursing and also for improving milk replacer products both for humans and animals. We isolated exosomes from porcine milk in different lactation stages and analyzed their content using a TMT-based high-resolution quantitative proteomic approach. Exosomes were isolated using ultracentrifugation coupled with size exclusion chromatography to enrich milk-derived exosomes in samples obtained at day 0, 7, and 14 after parturition, and characterized by nanoparticle tracking analysis, transmission electron microscopy, and Western blotting. Quantitative proteomics analysis revealed different proteome profiles for colostrum exosomes and milk exosomes. The functional analysis highlighted pathways related to the regulation of homeostasis to be upregulated in colostrum exosomes, and pathways such as endothelial cell development and lipid metabolism to be upregulated in mature milk exosomes. This study endorses the importance of exosomes as active biocomponents of milk and provides knowledge for future studies exploring their role in the regulation of immunity and growth of the newborn. SIGNIFICANCE: The identified functional proteome and protein-protein interaction networks identified in our study help to elucidate the role of milk exosomes in different lactation periods. The results generated herein are of relevance for the basic understanding of their impact on the infant's development but also for bringing forward the manufacturing of milk replacers.


Subject(s)
Exosomes , Proteome , Animals , Colostrum , Female , Humans , Milk , Pregnancy , Proteomics , Swine
11.
J Biol Chem ; 297(3): 101064, 2021 09.
Article in English | MEDLINE | ID: mdl-34375644

ABSTRACT

An inherited deficiency of arylsulfatase A (ASA) causes the lysosomal storage disease metachromatic leukodystrophy (MLD) characterized by massive intralysosomal storage of the acidic glycosphingolipid sulfatide and progressive demyelination. Lyso-sulfatide, which differs from sulfatide by the lack of the N-linked fatty acid, also accumulates in MLD and is considered a key driver of pathology although its concentrations are far below sulfatide levels. However, the metabolic origin of lyso-sulfatide is unknown. We show here that ASA-deficient murine macrophages and microglial cells express an endo-N-deacylase that cleaves the N-linked fatty acid from sulfatide. An ASA-deficient astrocytoma cell line devoid of this activity was used to identify the enzyme by overexpressing 13 deacylases with potentially matching substrate specificities. Hydrolysis of sulfatide was detected only in cells overexpressing the enzyme fatty acid amide hydrolase (FAAH). A cell-free assay with recombinant FAAH confirmed the novel role of this enzyme in sulfatide hydrolysis. Consistent with the in vitro data, deletion of FAAH lowered lyso-sulfatide levels in a mouse model of MLD. Regardless of the established cytotoxicity of lyso-sulfatide and the anti-inflammatory effects of FAAH inhibition seen in mouse models of several neurological diseases, genetic inactivation of FAAH did not mitigate, but rather exacerbated the disease phenotype of MLD mice. This unexpected finding was reflected by worsening of rotarod performance, increase of anxiety-related exploratory activity, aggravation of peripheral neuropathy, and reduced life expectancy. Thus, we conclude that FAAH has a protective function in MLD and may represent a novel therapeutic target for treatment of this fatal condition.


Subject(s)
Amidohydrolases/metabolism , Leukodystrophy, Metachromatic/pathology , Psychosine/analogs & derivatives , Amidohydrolases/genetics , Amidohydrolases/physiology , Animals , Cell Line , Cerebroside-Sulfatase/deficiency , Cerebroside-Sulfatase/genetics , Disease Models, Animal , Female , Leukodystrophy, Metachromatic/enzymology , Leukodystrophy, Metachromatic/genetics , Lysosomal Storage Diseases/genetics , Lysosomal Storage Diseases/physiopathology , Mice , Mice, Knockout , Microglia/metabolism , Primary Cell Culture , Psychosine/genetics , Psychosine/metabolism , Sulfoglycosphingolipids/metabolism
12.
J Biol Chem ; 297(4): 101134, 2021 10.
Article in English | MEDLINE | ID: mdl-34461102

ABSTRACT

The mitochondrial matrix protease LONP1 is an essential part of the organellar protein quality control system. LONP1 has been shown to be involved in respiration control and apoptosis. Furthermore, a reduction in LONP1 level correlates with aging. Up to now, the effects of a LONP1 defect were mostly studied by utilizing transient, siRNA-mediated knockdown approaches. We generated a new cellular model system for studying the impact of LONP1 on mitochondrial protein homeostasis by a CRISPR/Cas-mediated genetic knockdown (gKD). These cells showed a stable reduction of LONP1 along with a mild phenotype characterized by absent morphological differences and only small negative effects on mitochondrial functions under normal culture conditions. To assess the consequences of a permanent LONP1 depletion on the mitochondrial proteome, we analyzed the alterations of protein levels by quantitative mass spectrometry, demonstrating small adaptive changes, in particular with respect to mitochondrial protein biogenesis. In an additional proteomic analysis, we determined the temperature-dependent aggregation behavior of mitochondrial proteins and its dependence on a reduction of LONP1 activity, demonstrating the important role of the protease for mitochondrial protein homeostasis in mammalian cells. We identified a significant number of mitochondrial proteins that are affected by a reduced LONP1 activity especially with respect to their stress-induced solubility. Taken together, our results suggest a very good applicability of the LONP1 gKD cell line as a model system for human aging processes.


Subject(s)
ATP-Dependent Proteases/metabolism , Mitochondria/metabolism , Mitochondrial Proteins/metabolism , Protein Aggregates , Proteome/metabolism , Proteomics , ATP-Dependent Proteases/genetics , Gene Knockdown Techniques , HeLa Cells , Humans , Mitochondria/genetics , Mitochondrial Proteins/genetics , Proteome/genetics
13.
Autophagy ; 17(11): 3690-3706, 2021 11.
Article in English | MEDLINE | ID: mdl-33618608

ABSTRACT

Hereditary spastic paraplegia (HSP) denotes genetically heterogeneous disorders characterized by leg spasticity due to degeneration of corticospinal axons. SPG11 and SPG15 have a similar clinical course and together are the most prevalent autosomal recessive HSP entity. The respective proteins play a role for macroautophagy/autophagy and autophagic lysosome reformation (ALR). Here, we report that spg11 and zfyve26 KO mice developed motor impairments within the same course of time. This correlated with enhanced accumulation of autofluorescent material in neurons and progressive neuron loss. In agreement with defective ALR, tubulation events were diminished in starved KO mouse embryonic fibroblasts (MEFs) and lysosomes decreased in neurons of KO brain sections. Confirming that both proteins act in the same molecular pathway, the pathologies were not aggravated upon simultaneous disruption of both. We further show that PI4K2A (phosphatidylinositol 4-kinase type 2 alpha), which phosphorylates phosphatidylinositol to phosphatidylinositol-4-phosphate (PtdIns4P), accumulated in autofluorescent deposits isolated from KO but not WT brains. Elevated PI4K2A abundance was already found at autolysosomes of neurons of presymptomatic KO mice. Immunolabelings further suggested higher levels of PtdIns4P at LAMP1-positive structures in starved KO MEFs. An increased association with LAMP1-positive structures was also observed for clathrin and DNM2/dynamin 2, which are important effectors of ALR recruited by phospholipids. Because PI4K2A overexpression impaired ALR, while its knockdown increased tubulation, we conclude that PI4K2A modulates phosphoinositide levels at autolysosomes and thus the recruitment of downstream effectors of ALR. Therefore, PI4K2A may play an important role in the pathogenesis of SPG11 and SPG15.Abbreviations: ALR: autophagic lysosome reformation; AP-5: adaptor protein complex 5; BFP: blue fluorescent protein; dKO: double knockout; EBSS: Earle's balanced salt solution; FBA: foot base angle; GFP: green fluorescent protein; HSP: hereditary spastic paraplegia; KO: knockout; LAMP1: lysosomal-associated membrane protein 1; MAP1LC3B/LC3: microtubule-associated protein 1 light chain 3 beta; MEF: mouse embryonic fibroblast; SQSTM1/p62: sequestosome 1; PI4K2A: phosphatidylinositol 4-kinase type 2 alpha; PtdIns3P: phosphatidylinositol-3-phosphate; PtdIns4P: phosphatidylinositol-4-phosphate; RFP: red fluorescent protein; SPG: spastic paraplegia gene; TGN: trans-Golgi network; WT: wild type.


Subject(s)
Autophagy , Lysosomes/metabolism , Minor Histocompatibility Antigens/metabolism , Phosphotransferases (Alcohol Group Acceptor)/metabolism , Spastic Paraplegia, Hereditary/metabolism , Animals , Blotting, Western , Disease Models, Animal , Flow Cytometry , Mass Spectrometry , Mice , Mice, Inbred C57BL , Mice, Knockout , Minor Histocompatibility Antigens/physiology , Phosphotransferases (Alcohol Group Acceptor)/physiology , Proteins/metabolism , Spastic Paraplegia, Hereditary/pathology
14.
Cryobiology ; 99: 64-77, 2021 04.
Article in English | MEDLINE | ID: mdl-33485896

ABSTRACT

Epididymal sperm shows higher cryoresistance than ejaculated sperm. Although the sperm proteome seems to affect cell cryoresistance, studies aiming at identifying proteins involved in sperm freezing-tolerance are scarce. The aims of this study were to investigate differences of sperm freezability and proteome between epididymal and ejaculated sperm in three mountain ungulates: Iberian ibex, Mouflon and Chamois. Sperm samples were cryopreserved in straws by slow freezing. Tandem mass tag-labeled peptides from sperm samples were analyzed by high performance liquid chromatography coupled to a mass spectrometer in three technical replicates. The statistical analysis was done using the moderated t-test of the R package limma. Differences of freezability between both types of sperm were associated with differences of the proteome. Overall, epididymal sperm showed higher freezability than ejaculated sperm. Between 1490 and 1883 proteins were quantified in each species and type of sperm sample. Cross species comparisons revealed a total of 76 proteins that were more abundant in epididymal than in ejaculated sperm in the three species of study whereas 3 proteins were more abundant in ejaculated than epididymal sperm in the three species of study (adjusted P < 0.05; |log2| fold-change > 0.5). Many of the proteins that were associated with higher cryoresistance are involved in stress response and redox homeostasis. In conclusion, marked changes of sperm proteome were detected between epididymal and ejaculated sperm. This work contributes to update the sperm proteome of small ruminants and to identify candidate markers of sperm freezability.


Subject(s)
Semen Preservation , Animals , Cryopreservation/methods , Epididymis , Male , Proteome , Ruminants , Semen Preservation/veterinary , Sperm Motility , Spermatozoa
15.
J Extracell Vesicles ; 9(1): 1786967, 2020 Jul 02.
Article in English | MEDLINE | ID: mdl-32944175

ABSTRACT

The transfer of microRNAs (miRs) via extracellular vesicles (EVs) is a functionally relevant mechanism of intercellular communication that regulates both organ homoeostasis and disease development. Little is known about the packaging of miRs into EVs. Previous studies have shown that certain miRs are exported by RNA-binding proteins into small EVs, while for other miRs and for large EVs, in general, the export mechanisms remain unclear. Therefore, a proteomic analysis of endothelial cell-derived large EVs was performed, which revealed that heterogeneous nuclear ribonucleoprotein U (hnRNPU) is abundantly present in EVs. EVs were characterized by electron microscopy, immunoblotting and nanoparticle tracking analysis. Taqman microRNA array and single qPCR experiments identified specific miR patterns to be exported into EVs in an hnRNPU-dependent way. The specific role of hnRNPU for vesicular miR-sorting was confirmed independently by gain- and loss-of-function experiments. In our study, miR-30c-5p was the miR whose export was most significantly regulated by hnRNPU. Mechanistically, in silico binding analysis showed that the export of miRs into EVs depends on the binding efficiency of the respective miRs to hnRNPU. Among the exported miRs, a significant enrichment of the sequence motif AAMRUGCU was detected as a potential sorting signal. Experimentally, binding of miR-30c-5p to hnRNPU was confirmed independently by RNA-immunoprecipitation, electrophoretic mobility shift assay and reciprocally by miR-pulldown. Nuclear binding of miR-30c-5p to hnRNPU and subsequent stabilization was associated with a lower cytoplasmatic abundance and consequently reduced availability for vesicular export. hnRNPU-dependent miR-30c-5p export reduced cellular migration as well as pro-angiogenic gene expression in EV-recipient cells. In summary, hnRNPU retains miR-30c-5p and other miRs and thereby prevents their export into large EVs. The data presented provide a novel and functionally relevant mechanism of vesicular miR export.

16.
J Neurochem ; 152(6): 710-726, 2020 03.
Article in English | MEDLINE | ID: mdl-31520481

ABSTRACT

Increasing evidence suggests that both synaptic loss and neuroinflammation constitute early pathologic hallmarks of Alzheimer's disease. A downstream event during inflammatory activation of microglia and astrocytes is the induction of nitric oxide synthase type 2, resulting in an increased release of nitric oxide and the post-translational S-nitrosylation of protein cysteine residues. Both early events, inflammation and synaptic dysfunction, could be connected if this excess nitrosylation occurs on synaptic proteins. In the long term, such changes could provide new insight into patho-mechanisms as well as biomarker candidates from the early stages of disease progression. This study investigated S-nitrosylation in synaptosomal proteins isolated from APP/PS1 model mice in comparison to wild type and NOS2-/- mice, as well as human control, mild cognitive impairment and Alzheimer's disease brain tissues. Proteomics data were obtained using an established protocol utilizing an isobaric mass tag method, followed by nanocapillary high performance liquid chromatography tandem mass spectrometry. Statistical analysis identified the S-nitrosylation sites most likely derived from an increase in nitric oxide (NO) in dependence of presence of AD pathology, age and the key enzyme NOS2. The resulting list of candidate proteins is discussed considering function, previous findings in the context of neurodegeneration, and the potential for further validation studies.


Subject(s)
Alzheimer Disease/metabolism , Nerve Tissue Proteins/metabolism , Nitric Oxide Synthase Type II/metabolism , Nitric Oxide/metabolism , Proteomics/methods , Synaptosomes/metabolism , Aged , Aged, 80 and over , Animals , Brain/ultrastructure , Disease Models, Animal , Female , Humans , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Nerve Tissue Proteins/classification , Signal Transduction , Synaptosomes/chemistry
17.
Elife ; 82019 10 29.
Article in English | MEDLINE | ID: mdl-31661432

ABSTRACT

Lysosomes are major sites for intracellular, acidic hydrolase-mediated proteolysis and cellular degradation. The export of low-molecular-weight catabolic end-products is facilitated by polytopic transmembrane proteins mediating secondary active or passive transport. A number of these lysosomal transporters, however, remain enigmatic. We present a detailed analysis of MFSD1, a hitherto uncharacterized lysosomal family member of the major facilitator superfamily. MFSD1 is not N-glycosylated. It contains a dileucine-based sorting motif needed for its transport to lysosomes. Mfsd1 knockout mice develop splenomegaly and severe liver disease. Proteomics of isolated lysosomes from Mfsd1 knockout mice revealed GLMP as a critical accessory subunit for MFSD1. MFSD1 and GLMP physically interact. GLMP is essential for the maintenance of normal levels of MFSD1 in lysosomes and vice versa. Glmp knockout mice mimic the phenotype of Mfsd1 knockout mice. Our data reveal a tightly linked MFSD1/GLMP lysosomal membrane protein transporter complex.


Subject(s)
Liver/physiology , Lysosomes/metabolism , Membrane Proteins/metabolism , Membrane Transport Proteins/metabolism , Animals , Homeostasis , Membrane Proteins/deficiency , Membrane Proteins/genetics , Membrane Transport Proteins/deficiency , Membrane Transport Proteins/genetics , Mice, Knockout , Protein Binding
18.
J Cell Sci ; 132(12)2019 06 17.
Article in English | MEDLINE | ID: mdl-31138677

ABSTRACT

Mechanisms that regulate the formation of membrane-less cellular organelles, such as neuronal RNA granules and stress granules, have gained increasing attention over the past years. These granules consist of RNA and a plethora of RNA-binding proteins. Mutations in RNA-binding proteins have been found in neurodegenerative diseases such as amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). By performing pulldown experiments and subsequent mass spectrometry on mouse brain lysates, we discovered that the de-ubiquitylating enzyme OTU domain-containing protein 4 (OTUD4) unexpectedly is part of a complex network of multiple RNA-binding proteins, including core stress granule factors, such as FMRP (also known as FMR1), SMN1, G3BP1 and TIA1. We show that OTUD4 binds RNA, and that several of its interactions with RNA-binding proteins are RNA dependent. OTUD4 is part of neuronal RNA transport granules in rat hippocampal neurons under physiological conditions, whereas upon cellular stress, OTUD4 is recruited to cytoplasmic stress granules. Knockdown of OTUD4 in HeLa cells resulted in defects in stress granule formation and led to apoptotic cell death. Together, we characterize OTUD4 as a new RNA-binding protein with a suggested function in regulation of translation.


Subject(s)
DNA Helicases/genetics , RNA Recognition Motif Proteins/metabolism , Ubiquitin-Specific Proteases/genetics , Ubiquitin-Specific Proteases/metabolism , Amyotrophic Lateral Sclerosis/metabolism , Animals , Cytoplasmic Granules/metabolism , DNA-Binding Proteins/metabolism , HeLa Cells , Humans , Mice, Inbred C57BL , Mutation/genetics , Neurodegenerative Diseases/genetics , Neurodegenerative Diseases/metabolism , Neurons/metabolism
19.
J Biol Chem ; 294(24): 9592-9604, 2019 06 14.
Article in English | MEDLINE | ID: mdl-31040178

ABSTRACT

Numerous lysosomal enzymes and membrane proteins are essential for the degradation of proteins, lipids, oligosaccharides, and nucleic acids. The CLN3 gene encodes a lysosomal membrane protein of unknown function, and CLN3 mutations cause the fatal neurodegenerative lysosomal storage disorder CLN3 (Batten disease) by mechanisms that are poorly understood. To define components critical for lysosomal homeostasis that are affected by this disease, here we quantified the lysosomal proteome in cerebellar cell lines derived from a CLN3 knock-in mouse model of human Batten disease and control cells. We purified lysosomes from SILAC-labeled, and magnetite-loaded cerebellar cells by magnetic separation and analyzed them by MS. This analysis identified 70 proteins assigned to the lysosomal compartment and 3 lysosomal cargo receptors, of which most exhibited a significant differential abundance between control and CLN3-defective cells. Among these, 28 soluble lysosomal proteins catalyzing the degradation of various macromolecules had reduced levels in CLN3-defective cells. We confirmed these results by immunoblotting and selected protease and glycosidase activities. The reduction of 11 lipid-degrading lysosomal enzymes correlated with reduced capacity for lipid droplet degradation and several alterations in the distribution and composition of membrane lipids. In particular, levels of lactosylceramides and glycosphingolipids were decreased in CLN3-defective cells, which were also impaired in the recycling pathway of the exocytic transferrin receptor. Our findings suggest that CLN3 has a crucial role in regulating lysosome composition and their function, particularly in degrading of sphingolipids, and, as a consequence, in membrane transport along the recycling endosome pathway.


Subject(s)
Cerebellum/metabolism , Lipids/analysis , Lysosomes/metabolism , Membrane Glycoproteins/deficiency , Protein Transport , Proteins/metabolism , Proteome/analysis , Animals , Hydrolases/metabolism , Membrane Glycoproteins/genetics , Membrane Glycoproteins/metabolism , Mice , Molecular Chaperones/genetics , Molecular Chaperones/metabolism , Receptors, Transferrin/metabolism
20.
Nutrients ; 11(4)2019 Mar 31.
Article in English | MEDLINE | ID: mdl-30935111

ABSTRACT

Rice (Oryza sativa L.) is the richest source of γ-oryzanol, a compound endowed with antioxidant and anti-inflammatory properties. γ-Oryzanol has been demonstrated to cross the blood-brain barrier in intact form and exert beneficial effects on brain function. This study aimed to clarify the effects of γ-oryzanol in the hippocampus in terms of cognitive function and protein expression. Adult mice were administered with γ-oryzanol 100 mg/kg or vehicle (control) once a day for 21 consecutive days following which cognitive behavior and hippocampal proteome were investigated. Cognitive tests using novel object recognition and Y-maze showed that long-term consumption of γ-oryzanol improves cognitive function in mice. To investigate the hippocampal proteome modulated by γ-oryzanol, 2D-difference gel electrophoresis (2D-DIGE) was performed. Interestingly, we found that γ-oryzanol modulates quantitative changes of proteins involved in synaptic plasticity and neuronal trafficking, neuroprotection and antioxidant activity, and mitochondria and energy metabolism. These findings suggested γ-oryzanol as a natural compound able to maintain and reinforce brain function. Although more intensive studies are needed, we propose γ-oryzanol as a putative dietary phytochemical for preserving brain reserve, the ability to tolerate age-related changes, thereby preventing clinical symptoms or signs of neurodegenerative diseases.


Subject(s)
Cognition/drug effects , Hippocampus/drug effects , Hippocampus/metabolism , Oryza/chemistry , Phenylpropionates/pharmacology , Animals , Biomarkers , Body Weight/drug effects , Feeding Behavior/drug effects , Gene Expression Regulation/drug effects , Inflammation/chemically induced , Inflammation/metabolism , Lipopolysaccharides/toxicity , Male , Mice , Phenylpropionates/chemistry , Proteome
SELECTION OF CITATIONS
SEARCH DETAIL